

# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS QUÍMICAS

# "MODELO DE PRODUCCIÓN MÁS LIMPIA PARA LA MICROEMPRESA "PRODUCTOS LÁCTEOS DEL NORTE" UBICADA EN LA CIUDAD DE TULCÁN"

# TRABAJO DE TITULACIÓN

TIPO: PROYECTO TÉCNICO

Presentado para optar al grado académico de:

# INGENIERA EN BIOTECNOLOGÍA AMBIENTAL

**AUTORA: KARINA TATIANA RAMÍREZ COLCHA** 

**DIRECTORA:** ING. MARÍA SOLEDAD NÚÑEZ MORENO

Riobamba – Ecuador 2019

# © 2019, Karina Tatiana Ramírez Colcha

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

### **FACULTAD DE CIENCIAS**

# ESCUELA DE CIENCIAS QUÍMICAS

El Tribunal de Trabajo de Titulación certifica que: El trabajo técnico: "MODELO DE PRODUCCIÓN MÁS LIMPIA PARA LA MICROEMPRESA "PRODUCTOS LÁCTEOS DEL NORTE" UBICADA EN LA CIUDAD DE TULCÁN", de responsabilidad de la señorita Karina Tatiana Ramírez Colcha, ha sido minuciosamente revisado por los miembros del Tribunal de Trabajo de Titulación, quedando autorizada su presentación.

|                                                       | FIRMA | FECHA                 |
|-------------------------------------------------------|-------|-----------------------|
| Ing. María Soledad Núñez Moreno                       |       |                       |
| DIRECTOR DE TRABAJO<br>DE TITULACIÓN                  |       | 18 de Febrero de 2019 |
| Ing. Sofia Carolina Godoy Ponce  MIEMBRO DEL TRIBUNAL |       | 18 de Febrero de 2019 |

| Yo, KARINA TATIANA RAMÍREZ COLCHA soy responsable de las ideas, doctrinas y                   |
|-----------------------------------------------------------------------------------------------|
| resultados expuestos en este Trabajo de Titulación y el patrimonio intelectual del Trabajo de |
| Titulación pertenece a la Escuela Superior Politécnica de Chimborazo.                         |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
| Karina Tatiana Ramírez Colcha                                                                 |

### **DEDICATORIA**

A Dios y a la Virgen del Cisne por todo lo que me dan día a día, ya que siempre siento sus bendiciones y su infinito amor.

A mis padres, Manuel y Alicia, que han sido mi guía y mi fortaleza en este largo camino, por brindarme siempre su amor, cariño y apoyo en cada una de mis decisiones.

A mis hermanos: Carlos, Vero, Paty y Cristian por darme siempre su apoyo y cariño a lo largo de mi vida.

A mis cuñados: Pato, Pao y Oscar por su ayuda constante y por ser unos hermanos más para mí.

A los amores más grandes y puros de mi vida, mis sobrinos: Fabricio, Daniela, Karla, Alejandra, Juan David, Isabella y Felipe porque han sido mi inspiración en todo momento.

A toda mi familia: mis abuelitos, tíos y primos quienes de una u otra manera me han animado a culminar mi carrera.

A mis amigas y amigos por todo el cariño y su amistad verdadera en esta etapa de mi vida, de una manera muy especial a mis mejores amigas Ivonne y Karen porque han estado siempre conmigo brindándome su apoyo y su amistad sincera.

Karina

### **AGRADECIMIENTO**

A Dios y a mi churonita del Cisne por su bondad infinita a lo largo de mi vida.

A mis padres por ser el pilar fundamental en mi vida y porque nunca me han abandonado aún en mis decisiones equivocadas.

A mis hermanos por estar siempre pendientes de mí, brindándome su amor y apoyo incondicional.

A mis cuñados por el cariño y ayuda en todo momento.

A toda mi familia por su constante apoyo y cariño.

A mis amigas y amigos quienes me han brindado su ayuda en esta etapa de mi vida.

A la Escuela Superior Politécnica de Chimborazo, a los técnicos docentes y docentes de la Facultad de Ciencias por los aprendizajes y enseñanzas brindadas, de una manera muy especial a mi tutora la Ing. Soledad Núñez por su guía y paciencia para culminar mi trabajo de titulación y a la Ing. Sofía Godoy por su importante colaboración en este trabajo.

A la microempresa PRODUCTOS LÁCTEOS DEL NORTE por abrirme sus puertas y darme la oportunidad de realizar mi trabajo de titulación y por el apoyo brindado, de una manera muy especial a Leydi, Jaimito y Anderson por su guía, cariño y hospitalidad en este proceso. Muchas Gracias.

Karina

# TABLA DE CONTENIDO

| RESUM    | EN                                                             | xiv |
|----------|----------------------------------------------------------------|-----|
| ABSTR    | ACT                                                            | xv  |
| INTROI   | DUCCIÓN:                                                       | 1   |
| CAPÍTU   |                                                                |     |
| CAPITO   | JLO I                                                          |     |
| 1.       | MARCO TEÓRICO REFERENCIAL                                      | 6   |
| 1.1.     | Antecedentes                                                   | 6   |
| 1.2.     | Marco Conceptual                                               | 8   |
| 1.2.1.   | Producción Más Limpia (PML)                                    | 8   |
| 1.2.1.1. | Producción Más Limpia                                          | 8   |
| 1.2.1.2. | PML en la industria alimentaria                                | 10  |
| 1.2.1.3. | Importancia de la PML en las empresas                          | 11  |
| 1.2.1.4. | Beneficios de la PML                                           | 11  |
| 1.2.1.5. | Conceptos y Bases para la práctica de PML                      | 12  |
| 1.2.1.6. | Principios de PML                                              | 14  |
| 1.2.2.   | Industria Láctea y Producción de Queso                         | 15  |
| 1.2.2.1  | Industria Láctea a nivel mundial                               | 15  |
| 1.2.2.2  | Industria Láctea en Ecuador                                    | 15  |
| 1.2.2.3  | Elaboración de Queso                                           | 16  |
| 1.2.2.4  | Proceso Productivo                                             | 16  |
| 1.3.     | Marco Legal                                                    | 18  |
| 1.3.1.   | Matriz de Identificación de la Legislación Ambiental Aplicable | 20  |
|          |                                                                |     |
| CAPÍTU   | JLO II                                                         |     |
| 2.       | MARCO METODOLÓGICO                                             | 31  |
| 2.1.     | Características del Trabajo de Titulación                      | 31  |

| 2.2.   | Población de estudio                                             | 31 |
|--------|------------------------------------------------------------------|----|
| 2.3.   | Técnicas de recolección de datos                                 | 32 |
| 2.4.   | Metodología Aplicada                                             | 32 |
| 2.4.1. | FASE 1: Planeación y Organización:                               | 32 |
| 2.4.2. | FASE 2: Pre-Evaluación:                                          | 33 |
| 2.4.3. | FASE 3: Evaluación                                               | 41 |
| 2.4.4. | FASE 4: Estudio de Factibilidad                                  | 42 |
| CAPÍT  | ULO III                                                          |    |
| 3.     | MARCO DE RESULTADOS                                              | 44 |
| 3.1.   | DESARROLLO DEL MODELO DE PRODUCCIÓN MÁS LIMPIA                   | 44 |
| 3.1.1. | Descripción del estado actual de la empresa                      | 44 |
| 3.1.2. | Análisis del Proceso Productivo de la Microempresa:              | 46 |
| 3.1.3. | Recolección y Análisis de datos de las entradas en el proceso    | 50 |
| 3.1.4. | Recolección y Análisis de los datos de las salidas en el proceso | 53 |
| 3.1.5. | Balances Mensuales del Proceso de Producción                     | 55 |
| 3.16.  | Matriz FODA de la microempresa                                   | 57 |
| 3.17.  | Propuesta y Evaluación Preliminar                                | 58 |
| 3.2.   | Resultados, análisis y discusión                                 | 71 |
| 3.2.1. | MATERIA PRIMA, INSUMOS, PRODUCTOS Y SUBPRODUCTOS                 | 71 |
| 3.2.2. | ENERGÍA                                                          | 73 |
| 3.2.3. | AGUA:                                                            | 74 |
| 3.2.4. | RESIDUOS                                                         | 76 |
| 3.3.   | Análisis de la Implementación de las Propuestas de PML           | 77 |
| CONC   | LUSIONES                                                         | 87 |
| RECO   | MENDACIONES                                                      | 88 |
| BIBLIC | OGRAFÍA                                                          |    |
| ANEXO  | OS                                                               |    |

# ÍNDICE DE TABLAS

| Tabla 1-1: Matriz de Identificación de la Legislación Ambiental Aplicable            | 20        |
|--------------------------------------------------------------------------------------|-----------|
| Tabla 2-3: Estadística del consumo de energía                                        | 52        |
| Tabla 3-3: Estadística de costos del consumo de energía                              | 52        |
| Tabla 4-3: Estadística de consumo y costo del combustible (diésel)                   | 53        |
| Tabla 5-3: Producción mensual de queso amasado                                       | 53        |
| Tabla 6-3: Generación mensual de suero                                               | 53        |
| Tabla 7-3: Datos cuantitativos de las entradas y salidas del proceso productivo:     | 55        |
| Tabla 8-3: Datos cuantitativos del consumo de los equipos usados en el proceso de pr | oducción: |
|                                                                                      | 56        |
| Tabla 9-3: Propuesta 1 de PML                                                        | 58        |
| Tabla 10-3: Propuesta 2 de PML                                                       | 59        |
| Tabla 11-3: Propuesta 3 de PML                                                       | 59        |
| Tabla 12-3: Propuesta 4 de PML                                                       | 60        |
| Tabla 13-3: Propuesta 5 de PML                                                       | 61        |
| Tabla 14-3: Propuesta 6 de PML                                                       | 62        |
| Tabla 15-3: Propuesta 7 de PML                                                       | 63        |
| Tabla 16-3: Propuesta 8 de PML                                                       | 64        |
| Tabla 17-3: Propuesta 9 de PML                                                       | 65        |
| Tabla 18-3: Propuesta 10 de PML                                                      | 65        |
| Tabla 19-3: Propuesta 11 de PML                                                      | 66        |
| Tabla 20-3: Propuesta 12 de PML                                                      | 67        |
| Tabla 21-3: Propuesta 13 de PML                                                      | 67        |
| Tabla 22-3: Propuesta 14 de PML                                                      | 68        |
| Tabla 23-3: Propuesta 15 de PML                                                      | 69        |
| Tabla 24-3: Propuesta 16 de PML                                                      | 69        |
| Tabla 25-3: Propuesta 17 de PML                                                      | 70        |

| Tabla 26-3: Caracterización física-química y microbiológica de la muestra de agua residual | 74   |
|--------------------------------------------------------------------------------------------|------|
| Tabla 27-3: Jerarquización de Medidas de PML                                               | 77   |
| Tabla 28-3: Propuesta 1 de PML aplicable a la microempresa                                 | 77   |
| Tabla 29-3: Propuesta 2 de PML aplicable a la microempresa                                 | . 78 |
| Tabla 30-3: Propuesta 3 de PML aplicable a la microempresa                                 | 78   |
| Tabla 31-3: Propuesta 4 de PML aplicable a la microempresa.                                | 79   |
| Tabla 32-3: Propuesta 5 de PML aplicable a la microempresa.                                | 79   |
| Tabla 33-3: Propuesta 6 de PML aplicable a la microempresa                                 | 80   |
| <b>Tabla 34-3:</b> Propuesta 7 de PML aplicable a la microempresa                          | 80   |
| Tabla 35-3: Propuesta 8 de PML aplicable a la microempresa                                 | 81   |
| Tabla 36-3: Propuesta 9 de PML aplicable a la microempresa.                                | 81   |
| Tabla 37-3: Propuesta 10 de PML aplicable a la microempresa                                | 82   |
| Tabla 38-3: Propuesta 11 de PML aplicable a la microempresa                                | 83   |
| Tabla 39-3: Propuesta 12 de PML aplicable a la microempresa                                | 83   |
| Tabla 40-3: Propuesta 13 de PML aplicable a la microempresa                                | 84   |
| Tabla 41-3: Propuesta 14 de PML aplicable a la microempresa                                | 84   |
| Tabla 42-3: Propuesta 15 de PML aplicable a la microempresa                                | 85   |
| Tabla 43-3: Propuesta 16 de PML aplicable a la microempresa                                | 86   |
| Tabla 44-3: Propuesta 17 de PML aplicable a la microempresa                                | 86   |
|                                                                                            |      |

# ÍNDICE DE FIGURAS

| Figura 1-1: Definición de PML                                             | 10 |
|---------------------------------------------------------------------------|----|
| Figura 2-1: Diagrama básico del proceso de elaboración del queso          | 18 |
| Figura 1-2: Proceso Productivo del Queso Amasado                          | 35 |
| Figura 1-3: Diagrama de Flujo del Proceso Productivo del Queso            | 49 |
| Figura 2-3: Diagrama de Fluio Modificado del Proceso Productivo del Oueso | 54 |

# ÍNDICE DE GRÁFICOS

| <b>Gráfico 1-3:</b> Porcentaje de consumo de materias primas e insumos mensual (Kg) | 71 |
|-------------------------------------------------------------------------------------|----|
| Gráfico 2-3: Porcentaje de Producción                                               | 72 |
| Gráfico 3-3: Porcentaje de Consuo (KWh/mes)                                         | 73 |
| Gráfico 4-3: Porcentaje de Consumo (m³/mes)                                         | 75 |
| Gráfico 5-3: Porcentaie de Producción de Desechos                                   | 76 |

# ÍNDICE DE ANEXOS

ANEXO A. Recopilación Fotográfica

ANEXO B. Análisis de agua

**ANEXO C.** Modelo de encuesta

**ANEXO D.** Modelo de Entrevista

### **RESUMEN**

Se realizó un Modelo de Producción Más Limpia (PML) para la microempresa Productos Lácteos del Norte ubicada en la ciudad de Tulcán, para esto, se siguió una metodología de la "Guía de Producción Más Limpia para el Sector Lácteo" del Centro Nacional de PML de Nicaragua y la "Guía Técnica General de Producción Más Limpia" del Centro de Promoción de Tecnologías Sostenibles de Bolivia, estas dos guías sirvieron como base de este trabajo. La metodología está dividida en cuatro fases: la primera fase fue la de Planeación y Organización en la cual se consiguió el compromiso de la gerencia. La segunda fase consistió en la pre evaluación en donde se recopiló la información cuantitativa y cualitativa de la microempresa aplicando un muestreo de 15 días en la planta mediante el uso de tablas de registro del consumo de recursos (agua y energía) y materias primas e insumos, además, la producción diaria realizada y la caracterización de residuos. Se realizaron análisis fisicoquímicos de las aguas residuales del proceso productivo, entrevistas al gerente y a los trabajadores para conocer la realidad de la planta. La tercera fase fue la evaluación en donde se ordenó la información recolectada y se realizó balances para tener datos cuantitativos exactos y mediante estos se elaboró el análisis FODA de la microempresa con el fin de identificar posibles oportunidades de PML para mejorar la situación de la planta. La cuarta fase fue el estudio de factibilidad en donde se analizaron en términos técnicos, económicos y ambientales las oportunidades de PML. Se identificaron 17 opciones de PML aplicables a la microempresa y se concluyó que su implementación generará grandes beneficios ambientales y económicos ya que es más rentable desde el punto de vista de la disminución de costos de insumos y recursos de la microempresa. Se recomienda que la implementación del Modelo de PML empiece por las oportunidades identificadas como de Corto Plazo ya que no se requiere de gran inversión monetaria.

Palabras clave: < BIOTECNOLOGÍA>, < GESTIÓN AMBIENTAL>, < PRODUCCIÓN MÁS LIMPIA>, < PRODUCTOS LÁCTEOS>, < IMPACTO AMBIENTAL>, < ECONOMÍA VERDE>, < TULCÁN (CANTÓN)>, < CARCHI (PROVINCIA)>

03 ABR 2019

### **ABSTRACT**

A cleaner production model was made for the Productos Lacteos del Norte microenterprise located in Tulcan city. For this, a methodology of the "Guía de Producción Más Limpia para el Sector Lácteo" of the CP National Center of Nicaragua and the "Guía Técnica General de Producción Más Limpia" of the Sustainable Technologies Promotion's Center of Bolivia was followed and these two guides served as the base of this work. The methodology is divided into four phases: the first phase was Planning and Organization in which the commitment of management was achieved. The second phase consisted in the pre-evaluation where the quantitative and qualitative information of the microenterprise was collected by applying a 15day sampling in the factory through the use of resource consumption tables (water and energy) and raw materials and supplies, in addition to the daily production carried out and the characterization of waste. Physicochemical analysis of wastewater from the production process, interviews with the manager and workers to know the reality of the plant was made. The third phase was the evaluation in which the collected information was ordered and balances were made to obtain exact quantitative data and through these, the SWOT analysis of the microenterprise was elaborated in order to identify possible CP opportunities to improve the factory situation. The fourth phase was the feasibility study where CP opportunities were analyzed in technical, economic and environmental terms. We identified 17 CP options applicable to the microenterprise and it was concluded that its implementation will generate great environmental and economic benefits since it is more profitable from the point of view of inputs costs reduction and microenterprise's resources. It is recommended that the implementation of the CP Model begin with the opportunities identified as a short term since no large monetary investment is required.

**Keywords:** <BIOTECHNOLOGY>, <ENVIRONMENTAL MANAGEMENT>, <CLEANER PRODUCTION>, <DAIRY PRODUCTS>, <ENVIRONMENTAL IMPACT>, <GREEN ECONOMY>, <TULCAN (CITY)>, <CARCHI (PROVINCE)>

### INTRODUCCIÓN:

### Identificación del Problema:

En la actualidad existe una creciente actividad industrial que ha ido modificando severamente el ambiente y se le ha considerado como una de las principales causas de contaminación ambiental. La industria alimentaria es uno de los sectores productivos que mayor impacto tiene sobre el ambiente, bien sea por sus procesos productivos o por los diferentes productos que salen al mercado. Se conoce que cada sector de acuerdo a su actividad genera residuos en diferentes porcentajes de acuerdo a los tipos de productos que generan. (Restrepo, 2006).

Según Carrera (2015) la industria de productos lácteos se caracteriza por ser uno de los sectores más importantes dentro de la economía nacional, tanto en la generación de empleo directo como indirecto. Esto se debe a la demanda de lácteos por parte de los ecuatorianos.

El ecuatoriano demanda más queso. En los últimos ocho años el consumo per cápita de queso se duplicó. Esto se puede evidenciar por el cambio en el consumo de 0,75 kilos por persona al año en el 2006 a un consumo de 1,57 kilos en el 2014. (Orozco, 2015).

Orozco (2015) dice que en el Ecuador para la producción de lácteos se procesa 5,8 millones de litros al día, según datos del Centro de la Industria Láctea (CIL), de esos, más de un tercio se destina a la elaboración de queso, le sigue la leche en funda, de cartón y otros. El queso es un producto fundamental de la industria láctea, la cual utiliza un 25% del total de la producción mundial en su elaboración. (Gonzáles,2012).

En la provincia de Carchi, en el cantón Tulcán se pueden encontrar varias microempresas de lácteos, una de ellas es la microempresa "PRODUCTOS LÁCTEOS DEL NORTE" que viene realizando sus actividades desde el año 2016 en su planta ubicada en la calle Crespo Toral S/N (Cdla. San Luis) en donde se produce "queso amasado". Durante el proceso tradicional aplicado para la obtención del producto final en la microempresa se generan aguas residuales, residuos sólidos y consumo energético, razón por la cual es necesario implementar medidas que ayuden a la microempresa a un comportamiento responsable con el ambiente.

De acuerdo a González (2012) la gran variedad de procesos y productos en la industria láctea nos debe obligar a revisar su compromiso ambiental según el proceso y el producto elaborado; en la industria los principales procesos contaminantes son los de elaboración del queso debido a la obtención del lacto suero, la obtención de crema y mantequilla que produce la mazada o mezcla de agua y suero producto del lavado de la misma y el proceso de lavado de torres de secado y soluciones de limpieza empleadas.

Bajo este contexto en el Ecuador existe el CEER (Centro Ecuatoriano de Eficiencia de Recursos y Producción más Limpia), el mismo que fue una iniciativa impulsada desde el año 2013 por la ONUDI (Organización de las Naciones Unidas para el Desarrollo Industrial) y el apoyo del Ministerio de Industrias y Productividad del Ecuador, constituyéndose mediante Resolución N.º 16112 el 01 de julio de 2016 como una corporación sin fines de lucro, cuyo principal objetivo es el incentivar y contribuir con el progreso de la productividad de los sectores industriales, comerciales y de servicios en el Ecuador. Todo esto a través de la promoción del uso Eficiente de Recursos y la PML, brindando el apoyo en la definición e implementación de políticas públicas de ERPL, garantizando el fortalecimiento del desarrollo productivo, ambiental y social a nivel nacional. (CEER,2016)

De acuerdo al informe de los 10 años de la Red Latinoamericana de Producción Más Limpia (2013), se lanzó en el 2003 en la Ciudad de Habana, Cuba, el Programa Regional de Producción más Limpia para América Latina y El Caribe. Esta iniciativa de la ONUDI fue financiada por los Gobiernos de Austria y Suiza y representa el origen de la Red Latinoamericana de Producción más Limpia (CP LatinNet).

La Red incorpora los Centros establecidos por la ONUDI y otros Centros y Programas establecidos con el apoyo bilateral de otros donantes. Los 12 centros miembros de la Red Latinoamericana son: Bolivia, Brasil. Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua y Perú, los mismos, que han demostrado la importancia y los beneficios de la aplicación de métodos, prácticas y procesos para incorporar la producción más limpia y el uso eficiente de los recursos en las empresas y el resultado de este arduo trabajo los ha posicionado como referencia nacional e internacional en temas de desarrollo sostenible, posicionándose ante ministerios, cámaras, gremios empresariales sectoriales, etc. (CP LatinNet, 2013)

En 10 años de existencia de la Red Latinoamericana de Producción más limpia se han tenido importantes aportes como, por ejemplo: se han realizado aproximadamente 500 publicaciones, más de 3 mil eventos como ferias, congresos, encuentros para presentación de resultados, intercambio de experiencias y, creación y fortalecimiento de alianzas, donde todos los países han aportado significativamente para que este concepto y afines puedan llegar a más de 68 mil personas y se han atendido a más de 4800 empresas. (CP LatinNet, 2013)

Según el informe de los 10 años de la Red Latinoamericana de Producción Más Limpia (2013) los resultados obtenidos en asistencia técnica en temas de Eficiencia de Recursos y Producción más Limpia se traducen en posicionamiento en el mercado, rentabilidad para las empresas y una ventaja para acceder a programas y proyectos que los promocionan. Los resultados de impacto regional en la reducción de los impactos ambientales están detallados a continuación:

**Tabla:** Impacto de la Aplicación de PML en Latinoamérica y el Caribe (2002-2013)

| Rubro                            | Unidad de Medida | Impacto Total |
|----------------------------------|------------------|---------------|
| EMPRESAS ATENDIDAS               |                  | 4830          |
| AGUA                             | Miles de m³      | 61,463.65     |
| ENERGÍA                          | MWh              | 856,353.14    |
| DESECHOS                         | Ton              | 81,252        |
| EMISIONES ton de CO <sub>2</sub> |                  | 652,420       |

Fuente: CP LatinNet, 2013

Esto corresponde a una reducción en el consumo de recursos naturales como agua y materias primas, así como la reducción de desechos y emisiones emitidos al ambiente. (CP LatinNet, 2013)

### Justificación:

La protección del ambiente es un tema que ha tomado gran importancia en todo el mundo en los últimos años, es un gran desafío que enfrentan los gobiernos de cada país por lo que se han implementado medidas y leyes para proteger los recursos disponibles, sin embargo, existe la creencia en la mayoría de personas de que las estrategias para proteger el ambiente son costosas para los empresarios y de una manera particular para los de mediana y micro empresa (Quintero et al, 2007)

Tomando en cuenta este pensamiento generalizado, es necesario, dar a conocer que existen herramientas de gestión ambiental que proponen oportunidades de mejora, disminución de costos y aumento en la productividad, esto, mediante la implementación de buenas prácticas de gestión en los procesos productivos de las empresas, sin necesidad de invertir grandes cantidades de dinero, esto nos ofrece la implementación de una Producción Más Limpia. (Escaño, et al, s.f.)

El sector de la industria alimentaria dedicada a la fabricación de productos lácteos es uno de los más importantes en nuestro país ya que es considerado uno de los sectores fundamentales dentro de la cadena alimenticia.

La leche, al ser un producto que se modifica y degrada fácilmente, requiere de medidas especiales de manejo y procesamiento que permitan mantener durante toda la cadena productiva sus características físicas, químicas y microbiológicas, las cuales conferirán al final un producto más estable y con mayor calidad (Sainoz, 2010).

Para alcanzar las condiciones de higiene exigentes es necesario el uso de recursos como agua, energía eléctrica y materiales auxiliares de limpieza, que, en ocasiones son utilizados de manera poco responsable por las industrias, ocasionando el aumento de la generación de residuos y el impacto ambiental provocado por sus actividades productivas y generando gastos adicionales debido al tratamiento de sus desechos. (Sainoz, 2010; Intriago, 2011)

En la actualidad existen diferentes estrategias que quieren orientar a la industria hacia un comportamiento de mayor responsabilidad con el ambiente, en el sector industrial esta responsabilidad ha estado dirigida hacia la solución de los problemas tratándolos una vez que se han generado, es decir, al final del proceso. (Intriago,2011).

Ya que no se han tenido los resultados esperados los investigadores descubrieron la mejor ayuda para casi todas las compañías reduciendo los costos productivos con un análisis de las fuentes, esto es conocido como ir "encima del tubo" (over the pipe) en contraposición a los tratamientos de al final del tubo (end of pipe) es decir antes de la descarga, el PNUMA llamó a esto Producción

Más Limpia (PML), la cual sirve para eliminar o minimizar los desperdicios en la fuente y por lo mismo la contaminación. (Intriago,2011; Domínguez, 2016)

La microempresa "PRODUCTOS LÁCTEOS DEL NORTE" en vista de la exigente normativa ambiental vigente y en contribución a la solución de la problemática ambiental actual busca alternativas para el aprovechamiento eficiente de los recursos e insumos, con el objetivo de alcanzar un ahorro hídrico, energético y económico en sus procesos, por lo que se ha optado por la implementación de estrategias de Producción Más Limpia.

El desarrollo de este proyecto busca contribuir al mejoramiento del desempeño ambiental y productivo a lo largo de la cadena de producción de la microempresa ya que se conoce que un modelo de Producción Más Limpia es una estrategia integrada que puede brindar grandes beneficios tanto para el ambiente como para las industrias.

### **OBJETIVOS:**

### **Objetivo General:**

 Realizar un modelo de Producción Más Limpia para la microempresa "PRODUCTOS LÁCTEOS DEL NORTE" ubicada en la ciudad de Tulcán.

### **Objetivos Específicos:**

- Elaborar un diagnóstico general de la situación actual de la microempresa "PRODUCTOS LÁCTEOS DEL NORTE".
- Identificar las Fortalezas, Oportunidades, Debilidades y Amenazas de las fases productivas de la microempresa.
- Proponer estrategias incluyentes en la Producción Más Limpia para los aspectos identificados dentro del análisis FODA de la microempresa.

### CAPÍTULO I

### 1. MARCO TEÓRICO REFERENCIAL

### 1.1. Antecedentes

Es una realidad cada vez más clara que las estrategias de "al final de tubo" por sí solas no pueden resolver los complejos problemas ambientales ya que no pueden eliminar la contaminación, sino que de manera usual la transfieren de un medio a otro y para esto requieren un equipo costoso de tratamiento de la contaminación. (Palomino, 2012)

La PML es utilizada para describir varias medidas preventivas aplicadas para las diferentes actividades industriales, es una alternativa para producir con el mínimo impacto ambiental, esto mediante el uso eficiente de los recursos naturales, reduciendo la producción de residuos y previniendo la contaminación. (Palomino, 2012).

La PML ha logrado reconocimiento mundial por el alcance que tiene y los resultados beneficiosos que brinda en las empresas, puesto que no sólo se piensa en qué hacer con los residuos, sino en qué hacer para no generarlos o reutilizarlos en forma óptima y permanente de manera que se puede "ayudar a casi cualquier compañía a reducir los costos productivos con un análisis sistemático de las fuentes" (Intriago, 2011)

Vargas (2006) destaca que de acuerdo a la experiencia internacional se ha demostrado que a largo plazo la PML es más coherente desde el punto de vista ambiental y más efectiva desde el punto de vista económico, esto en relación con los métodos de tratamiento al final del proceso.

El Programa de Producción más Limpia de la Organización de las Naciones Unidas para el Desarrollo Industrial (ONUDI) y el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) que inició sus actividades en 1994 han apoyado el establecimiento de Centros y

Programas de Producción más Limpia en 48 países a nivel internacional, logrando brindar asistencia a países en desarrollo y con economías en transición con el objetivo de asegurar una mejor ventaja competitiva y el acceso a nuevos mercados. (CEER, 2016)

En nuestro país, en el año 2013, se crea el CEER (Centro Ecuatoriano de Eficiencia de Recursos y Producción más Limpia) cuyo consejo se encuentra conformado por siete cámaras y gremios de la industria, llegando a representar el 50% del sector industrial ecuatoriano. (CEER, 2016)

El CEER (2016) indica que gracias a los centros establecidos a nivel internacional se han atendido a más de 4800 empresas, las cuales han formado alianzas con los Centros establecidos en cada país y han logrado el desarrollo de diferentes capacidades en temas de eficiencia de recursos y producción más limpia, gestión ambiental, cumplimiento de la legislación, transferencia tecnológica, innovación y desarrollo de nuevos productos, entre otros.

Con la creación del CEER en el Ecuador se ha conseguido grandes beneficios en diferentes industrias en todo el país, además, se cuenta con una riqueza de instrumentos y políticas que han permitido que el tema de la Producción más Limpia se introduzca en la agenda nacional.

El CEER (2016) ha venido desarrollando la implementación de Modelos de Producción Más Limpia en diferentes empresas, como en el caso exitoso de "Textiles Industriales Ambateños S.A." ubicado en Ambato, Km 7 ½ vía a Guaranda en donde se logró: Ahorro en consumo de agua y menos cantidad de agua tratada para descarga, ahorro en materia prima y menor cantidad de desperdicio, costos más bajos de tintura y menos sólidos en agua residual.

Otro caso de estudio exitoso es el de la industria "Curtiduría Hidalgo" ubicado en Ambato, en donde mediante la implementación del Modelo de Producción Más Limpia se logró: Reducir el consumo de agua en el pelambre y curtido, reducir el consumo de energía eléctrica, optimizar el consumo de combustibles, pelambre con recuperación y filtración de pelo. (CEER, 2016)

En la industria láctea también se ha logrado la implementación de Producción Más Limpia, tenemos así el caso de estudio exitoso de la microempresa "Lácteos Leíto" ubicado en Quito, en donde se obtuvieron resultados favorables como: Reducción de mermas en tanque de yogurt,

implementación de mangueras y pitones para la limpieza de los equipos y planta de procesamiento logrando la reducción del consumo de agua. (CEER, 2016)

Para Intriago (2011) el principal referente del Centro Ecuatoriano de Producción Más Limpia ha sido el desarrollo del "Programa para la Promoción de Procesos de PML en Empresas Ecuatorianas" que fue un proyecto con fondos no reembolsables y donde se implementaron programas de PML en alrededor de 150 empresas del país con resultados importantes.

Con base a estos estudios y los resultados obtenidos gracias a la aplicación de Producción Más Limpia a nivel internacional y nacional es necesario realizar un modelo de Producción Más Limpia para la microempresa "PRODUCTOS LÁCTEOS DEL NORTE" con el fin de obtener resultados que beneficien tanto a la microempresa como al ambiente.

### 1.2. Marco Conceptual

### 1.2.1. Producción Más Limpia (PML)

### 1.2.1.1. Producción Más Limpia

Varios autores lo definen de diferente manera, sin perder la esencia de lo que es, según el PNUMA (Programa de Naciones Unidas para el Medio Ambiente) la Producción Más Limpia (PML) es "la aplicación continua de una estrategia ambiental preventiva e integrada a procesos, productos y servicios para incrementar la eficiencia en general, y reducir los riesgos para los seres humanos y el ambiente" (PNUMA citado en Intriago, 2011).

De acuerdo a Medina et al. (2006) el concepto de PML nació en 1990 en Canterbury, Inglaterra pero se fortaleció en 1992 a partir de uno de los documentos de la Cumbre de Río sobre medio ambiente y desarrollo, la denominada Agenda 21, la misma que contiene un conjunto de programas destinados a alcanzar una guía para lograr el desarrollo sostenible y en ella se da prioridad a la implantación de PML pues se destaca que la PML "es un medio importante para alcanzar el desarrollo sostenible, como una estrategia para mejorar el desempeño ambiental, mientras se obtienen beneficios económicos y sociales." (Intriago, 2011)

La PML es un concepto que abarca las estrategias de prevención pues busca prevenir que ocurra la contaminación y se encarga del impacto ambiental de todo el proceso de producción y no solamente de los impactos de las salidas, elimina o minimiza la necesidad de sistemas costosos de mitigación, tratamiento y de disposición de desechos. (PNUMA, 2003)

Para Altham (2007) la PML se trata de cambiar el comportamiento y esto se logra alterando la forma en que se utilizan los recursos en la industria y la manera en cómo se gestiona la producción no relacionada con los productos, esto con el objetivo de mejorar la eficiencia de su operación.

La PML "es un concepto novedoso que evita o minimiza los desechos y contaminantes aun antes de que estos sean generados, obteniéndose como efecto inmediato una reducción en el consumo de materias primas, agua y energía." (Varela, 2003, p.4)

La PML es una estrategia ambiental aplicativa muy amplia, ya que no sólo está orientada a los procesos productivos empleados en cualquier tipo de industria sino también a los productos mismos e incluso a los diferentes servicios que se prestan a una población específica.

- ✓ En los procesos: la PML se orienta a la conservación y ahorro de materias primas, agua, energía y otros insumos. Además, busca reducir y minimizar la cantidad y peligrosidad de residuos (sólidos, líquidos y gaseosos) mediante la sustitución de materias primas peligrosas (PNUMA, citado en CET, 2005).
- ✓ En los productos: aquí la PML está orientada a la reducción de impactos negativos al ambiente a lo largo del ciclo de vida del producto, desde la extracción de las materias primas hasta su disposición final, además, se busca obtener es la disminución del costo unitario de producción, demostrando de esta manera que la PML puede ser también una estrategia empresarial y económicamente viable. (Hoof, Monroy & Saer, 2008; citados en Domínguez, 2016)
- ✓ En los servicios: en este punto la PML está orientada a la incorporación de consideraciones ambientales tanto en el diseño como en la prestación de los servicios, realizando el proceso de disminución de la contaminación en 2 grandes fases como son la prevención y control.

Cada fase incluye 2 etapas: la prevención (reducción en la fuente y reciclaje/reuso) y el control (tratamiento y disposición final) (Morillo, 2012; citado en Domínguez, 2016).

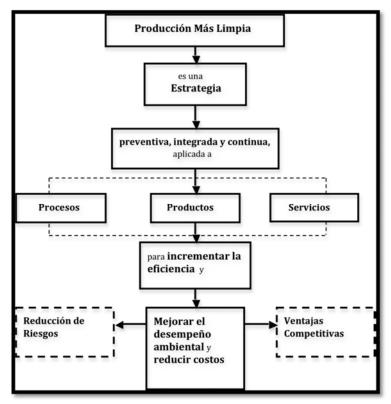



Figura 1-1: Definición de PML

Fuente: (Sainoz, 2010)

### 1.2.1.2. PML en la industria alimentaria

La industria alimentaria debido a la generación de residuos y al consumo de una gran cantidad de agua objeto de las actividades que se realizan para llevar a cabo el proceso de transformación de la materia prima hasta el producto es considerada dentro del sector productivo como una de las más problemáticas en cuanto al impacto que tiene sobre el ambiente (Restrepo, 2006; citado en Sainoz, 2010).

Los principios que abarca la producción más limpia son de gran aplicación en las industrias de alimentos, Restrepo (2006) destaca que estos principios son necesarios para asegurar la calidad y la productividad de las industrias sin causar daño al ambiente.

Es de gran importancia la aplicación de planes bajo los principios de PML ya que ayudan a asegurar la calidad de los productos y llevar a cabo una cadena productiva que sea capaz de reducir el daño ambiental generado.

### 1.2.1.3. Importancia de la PML en las empresas

Existen varios instrumentos que buscan promover la gestión ambiental empresarial, uno de ellos es la Producción más Limpia, la cual brinda tanto beneficios ambientales como económicos. Su importancia radica en ser "una estrategia preventiva con un enfoque más proactivo que reactivo en la solución de problemas además de encontrarse acorde a los principios de desarrollo sostenible" (Van Hoff et al.,2008; citado en Sainoz, 2010).

El Banco Mundial señala que aplicando PML se puede llegar a alcanzar una reducción de la contaminación del 20-30% sin necesidad de una alta inversión para la empresa o "hasta una reducción adicional de un 20% mediante inversiones en mecanismo y tecnología de PML cuya tasa de retorno es de meses" (Van Hoff et al.,2008; citado en Sainoz, 2010.

De esta forma, la protección de los ecosistemas naturales se reconcilia con el desarrollo económico y no se interpone a la meta de los negocios, sino que más bien los potencia, lo cual es un atractivo para los empresarios que buscan cumplir con las normativas legales vigentes sin tener que invertir grandes cantidades de dinero (Varela, 2003).

### 1.2.1.4. Beneficios de la PML

Un modelo de Producción más limpia incluye un proceso de evaluación técnica, económica y ambiental del proceso productivo de una industria y un análisis profundo para identificar las oportunidades que se pueden aplicar y que me brindan una mayor eficiencia (Uguña, 2010).

La aplicación de PML en las industrias les permite obtener una variedad de beneficios, como son:

### Beneficios ambientales:

- ✓ Reducción de la contaminación ambiental
- ✓ Cumplimiento de la legislación ambiental local y nacional.
- ✓ Uso eficiente del agua, energía y materia prima.
- ✓ Eliminación de productos tóxicos.
- ✓ Aprovechamiento de los residuos generados.

### Beneficios comerciales:

- ✓ Acceso a nuevos mercados.
- ✓ Mejoramiento de la imagen de la empresa y del producto.
- ✓ Diversificación de productos a partir del aprovechamiento de los residuos.
- ✓ Aplicación de Eco diseño en el producto.

### Beneficios tecnológicos:

- ✓ Aumento en la eficiencia de los procesos.
- ✓ Innovación tecnológica.
- ✓ Mejora en la calidad de los productos.
- ✓ Optimización de los recursos.

# Beneficios económicos:

- ✓ Evita el pago de multas o clausuras por incumplimiento de la legislación ambiental.
- ✓ Minimización de gastos por uso de plantas de tratamiento o medidas de "final de tubo.
- ✓ Reducción de costos por traslado y disposición de desechos.
- ✓ Ahorro mediante la utilización eficiente de la materia prima, el agua y la energía eléctrica.
- ✓ Optimización de los procesos.
- ✓ Mejoramiento de las condiciones de seguridad y salud ocupacional. (Uguña,2010).

### 1.2.1.5. Conceptos y Bases para la práctica de PML

**Insumo:** este término incluye de manera general toda materia y energía utilizadas en la producción, es decir, materias primas, agua, energía eléctrica, energía térmica (incluyendo combustibles), reactivos químicos, lubricantes, empaquetaduras, filtros desechables, y otros.

Los insumos que forman parte del producto final se denominan "*materias primas*", mientras que aquéllos que no forman parte del producto final se denominan "*insumos auxiliares*" (CPTS, 2005).

Por ejemplo, en una curtiembre, las sales de cromo y el cuero fresco forman parte de las "*materias primas*" para la elaboración de cuero curtido al cromo, mientras que la cal es considerada un "*insumo auxiliar*" dentro de este mismo proceso. (CPTS, 2005)

Sin embargo, en una fábrica de refrescos el agua es "*materia prima*" por un lado, ya que es parte del producto final, y un "*insumo auxiliar*" por otro, ya que el agua es utilizada también para otros usos, y no forma parte del producto final. (CPTS, 2005)

**Distinción entre residuo y desecho:** de manera general el término "desecho" hace referencia a la "materia a la que ya no se le puede dar valor alguno", mientras que el término residuo hace referencia a la "materia prima de menor valor" y por lo tanto se le puede dar otro uso. (CPTS, 2005)

Uno de los principios de la PML es desarrollar procesos que no produzcan desechos o los disminuyan.

### Bases para la práctica de PML

Según el CPTS (2005) las bases para poner en práctica la PML son:

✓ Buenas Prácticas Operativas: son medidas sencillas que implica cambios en los procedimientos operacionales, actitud de los empleados y mejor manejo a nivel administrativo. ✓ Circuito Cerrado de Reciclaje: hace referencia al retorno directo de los residuos al proceso de producción en forma de insumo.

✓ **Sustitución de Insumos:** consiste en reemplazar un material y/o energético, que es utilizado en el proceso productivo, por otro no o menos tóxico y peligroso que genere menor cantidad de residuos.

✓ Optimización de Procesos: hace referencia a la sustitución de procesos ineficientes, rediseñar los procesos, mejorar el control de las operaciones y de ser necesario cambios tecnológicos o modificaciones en los equipos que reduzcan la generación de residuos.

✓ Reformulación del Producto: se refiere a la sustitución del producto final por otro de características similares que requiera insumos menos peligrosos o que su disposición final sea menos dañina para la salud y el ambiente.

✓ Las tres R's: hace referencia a la segregación de los flujos de los residuos para facilitar su reciclaje, reúso y recuperación, disminuyendo de esta manera la cantidad de los desechos o en último caso para facilitar su tratamiento y disposición final como desecho.

1.2.1.6. Principios de PML

Domínguez (2016) indica que la PML está basada en tres principios:

**Principio de Precaución:** la precaución no se trata nada más de evitar situaciones legalmente perjudiciales, sino también de asegurar que los trabajadores se encuentran protegidos contra problemas de salud irreversibles y que la planta está protegida de daños irreversibles. El principio de precaución hace referencia a la reducción de agentes antropogénicos presentes en el ambiente, esto implica el rediseño sustancial del sistema industrial de producción y consumo (Domínguez, 2016).

**Principio de Prevención:** este principio es importante, especialmente en aquellos casos en que se conoce el daño que puede ocasionar un producto o proceso. Este principio busca cambios en la cadena de producción y consumo.

"La naturaleza preventiva de la Producción Más Limpia exige que la nueva solución reconsidere la demanda del consumidor, el diseño del producto, los patrones de consumo de materiales, y la base material completa de su actividad económica." (Domínguez, 2016).

**Principio de Integración:** este principio sugiere la adopción de una visión holística del ciclo de producción, y una manera de lograr tal idea es mediante el análisis de ciclo de vida. La regulación tradicional de extremo del tubo de manera general se aplica hasta un punto específico en que rigen medidas de procesos integrados para la disminución de contaminantes. Al disminuir la necesidad de emisiones de tales sustancias, estas medidas entonces brindan una protección integrada a todo el ambiente. (Domínguez, 2016)

### 1.2.2. Industria Láctea y Producción de Queso

### 1.2.2.1 Industria Láctea a nivel mundial

Según el Ministerio de Ambiente de Colombia (2007) la industria láctea a nivel mundial está conformada por ganaderos, acopiadores y empresas industriales procesadoras. En la producción mundial de alimentos que son de origen animal, se ha catalogado a la leche como uno de los productos más importantes al igual que la carne y el huevo. La producción de leche, proviene principalmente, de ganado bovino y tiene una composición físico-química completamente diferente a otras especies.

La industria láctea es de gran importancia a nivel mundial ya que produce diferentes productos alimenticios, derivados de la leche que es su materia prima principal, mediante diversos procesos dependiendo de los productos finales obtenidos.

### 1.2.2.2 Industria Láctea en Ecuador

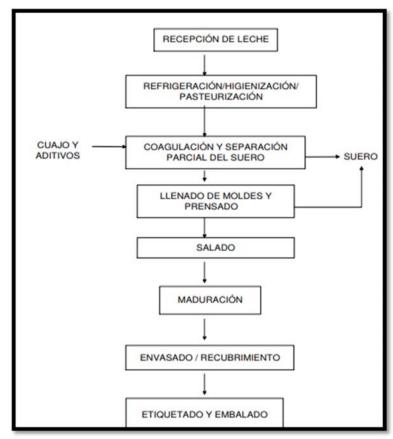
La industria láctea en el Ecuador ha presentado una dinámica social y económica en los últimos años, el crecimiento en la producción de leche se mantiene con una tendencia entre el 25% y el 30% por esta razón el sector busca consolidar nuevos mercados para vender el alimento. (Orozco, 2015)

En el Ecuador la industria láctea procesa 5,8 millones de litros al día que abastecen la demanda local, según datos del Centro de la Industria Láctea (CIL). En la región Sierra, se produce el 73% de leche, en la Costa el 19% y en la Amazonía el 8%.

De esos litros, más de un tercio se destina a la elaboración de queso, le sigue la leche en funda, de cartón y otros. El queso es un producto fundamental de la industria láctea, la cual utiliza un 25% del total de la producción mundial en su elaboración. (Gonzáles, 2012)

### 1.2.2.3 Elaboración de Queso

Según el Centro de Actividad Regional para la Producción Limpia (CAR/PL) (2002) una de las formas más antiguas de procesado de leche es mediante la elaboración del queso. El queso es un producto que está elaborado con leche, de una manera general el queso se forma mediante la coagulación de las proteínas de la leche por la aplicación del cuajo, que es la enzima que desestabiliza la leche, también se puede añadir otras enzimas o sustancias acidificantes para acelerar el proceso de coagulación. Después se realiza el moldeo, salado y prensado, y, en algunos tipos de queso se realiza la siembra con cultivos bacterianos o fúngicos. Una vez listo el producto puede ser consumido fresco o con diferentes grados de maduración.


Se conoce que existe más de 2000 tipos de quesos diferentes en el mundo, con diferentes características y con ciertos procedimientos más o menos distintos (Centro de Actividad Regional para la Producción Limpia [CAR/PL], 2002).

### 1.2.2.4 Proceso Productivo

Antes de empezar con el proceso de producción de queso, se debe preparar y tratar la leche para tener un acondicionamiento de sus características físicas, químicas y biológicas, depende del producto final que se va a obtener el tipo de tratamiento que se le aplica y el diseño del proceso, además, del grado de tecnificación con que cuente la fábrica (Lanuza, 2012).

La producción de queso tiene muchas variantes dependiendo del tipo de producto final que se desea obtener, sin embargo, estas etapas son comunes para la mayoría de quesos, a continuación, se describe el proceso general para la producción de queso, descrito en la Guía de Aplicación de PML en el Sector Lácteo, según el Centro de PML de Nicaragua (2008):

- ✓ Recepción: la leche es vertida en el tanque de recepción, se realiza el filtrado para librarla de impurezas.
- ✓ Pasteurización: se bombea la leche desde el tanque de recepción hacia la marmita en donde se realiza la pasteurización, que es uno de los procesos más importantes en el tratamiento de la leche, es el proceso térmico para la eliminación de microorganismos patógenos.
- ✓ Coagulación: Precipitación de la caseína dando lugar a una masa gelatinosa que engloba a todos los componentes de la leche, puede ser ácida, enzimática o mixta, la coagulación se da mediante la aplicación de un agente fermentador (cuajo).
- ✓ **Corte:** se realiza con utensilios especiales, este paso es importante principalmente para facilitar la expulsión del lactosuero.
- ✓ **Desuerado:** esta etapa consiste en separar el lactosuero de la cuajada con el fin de evitar que la cuajada se acidifique demasiado.
- ✓ **Triturado y Salado:** Se trata de la adición de sal para darle al producto el sabor deseado, contribuir a la elaboración de ácido láctico, ayudar a la preservación del queso, realzar el aroma y la cantidad que se añade es de acuerdo al tipo de queso a producirse.
- ✓ Moldeo: Consiste en verter en moldes los trozos de la cuajada para dar forma a la masa del queso.
- ✓ **Maduración:** Este proceso se lo realiza para ciertos quesos que requieren un proceso de maduración en algunas condiciones de temperatura y humedad. Para la maduración se realiza la aplicación de mohos que crecen dentro y/o fuera del queso.
- ✓ Cortado y Empacado: Se cortan los bloques hilados o prensados de acuerdo a las presentaciones que se ofrece al consumidor, luego se empaca y se sellan las bolsas plásticas.
- ✓ **Almacenamiento en Frío:** Los quesos son guardados a una temperatura de 4 °C para su conservación evitando la acidificación y sobre maduración.



**Figura 2-1:** Diagrama básico del proceso de elaboración del queso **Fuente:** (Escuela de Organización Industrial (EOI), 2008)

### 1.3. Marco Legal

El marco legal aplicable para este trabajo de titulación, está integrado principalmente por la legislación y reglamentación nacional y municipal que rige en el país en cuanto al ambiente, se ha tomado en cuenta:

- ✓ Constitución de la República del Ecuador. Registro Oficial No. 449 del 20 de octubre de 2008.
- ✓ Ley de Gestión Ambiental, Ley No. 37. Registro Oficial No. 245 del 30 de julio de 1999.
- ✓ Ley de prevención y control de la contaminación ambiental. Registro Oficial Suplemento No. 418 del 10 de septiembre de 2004.

- ✓ Código Orgánico Ambiental (COA), Ley 0. Registro Oficial Suplemento No. 983 del 12 de abril de 2017.
- ✓ Texto Unificado de Legislación Secundaria del Ministerio de Ambiente. Decreto Ejecutivo 3516. Registro Oficial Suplemento No. 2 del 31 de marzo del 2003.
- ✓ Reglamento de Seguridad y Salud de los Trabajadores y Mejoramiento del Medio Ambiente de Trabajo. Decreto Ejecutivo 2393 de 1986.
- ✓ Ordenanza que establece las Políticas Ambientales del Gobierno Provincial del Carchi, del 24 de febrero de 2010.

# 1.3.1. Matriz de Identificación de la Legislación Ambiental Aplicable

Tabla 1-1: Matriz de Identificación de la Legislación Ambiental Aplicable

| LEGISLACIÓN         | AÑO        | AUTORIDAD      | TÍTULO              | ARTÍCULO    | DESCRIPCIÓN                                                    |
|---------------------|------------|----------------|---------------------|-------------|----------------------------------------------------------------|
| AMBIENTAL           |            | COMPETENTE     |                     |             |                                                                |
|                     |            |                |                     |             | Se reconoce el derecho de la población a vivir en un ambiente  |
|                     |            |                | Título II. Derechos | Art. 14.    | sano y ecológicamente equilibrado, que garantice la            |
|                     |            |                | Capítulo Segundo    |             | sostenibilidad y el buen vivir, sumak kawsay.                  |
|                     |            |                | Derechos del Buen   |             | El Estado promoverá, en el sector público y privado, el uso    |
| Constitución        | 20 de      | Ministerio del | Vivir               | Art 15.     | de tecnologías ambientalmente limpias y de energías            |
| Política de la      | octubre de | Ambiente       | Sección Segunda     |             | alternativas no contaminantes y de bajo impacto. La            |
| República Del       | 2008       |                | Ambiente Sano       |             | soberanía energética no se alcanzará en detrimento de la       |
| Ecuador             |            |                |                     |             | soberanía alimentaria, ni afectará el derecho al agua.         |
|                     |            |                |                     |             | Son deberes y responsabilidades de las ecuatorianas y los      |
| Registro Oficial N° |            |                | Título II. Derechos | Art 83.     | ecuatorianos, sin perjuicio de otros previstos en la           |
| 449                 |            |                | Capítulo Noveno     | (numeral 6) | Constitución y la ley: 6. Respetar los derechos de la          |
|                     |            |                | Responsabilidades   |             | naturaleza, preservar un ambiente sano y utilizar los recursos |
|                     |            |                |                     |             | naturales de modo racional, sustentable y sostenible.          |
|                     |            |                |                     |             |                                                                |

Continuación de tabla.

| LEGISLACIÓN         | AÑO        | AUTORIDAD      | TÍTULO                | ARTÍCULO         | DESCRIPCIÓN                                                                  |
|---------------------|------------|----------------|-----------------------|------------------|------------------------------------------------------------------------------|
| AMBIENTAL           |            | COMPETENTE     |                       |                  |                                                                              |
|                     |            |                |                       |                  | La Constitución reconoce los siguientes principios ambientales:              |
|                     |            |                | Título VII. Régimen   |                  | 2. Las políticas de gestión ambiental se aplicarán de manera transversal y   |
|                     |            |                | del Buen Vivir        | Art 395.         | serán de obligatorio cumplimiento por parte del Estado en todos sus          |
|                     |            |                |                       |                  | niveles y por todas las personas naturales o jurídicas en el territorio      |
|                     |            |                | Capítulo segundo      | (numerales 2,3 y | nacional.                                                                    |
| Constitución        | 20 de      | Ministerio del |                       | 4)               | 3. El Estado garantizará la participación activa y permanente de las         |
| Política de la      | octubre de | Ambiente       | Biodiversidad y       |                  | personas, comunidades, pueblos y nacionalidades afectadas, en la             |
| República Del       | 2008       |                | recursos naturales    |                  | planificación, ejecución y control de toda actividad que genere impactos     |
| -                   | 2008       |                |                       |                  | ambientales.                                                                 |
| Ecuador             |            |                | Sección primera       |                  | 4. En caso de duda sobre el alcance de las disposiciones legales en materia  |
|                     |            |                |                       |                  | ambiental, éstas se aplicarán en el sentido más favorable a la protección de |
| Registro Oficial N° |            |                | Naturaleza y ambiente |                  | la naturaleza.                                                               |
| 449                 |            |                |                       |                  | El Estado adoptará las políticas y medidas oportunas que eviten los          |
|                     |            |                |                       | Art 396 al 399   | impactos ambientales negativos, cuando exista certidumbre de daño.           |
|                     |            |                |                       |                  | Toda decisión o autorización estatal que pueda afectar al ambiente deberá    |
|                     |            |                |                       |                  | ser consultada a la comunidad, a la cual se informará amplia y               |
|                     |            |                |                       |                  | oportunamente.                                                               |
|                     |            |                |                       |                  |                                                                              |
|                     |            |                |                       |                  |                                                                              |
|                     |            |                |                       |                  |                                                                              |

Continuación de tabla.

| LEGISLACIÓN         | AÑO        | AUTORIDAD      | TÍTULO             | ARTÍCULO | DESCRIPCIÓN                                                     |
|---------------------|------------|----------------|--------------------|----------|-----------------------------------------------------------------|
| AMBIENTAL           |            | COMPETENTE     |                    |          |                                                                 |
|                     |            |                |                    |          | El Estado garantizará la conservación, recuperación y           |
|                     |            |                |                    | Art. 411 | manejo integral de los recursos hídricos, cuencas               |
|                     |            |                | Título VII.        |          | hidrográficas y caudales ecológicos asociados al ciclo          |
|                     |            |                | Régimen del Buen   |          | hidrológico. Se regulará toda actividad que pueda afectar la    |
|                     |            |                | Vivir              |          | calidad y cantidad de agua, y el equilibrio de los ecosistemas, |
|                     |            |                | Capítulo segundo   |          | en especial en las fuentes y zonas de recarga de agua.          |
| Constitución        |            |                | Biodiversidad y    |          |                                                                 |
| Política de la      |            |                | recursos naturales |          |                                                                 |
| República Del       | 20 de      | Ministerio del |                    |          | La autoridad a cargo de la gestión del agua será responsable    |
| Ecuador             | octubre de | Ambiente       | Sección Sexta      | Art. 412 | de su planificación, regulación y control. Esta autoridad       |
|                     | 2008       |                | Agua               |          | cooperará y se coordinará con la que tenga a su cargo la        |
| Registro Oficial N° |            |                |                    |          | gestión ambiental para garantizar el manejo del agua con un     |
| 449                 |            |                |                    |          | enfoque ecosistémico.                                           |
|                     |            |                |                    |          | El Estado promoverá la eficiencia energética, el desarrollo y   |
|                     |            |                | Sección séptima    |          | uso de prácticas y tecnologías ambientalmente limpias y         |
|                     |            |                | Biosfera, ecología | Art. 413 | sanas, así como de energías renovables, diversificadas, de      |
|                     |            |                | urbana y energías  |          | bajo impacto y que no pongan en riesgo la soberanía             |
|                     |            |                | alternativas       |          | alimentaria, el equilibrio ecológico de los ecosistemas ni el   |
|                     |            |                |                    |          | derecho al agua.                                                |

| LEGISLACIÓN                                                 | AÑO                    | AUTORIDAD                  | TÍTULO                                                      | ARTÍCULO | DESCRIPCIÓN                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|------------------------|----------------------------|-------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMBIENTAL                                                   |                        | COMPETENTE                 |                                                             |          |                                                                                                                                                                                                                                                                                          |
|                                                             |                        |                            |                                                             | Art. 1   | La presente Ley establece los principios y directrices de política ambiental; determina las obligaciones, responsabilidades, niveles de participación de los sectores público y privado en la gestión ambiental y señala los límites permisibles, controles y sanciones en esta materia. |
| Ley de Gestión Ambiental Ley N° 37. Registro oficial N° 245 | 30 de Julio<br>de 1999 | Ministerio del<br>Ambiente | <b>Título I</b> Ámbito y Principios de la Gestión Ambiental | Art. 2   | La gestión ambiental se sujeta a los principios de solidaridad, corresponsabilidad, cooperación, coordinación, reciclaje y reutilización de desechos, utilización de tecnologías alternativas ambientalmente sustentables y respecto a las culturas y prácticas tradicionales.           |
|                                                             |                        |                            |                                                             | Art. 3   | El proceso de Gestión Ambiental, se orientará según los principios universales del Desarrollo Sustentable, contenidos en la Declaración de Río de Janeiro de 1992, sobre Medio Ambiente y Desarrollo.                                                                                    |

| LEGISLACIÓN                                                        | AÑO                            | AUTORIDAD                  | TÍTULO                                                                      | ARTÍCULO | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------|--------------------------------|----------------------------|-----------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMBIENTAL                                                          |                                | COMPETENTE                 |                                                                             |          |                                                                                                                                                                                                                                                                                                                                                        |
| Ley de Prevención<br>y Control de la<br>Contaminación<br>Ambiental | 10 de<br>septiembre<br>de 2004 | Ministerio del<br>Ambiente | CAPITULO II  De la Prevención y  Control de la  Contaminación de  las Aguas | Art. 6   | Queda prohibido descargar, sin sujetarse a las correspondientes normas técnicas y regulaciones, a las redes de alcantarillado, o en las quebradas, acequias, ríos, lagos naturales o artificiales, o en las aguas marítimas, así como infiltrar en terrenos, las aguas residuales que contengan contaminantes que sean nocivos a la salud humana, a la |
|                                                                    |                                |                            |                                                                             |          | fauna, a la flora y a las propiedades                                                                                                                                                                                                                                                                                                                  |
| Registro Oficial N°                                                |                                |                            | CAPITULO III                                                                |          | Queda prohibido descargar, sin sujetarse a las                                                                                                                                                                                                                                                                                                         |
| 418                                                                |                                |                            | De la Prevención y  Control de la  Contaminación de  los Suelos             | Art. 10  | correspondientes normas técnicas y regulaciones, cualquier tipo de contaminantes que puedan alterar la calidad del suelo y afectar a la salud humana, la flora, la fauna, los recursos naturales y otros bienes.                                                                                                                                       |

| LEGISLACIÓN     | AÑO         | AUTORIDAD      | TÍTULO           | ARTÍCULO   | DESCRIPCIÓN                                                   |
|-----------------|-------------|----------------|------------------|------------|---------------------------------------------------------------|
| AMBIENTAL       |             | COMPETENTE     |                  |            |                                                               |
|                 |             |                |                  |            | Derecho de la población a vivir en un ambiente sano. El       |
|                 |             |                |                  |            | derecho a vivir en un ambiente sano y ecológicamente          |
|                 |             |                |                  |            | equilibrado comprende:                                        |
|                 |             |                |                  |            | 6. La prevención, control y reparación integral de los daños  |
|                 |             |                |                  |            | ambientales.                                                  |
|                 |             |                |                  | Art. 5     | 7. La obligación de toda obra, proyecto o actividad, en todas |
|                 |             |                |                  | (numerales | sus fases, de sujetarse al procedimiento de evaluación de     |
|                 |             |                |                  | 6,7 y 8)   | impacto ambiental.                                            |
| Código Orgánico | 12 de abril | Ministerio del | TÍTULO II        |            | 8. El desarrollo y uso de prácticas y tecnologías             |
| del Ambiente    | de 2017     | Ambiente       | De los Derechos, |            | ambientalmente limpias y sanas, así como de energías          |
|                 |             |                | Deberes y        |            | alternativas no contaminantes, renovables, diversificadas y   |
|                 |             |                | Principios       |            | de bajo impacto ambiental.                                    |
|                 |             |                | Ambientales      | Art. 9     | Principios ambientales. Los principios ambientales que        |
|                 |             |                |                  |            | contiene este Código constituyen los fundamentos              |
|                 |             |                |                  |            | conceptuales para todas las decisiones y actividades públicas |
|                 |             |                |                  |            | o privadas de las personas, comunas, comunidades, pueblos,    |
|                 |             |                |                  |            | nacionalidades y colectivos, en relación con la conservación, |
|                 |             |                |                  |            | uso y manejo sostenible del ambiente.                         |

| LEGISLACIÓN     | AÑO         | AUTORIDAD      | TÍTULO       | ARTÍCULO | DESCRIPCIÓN                                                   |
|-----------------|-------------|----------------|--------------|----------|---------------------------------------------------------------|
| AMBIENTAL       |             | COMPETENTE     |              |          |                                                               |
|                 |             |                |              |          | Objeto. La Autoridad Ambiental Nacional impulsará y           |
|                 |             |                |              |          | fomentará nuevos patrones de producción y consumo de          |
|                 |             |                |              |          | bienes y servicios con responsabilidad ambiental y social,    |
|                 |             |                |              |          | para garantizar el buen vivir y reducir la huella ecológica.  |
|                 |             |                |              | Art. 243 | El cumplimiento de la norma ambiental y la producción más     |
|                 |             |                |              |          | limpia serán reconocidos por la Autoridad Ambiental           |
|                 |             |                |              |          | Nacional mediante la emisión y entrega de certificaciones o   |
|                 |             |                |              |          | sellos verdes, los mismos que se guiarán por un proceso de    |
|                 |             |                | TITULO VI    |          | evaluación, seguimiento y monitoreo.                          |
| Código Orgánico | 12 de abril | Ministerio del | Producción y |          | Obligaciones generales para la producción más limpia y el     |
| del Ambiente    | de 2017     | Ambiente       | Consumo      |          | consumo sustentable. Todas las instituciones del Estado y las |
|                 |             |                | Sustentable  |          | personas naturales o jurídicas, están obligadas según         |
|                 |             |                |              | Art. 245 | corresponda, a:                                               |
|                 |             |                |              |          | 1 Incorporar en sus propias estructuras y planes, programas,  |
|                 |             |                |              |          | proyectos y actividades, la normativa y principios generales  |
|                 |             |                |              |          | relacionados con la prevención de la contaminación,           |
|                 |             |                |              |          | establecidas en este Código.                                  |
|                 |             |                |              |          | 2 Optimizar el aprovechamiento sustentable de materias        |
|                 |             |                |              |          | primas                                                        |

| LEGISLACIÓN     | AÑO         | AUTORIDAD      | TÍTULO       | ARTÍCULO | DESCRIPCIÓN                                                 |
|-----------------|-------------|----------------|--------------|----------|-------------------------------------------------------------|
| AMBIENTAL       |             | COMPETENTE     |              |          |                                                             |
|                 |             |                |              |          | 3. Fomentar y propender la optimización y eficiencia        |
|                 |             |                |              |          | energética, así como el aprovechamiento de                  |
|                 |             |                |              |          | energías renovables;                                        |
|                 |             |                |              |          | 4. Prevenir y minimizar la generación de cargas             |
|                 |             |                |              |          | contaminantes al ambiente, considerando el ciclo de         |
|                 |             |                |              |          | vida del producto;                                          |
|                 |             |                |              |          | 5. Fomentar procesos de mejoramiento continuo que           |
| Código Orgánico | 12 de abril | Ministerio del | TITULO VI    | Art. 245 | disminuyan emisiones;                                       |
| del Ambiente    | de 2017     | Ambiente       | Producción y |          | 6. Promover con las entidades competentes el acceso a la    |
|                 |             |                | Consumo      |          | educación para el consumo sustentable;                      |
|                 |             |                | Sustentable  |          | 7. Promover el acceso a la información sobre productos y    |
|                 |             |                |              |          | servicios en base a criterios sociales, ambientales y       |
|                 |             |                |              |          | económicos para la producción más limpia y consumo          |
|                 |             |                |              |          | sustentable;                                                |
|                 |             |                |              |          | 8. Coordinar mecanismos que faciliten la transferencia de   |
|                 |             |                |              |          | tecnología para la producción más limpia;                   |
|                 |             |                |              |          | 9. Minimizar y aprovechar los desechos; y,                  |
|                 |             |                |              |          | 10. Otros que la Autoridad Ambiental Nacional dicte para el |
|                 |             |                |              |          | efecto.                                                     |

| LEGISLACIÓN        | AÑO      | AUTORIDAD      | TÍTULO           | ARTÍCULO | DESCRIPCIÓN                                                      |
|--------------------|----------|----------------|------------------|----------|------------------------------------------------------------------|
| AMBIENTAL          |          | COMPETENTE     |                  |          |                                                                  |
|                    |          |                |                  | Literal  | Se prohíbe descargar sustancias o desechos peligrosos            |
|                    |          |                | Libro VI Anexo 1 | 4.2.1.10 | (líquidos-sólidos-semisólidos) fuera de los estándares           |
|                    |          |                | Normas de        |          | permitidos, hacia el cuerpo receptor, sistema de                 |
|                    |          |                | descarga de      |          | alcantarillado y sistema de aguas lluvias.                       |
|                    |          |                | efluentes        | Literal  | Toda descarga al sistema de alcantarillado deberá cumplir,       |
| Texto Unificado de |          |                | Recurso Agua     | 4.2.2.3  | al menos, con los valores establecidos en la TABLA 11.           |
| Legislación        |          |                |                  |          | Límites de descarga al sistema de alcantarillado público         |
| Ambiental          | 31 de    | Ministerio del |                  |          |                                                                  |
| Secundaria del     | marzo de | Ambiente       | Libro VI Anexo 2 |          |                                                                  |
| Ministerio del     | 2003     |                | Norma de Calidad | Literal  | Toda actividad productiva que genere desechos sólidos no         |
| Ambiente           |          |                | Ambiental del    | 4.1.1.1  | peligrosos, deberá implementar una política de reciclaje o       |
|                    |          |                | Recurso Suelo y  |          | reúso de los desechos. Si el reciclaje o reúso no es viable, los |
| Decreto Ejecutivo  |          |                | Criterios de     |          | desechos deberán ser dispuestos de manera ambientalmente         |
| 3516               |          |                | Remediación para |          | aceptable.                                                       |
|                    |          |                | Suelos           |          |                                                                  |
|                    |          |                | Contaminados     |          |                                                                  |
|                    |          |                |                  |          |                                                                  |

| LEGISLACIÓN         | AÑO      | AUTORIDAD      | TÍTULO            | ARTÍCULO | DESCRIPCIÓN                                                  |
|---------------------|----------|----------------|-------------------|----------|--------------------------------------------------------------|
| AMBIENTAL           |          | COMPETENTE     |                   |          |                                                              |
| Texto Unificado de  |          |                | Libro VI Anexo 6  | Literal  | El Manejo de los desechos sólidos en todo el país será       |
| Legislación         |          |                | Norma de Calidad  | 4.1.1    | responsabilidad de las municipalidades, de acuerdo a la Ley  |
| Ambiental           |          |                | Ambiental para el |          | de Régimen Municipal y el Código de Salud.                   |
| Secundaria del      | 31 de    | Ministerio del | Manejo y          |          | Los recipientes para almacenamiento de desechos sólidos en   |
| Ministerio del      | marzo de | Ambiente       | Disposición Final | Literal  | el servicio ordinario deben ser de tal forma que se evite el |
| Ambiente            | 2003     |                | de Desechos       | 4.4.2    | contacto de éstos con el medio y los recipientes podrán ser  |
|                     |          |                | Sólidos no        |          | retornables o no retornables. En ningún caso se autoriza el  |
| Decreto Ejecutivo   |          |                | peligrosos        |          | uso de cajas, saquillos, recipientes o fundas plásticas no   |
| 3516                |          |                |                   |          | homologadas y envolturas de papel.                           |
| Reglamento de       |          |                | Decreto Ejecutivo |          | Las disposiciones del presente Reglamento se aplicarán a     |
| Seguridad y Salud   |          |                | 2393              | Art. 1   | toda actividad laboral y en todo centro de trabajo, teniendo |
| de los trabajadores | 1986     |                | Título I          |          | como objetivo la prevención, disminución o eliminación de    |
| y mejoramiento del  |          |                | Disposiciones     |          | los riesgos del trabajo y el mejoramiento del medio ambiente |
| Medio Ambiente      |          |                | Generales         |          | de trabajo.                                                  |
| de Trabajo          |          |                |                   |          |                                                              |

| LEGISLACIÓN         | AÑO        | AUTORIDAD      | TÍTULO              | ARTÍCULO  | DESCRIPCIÓN                                                   |
|---------------------|------------|----------------|---------------------|-----------|---------------------------------------------------------------|
| AMBIENTAL           |            | COMPETENTE     |                     |           |                                                               |
|                     |            |                | Título II           |           |                                                               |
|                     |            |                | Condiciones         |           |                                                               |
| Reglamento de       |            |                | Generales de los    |           |                                                               |
| Seguridad y Salud   | 1986       |                | Centros de Trabajo  |           | Todos los lugares de trabajo y tránsito deberán estar dotados |
| de los trabajadores |            |                | Capítulo V          | Art. 56.  | de suficiente iluminación natural o artificial, para que el   |
| y mejoramiento del  |            |                | Medio Ambiente y    |           | trabajador pueda efectuar sus labores con seguridad y sin     |
| Medio Ambiente      |            |                | Riesgos Laborales   |           | daño para los ojos.                                           |
| de Trabajo          |            |                | por Factores        |           |                                                               |
|                     |            |                | Físicos, Químicos y |           |                                                               |
|                     |            |                | Biológicos          |           |                                                               |
| Ordenanza que       |            |                |                     |           |                                                               |
| establece las       |            |                |                     |           | POLÍTICA 2: Crear un entorno de conciencia ambiental          |
| Políticas           | 24 de      | Gobierno       |                     | Art. 3    | que permita prevenir y controlar la contaminación de la       |
| Ambientales del     | febrero de | Provincial del |                     | POLÍTICAS | Provincia del Carchi mediante el desarrollo de programas de   |
| Gobierno            | 2010       | Carchi         |                     |           | prevención y control que garanticen la conservación y la      |
| Provincial del      |            |                |                     |           | calidad ambiental de los recursos naturales y la calidad de   |
| Carchi              |            |                |                     |           | vida de sus habitantes.                                       |

Realizado por: Karina Ramírez

## CAPÍTULO II

## 2. MARCO METODOLÓGICO

## 2.1. Características del Trabajo de Titulación

El presente trabajo es de tipo descriptivo y explicativo:

**Descriptivo**: ya que se trata de un estudio-diagnóstico y la propuesta para la aplicación de técnicas que mejoran el desempeño ambiental de la microempresa, por lo cual se utilizará estadística descriptiva en cada uno de los datos experimentales.

**Explicativo:** se utilizará el método explicativo para analizar y comprender cada fase productiva de la microempresa, se centra en determinar los orígenes o las causas de un determinado conjunto de fenómenos, donde el objetivo es conocer por que suceden ciertos hechos a través de la delimitación de las relaciones causales existentes o, al menos, de las condiciones en que ellas producen.

## 2.2. Población de estudio

Proceso productivo de la microempresa "Productos Lácteos del Norte":

- ✓ Recepción de la materia prima
- ✓ Pasteurización
- ✓ Desuerado
- ✓ Molienda y Moldeo
- ✓ Refrigeración
- ✓ Empaquetado y Almacenamiento

#### 2.3. Técnicas de recolección de datos

Para el desarrollo del presente trabajo de titulación se tomó como referencia una metodología conocida de la "Guía de Producción Más Limpia para el Sector Lácteo" del Centro Nacional de PML de Nicaragua y la "Guía Técnica General de Producción Más Limpia" del Centro de Promoción de Tecnologías Sostenibles de Bolivia, estas dos guías sirvieron como base y han sido adaptadas en función a las características de la empresa y los objetivos planteados.

### 2.4. Metodología Aplicada

La metodología utilizada para la implementación de un modelo de PML en una empresa debe ser factible y realizable tomando en cuenta el punto de vista técnico, económico y ambiental para lograr un desarrollo sostenible y sustentable. La implementación supone la planificación, programación y ejecución de un conjunto de medidas que se desarrollaran de forma sistemática y ordenada (CPTS, 2005).

Al realizar el modelo de Producción Más Limpia para la microempresa se distribuyó el trabajo en cuatro fases, las fases son:

- ✓ Planeación y Organización
- ✓ Pre Evaluación
- ✓ Evaluación
- ✓ Estudio de Factibilidad

## 2.4.1. FASE 1: Planeación y Organización:

El objetivo de esta fase fue crear las condiciones necesarias para poder realizar el modelo de PML en la planta, en esta etapa se siguió los siguientes pasos:

**Paso 1.** Se llevó a cabo una reunión con el gerente de la microempresa en donde se aseguró su compromiso para el permiso del uso de las instalaciones y la recopilación de la información necesaria para el desarrollo del trabajo de campo, además, el compromiso de colaboración de cada uno de los empleados en cada una de las etapas que incluye la realización del modelo de PML.

Este paso es de gran importancia, ya que es la base del desarrollo del modelo de PML, pues permitió la obtención de información y la facilidad para el análisis de campo.

**Paso 2.** Se elaboró un cronograma para la realización del trabajo, en el cual se destaca las principales actividades a realizarse dentro de la planta para lograr los objetivos planteados, esto fue presentado al gerente junto con los objetivos del trabajo de titulación, para esto se tomó en cuenta un tiempo estimado para realizar los pasos de cada fase.

Tabla 1-2: Cronograma de actividades en la planta

| No.   | ACTIVIDADES                                                         |     | ME  | S1   |     |     | ME  | ES 2 |   |   | M | ES 3 |   |
|-------|---------------------------------------------------------------------|-----|-----|------|-----|-----|-----|------|---|---|---|------|---|
| 140.  | ACTIVIDADES                                                         | 1   | 2   | 3    | 4   | 1   | 2   | 3    | 4 | 1 | 2 | 3    | 4 |
|       | FASE 1: PLANEAC                                                     | IÓN | Y   | RG   | AN  | IZA | CIÓ | N:   |   |   |   |      |   |
| ACT.1 | Reunión con la gerencia                                             | X   |     |      |     |     |     |      |   |   |   |      |   |
| ACT.2 | Presentación del cronograma y<br>objetivos                          |     | X   |      |     |     |     |      |   |   |   |      |   |
|       | FASE 2: PRE-EVAL                                                    | LUA | CIÓ | N:   | _   |     |     |      |   |   |   |      |   |
| ACT.3 | Entrevista al gerente                                               |     | X   |      |     |     |     |      |   |   |   |      |   |
| ACT.4 | Capacitación a los empleados                                        |     | X   |      |     |     |     |      |   |   |   |      |   |
| ACT.5 | Visita a la planta y recolección de datos                           |     |     | X    | X   | X   | X   |      |   |   |   |      |   |
| ACT.6 | Encuestas a los vecinos                                             |     |     |      |     | X   | X   |      |   |   |   |      |   |
|       | FASE 3: EVALUA                                                      | CIĆ | N   |      |     |     |     |      |   |   |   |      |   |
| ACT.7 | Evaluación de datos cuantitativos                                   |     |     |      |     |     |     | X    | X |   |   |      |   |
| ACT.8 | Elaboración de balances de materia y<br>energía                     |     |     |      |     |     |     |      | Х | X |   |      |   |
| ACT.9 | Análisis FODA e identificación de<br>oportunidades de PML           |     |     |      |     |     |     |      |   | X |   |      |   |
|       | FASE 4: ESTUDIO I                                                   | E F | AC. | ΓΙΒΙ | LII | AD  | )   |      |   |   |   |      |   |
| ACT.1 | Evaluación técnica, económica y<br>ambiental de las opciones de PML |     |     |      |     |     |     |      |   |   | X | X    |   |
| ACT.2 | Jerarquización de las medidas de PML                                |     |     |      |     |     |     |      |   |   |   |      | X |

Realizado por: Karina Ramírez. 2018

#### 2.4.2. FASE 2: Pre-Evaluación:

El objetivo de esta fase fue tener un diagnóstico general de la situación actual de la microempresa para identificar las actividades en las que se enfocaron las fases 3 y 4, los pasos que se siguieron en esta fase son:

**Paso 3.** Se recopiló la información general de la microempresa para conocer las actividades que realizan y se elaboró la descripción con diagramas de flujo del proceso productivo, además, se consideró la localización y descripción del lugar en donde se encuentra la planta.

La recopilación de la información general de la microempresa se realizó mediante una entrevista estructurada al gerente (ANEXO D) y la descripción y localización del lugar se realizó mediante investigación bibliográfica.

De acuerdo a la planificación se dio una capacitación a los trabajadores sobre Producción Más Limpia, además, se dio a conocer el trabajo que se realizaría en la planta, posterior a esto se entrevistó a los trabajadores para obtener información del proceso productivo de la microempresa.







Fotografías. Capacitación y entrevista a los trabajadores

**Paso 4.** Se visitaron las instalaciones y se observó el proceso productivo desarrollado en la planta y los equipos con los que contaba, dando seguimiento a cada uno de los procesos para su respectivo análisis.

## ✓ Proceso Productivo del Queso Amasado:

El proceso productivo realizado en la microempresa se describe a continuación en la Figura 1-2:

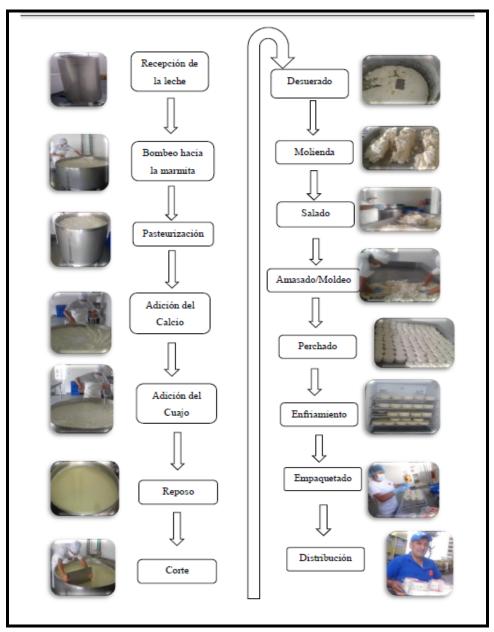



Figura 1-2: Proceso Productivo del Queso Amasado

Fuente: Lácteos del Norte, 2018 Realizado por: Karina Ramírez. 2018 Paso 5. Se realizó la recolección de datos cuantitativos para obtener nueva información sobre los procesos, esto se logró mediante el uso de tablas elaboradas para registrar el uso de materiales e insumos, uso de agua, producción de residuos y consumo de energía, también se solicitó las planillas de agua y luz.

El modelo de tablas utilizado para registrar el consumo de energía de las máquinas y aparatos fue el siguiente:

Tabla 2-2: Formato para calcular el consumo de energía:

| Área:     |          |      |                            |
|-----------|----------|------|----------------------------|
| Actividad | Aparatos | kW/h | Tiempo en uso<br>(minutos) |
|           |          |      |                            |

Fuente: GTPML. 2005

Realizado por: Karina Ramírez. 2018

Además, para evaluar los impactos ambientales de la microempresa se realizó análisis físicoquímicos de las aguas residuales provenientes del proceso productivo para conocer si se cumple o no con la normativa ambiental vigente.

### ✓ Recolección de la muestra

Tomando en cuenta el proceso productivo de la planta se tomó una muestra compuesta del agua residual generada en las etapas de moldeo y perchado; el agua residual se la recolectó antes de su ingreso a la red de alcantarillado, en la canaleta de salida ubicada en la planta.

El muestreo se realizó durante las horas de producción tomando aproximadamente 10 L de agua de cada etapa, el agua se recolectó en un recipiente de 30 L de capacidad, al tener la muestra compuesta, se homogenizó y se midió el pH y la temperatura in situ, utilizando un termómetro (para la temperatura) y tiras indicadoras (para el pH).

Para el análisis físico-químico y microbiológico se tomaron 2 L de agua residual de acuerdo al requerimiento del laboratorio, bajo los siguientes parámetros:

- ✓ pH
- ✓ Temperatura
- ✓ Conductividad
- ✓ Sólidos Totales
- ✓ Sólidos Suspendidos
- ✓ Fosfatos
- ✓ Nitratos
- ✓ Nitritos
- ✓ Cloruros
- ✓ DBO<sub>5</sub>
- ✓ DQO
- ✓ Aceites y grasas
- ✓ Coliformes totales
- ✓ Coliformes fecales

El pH y la Temperatura se midieron in situ, los demás parámetros fueron analizados por el Laboratorio de Servicios Ambientales de la Universidad Nacional de Chimborazo (UNACH).

Tabla 3-2: Análisis físico-químicos y microbiológicos

| PARÁMETRO           | MÉTODO/PROCEDIMIENTO                          |
|---------------------|-----------------------------------------------|
| Conductividad       | PE-LSA-02                                     |
| Sólidos Totales     | PE-LSA-04                                     |
| Sólidos Suspendidos | STANDARD METHODS 2540 D                       |
| Fosfatos            | STANDARD METHODS 4500-P-E                     |
| Nitratos            | STANDARD METHODS 4500 NO <sub>3</sub> - E mod |
| Nitritos            | STANDARD METHODS 4500-NO□-B                   |
| Cloruros            | STANDARD METHODS 3500-Cl E mod                |
| DBO <sub>5</sub>    | STANDARD METHODS 5210 – B                     |
| DQO                 | STANDARD METHODS 5220-D mod                   |
| Aceites y grasas    | EPA 418.1                                     |
| Coliformes totales  | STANDARD METHODS 9221 C                       |
| Coliformes fecales  | STANDARD METHODS 9221 C                       |

Fuente: UNACH. 2018

Realizado por: Karina Ramírez. 201

### Cuantificación de entradas en el proceso:

## ✓ Consumo de agua

Para cada operación unitaria, se debe considerar los usos de agua, el volumen y la frecuencia de uso, para obtener esa información se realizó un monitoreo de 15 días, en los que se realizó la determinación del caudal usando el método volumétrico que consiste en la medición directa del tiempo que tarda en llenarse un recipiente de un volumen conocido, utilizando un balde y un cronometro.

El formato utilizado para el registro de la medición de caudal fue el siguiente:

Tabla 4-2: Formato para el cálculo de caudales

| Proceso u<br>operación<br>unitaria | Tiempo de<br>llenado<br>del<br>balde (t)<br>[minutos] | Volumen<br>del<br>balde (V)<br>[litros] | Caudal<br>C = V/t<br>[litros/minuto] | Duración del uso por lote de producción (D) [minutos] | Consumo total por lote = C x D [litros] | Observaciones |
|------------------------------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------------|---------------|
|------------------------------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------------|---------------|

Fuente: GTPML. 2005

Realizado por: Karina Ramírez. 2018

#### ✓ Consumo de materias primas e insumos

El registro del uso de insumos y materia prima se lo realizó por 15 días para tener datos exactos de la cantidad y tipo de materiales que se utiliza de cada insumo que entran en el proceso. El modelo de tablas utilizado para registrar el consumo de materias primas e insumos fue el siguiente:

**Tabla 5-2:** Formato para el registro del consumo de materias primas e insumos

| Operación<br>Unitaria | Materia<br>Prima 1<br>[g o<br>L/periodo] | Materia<br>Prima 2<br>[g o<br>L/periodo] | Materia<br>Prima 3<br>[kg o<br>L/periodo] | Agua<br>[m3/periodo] | Energía<br>eléctrica<br>[kWh/periodo] |
|-----------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|---------------------------------------|
|-----------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|---------------------------------------|

Fuente: GTPML. 2005

Realizado por: Karina Ramírez. 2018

### Cuantificación de las salidas en el proceso:

De acuerdo a la Guía de Producción Más Limpia de Bolivia para la cuantificación de las masas correspondientes a todas las salidas del proceso y de las operaciones unitarias se requiere realizar el registro de las cantidades del producto final principal, los subproductos, los residuos reciclables o reutilizables y de los desechos sólidos que son almacenados y/o enviados fuera de la planta para su disposición final.

## ✓ Salidas de las operaciones unitarias

El registro de la cantidad de producto elaborado se lo realizó por 15 días ininterrumpidos para tener datos exactos. El modelo de tablas utilizado para registrar los datos fue el siguiente:

**Tabla 6-2:** Formato para el registro de las salidas de las operaciones unitarias

| Tubia o 2: 1 officio para el registro de las sulfats de las operaciones antar |            |             |  |  |  |  |  |
|-------------------------------------------------------------------------------|------------|-------------|--|--|--|--|--|
| Operación                                                                     | Producto   | Subproducto |  |  |  |  |  |
| Unitaria                                                                      | [cantidad] | [cantidad]  |  |  |  |  |  |
| (OU)                                                                          |            |             |  |  |  |  |  |

Fuente: GTPML. 2005

Realizado por: Karina Ramírez. 2018

## ✓ Caracterización de residuos:

Se registró la cantidad de residuos generados, y se realizó su caracterización, para esto se determinó el lugar en los que se disponen los residuos para su posterior recolección por parte del servicio municipal, el servicio de recolección brinda el servicio cada 2 días por lo que los residuos diarios son almacenados en la planta en un sitio específico, el mismo que fue seleccionado para la caracterización.

Para la caracterización de residuos los materiales que se utilizaron fueron: guantes, mascarilla, mandil, fundas de basura y una balanza para pesar.

Se aplicó un muestreo de 15 días cumpliendo las siguientes actividades:

- ✓ Se extendieron fundas plásticas en el lugar de la caracterización
- ✓ Se voltearon los residuos sólidos generados en el día por la planta.

✓ Se clasificaron el total de los residuos en: plástico, papel y cartón, residuos orgánicos y residuos sanitarios.

✓ Se pesaron los residuos sólidos y se registró el resultado por tipo de residuo.

✓ Se calculó la producción per cápita de residuos, que es la cantidad de basura generada por una persona en el día, con la siguiente ecuación:

$$PPC = \frac{W}{P}$$

donde:

PPC= Producción per cápita de residuos sólidos (Kg/hab\*día)

W= Peso generado en un día (Kg)

P= Población que generó estos residuos

**Paso 6.** Para conocer las molestias que la planta produce a las personas que viven cerca de la planta se realizaron encuestas a los vecinos de la ciudadela para conocer su opinión (ANEXO C)

#### ✓ Selección de la muestra

Para determinar el tamaño de la muestra se recolectaron inicialmente datos de la población cercana a la urbanización, los datos poblacionales fueron proporcionados por el presidente de la ciudadela.

Se seleccionó el cálculo del tamaño de la muestra para una población finita ya que se conocía el número de habitantes de la ciudadela, para conocer el número de personas que se tenía que entrevistar se utilizó la siguiente fórmula:

$$n = \frac{Z^{2}(p * q)}{e^{2} + \frac{Z^{2}(p * q)}{N}}$$

donde:

Z= nivel de confianza que equivale a 1,96 que indica el 95% de seguridad

p= proporción esperada (5%= 0.05)

q= proporción de la población (q=1-p=0,95)

e = nivel de error (=0.05)

N= tamaño de la población

n= tamaño de la muestra

#### 2.4.3. FASE 3: Evaluación

El objetivo de esta fase fue conocer de manera cuantitativa la realidad de la empresa en consumo de agua, energía y generación de residuos, además, proponer opciones de Producción Más Limpia.

**Paso 7.** Se ordenó la información recolectada y se evaluaron los datos cuantitativos, para este paso se consideró las planillas de consumo de agua y luz de la planta y los datos del monitoreo realizado para el consumo de materiales, insumos, agua y energía de cada etapa del proceso productivo, además, el registro de las salidas en el proceso productivo.

**Paso 8.** Con los datos recolectados se procedió a la elaboración de balances para conocer la cantidad de insumos y materia prima utilizados en el proceso y la producción procesada, posterior a eso se realizó el análisis tomando en cuenta los indicadores de consumo establecidos para este tipo de plantas.

El eco balance es una herramienta que nos permite cuantificar las entradas y las salidas que hay en los procesos productivos, en cuanto a productos, subproductos, energía, recursos, materias primas y residuos. (Vargas,2006)

**Paso 9.** Una vez que se tenía consolidada la información de la microempresa y sus procesos productivos se realizó el análisis FODA (Fortalezas, oportunidades, debilidades y amenazas) como una herramienta que permitió conocer la situación actual de la microempresa, esto se realizó con el fin de tomar decisiones para mejorar la situación de la planta.

Para el análisis FODA se contó con la colaboración del gerente y los trabajadores de la planta, quienes mediante su conocimiento y experiencia indicaron cuales son los principales problemas que enfrenta la microempresa y las fortalezas con las que cuentan.

El análisis FODA nos ayuda a determinar la eficacia de las medidas utilizadas para actuar sobre las fortalezas y debilidades de la microempresa y nos permite verificar las oportunidades y amenazas que se pueden presentar a lo largo del tiempo. (Guerra, 2015)

### El análisis FODA representa:

- ✓ Fortalezas: capacidades propias que posee una organización, lo que le permite tener una posición de ventaja frente a la competencia. Hace referencia a los recursos con los que cuenta la empresa, las habilidades, capacidades, y actividades que se desarrollan de una manera eficaz.
- ✓ **Oportunidades:** hace referencia a ciertas circunstancias del entorno que son potencialmente favorables para la empresa y que le permiten obtener una serie de ventajas a la misma.
- ✓ **Debilidades:** son las características o factores propios de la empresa que la colocan en una posición de desventaja frente a la competencia, entre estos pueden estar capacidades, habilidades, falta de recursos, y actividades que se desarrollan en bajos niveles de desempeño.
- ✓ **Amenazas:** son los factores negativos del entorno de la empresa que resultan en circunstancias adversas y que obstaculizan el desarrollo de los objetivos y que incluso pueden llegar a afectar la permanencia de la empresa. (Guerra, 2015)

**Paso 10.** A partir del análisis FODA realizado se identificaron las posibles oportunidades de PML aplicables al caso, las mismas que son el resultado de las necesidades que tiene la planta y las fortalezas con las que cuenta.

#### 2.4.4. FASE 4: Estudio de Factibilidad

El objetivo de esta fase fue analizar las oportunidades de PML para conocer su viabilidad en términos técnicos, económicos y ambientales.

**Paso 11.** Se hizo una evaluación preliminar de las oportunidades de PML formuladas para descartar aquellas no viables por razones obvias.

**Paso 12.** Se seleccionó las medidas de PML aplicables en la planta y se las jerarquizó para corto, mediano y largo plazo tomando en cuenta el tiempo que demorará implementar en la planta cada medida de acuerdo a la complejidad de cada uno.

## CAPÍTULO III

#### 3. MARCO DE RESULTADOS

## 3.1. DESARROLLO DEL MODELO DE PRODUCCIÓN MÁS LIMPIA

### 3.1.1. Descripción del estado actual de la empresa

## ✓ Localización y descripción del lugar:

Tulcán, capital de la provincia de Carchi, es una ciudad ecuatoriana que tiene una extensión territorial de 1,817.82 km, se encuentra ubicada en el sector septentrional del callejón interandino del país, al norte del país en la frontera que nos separa de Colombia, está integrada por la cabecera cantonal del mismo nombre y por once parroquias: dos urbanas y nueve rurales. (GADMT,2014)

En la ciudad de Tulcán podemos encontrar diferentes empresas y microempresas de lácteos, una de ellas es la microempresa "Productos Lácteos del Norte", en donde se produce "queso amasado", está viene desarrollando sus actividades desde el 2016 en su planta ubicada en la ciudadela San Luis, en las calles Crespo Toral S/N. Sus instalaciones están ubicadas en un terreno de su propiedad, en una superficie de construcción de  $282 \, m^2$ .

### ✓ Información General de la Microempresa:

#### Nombre o Razón Social

Productos Lácteos del Norte

## Dirección

Calle Crespo Toral S/N de la ciudadela San Luis

### Provincia/ Cantón/ Ciudad

Carchi/Tulcán/Tulcán

### Tamaño (empleados/ área)

La planta de la microempresa es una instalación de un solo piso de cemento y está construida sobre un lote de terreno de  $282 \ m^2$  en una zona urbana.

Tabla 1-3: Datos sobre las instalaciones de la empresa:

| TIPO | CLASIFICACIÓN    |
|------|------------------|
| X    | Zona Residencial |
|      | Zona Mixta       |
|      | Zona Comercial   |
|      | Zona Industrial  |
|      | Otras            |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

**Tabla 2-3:** Datos sobre el número de empleados por área:

| Área               | Número de Empleados |
|--------------------|---------------------|
| Administración     | 2                   |
| Proceso Productivo | 3                   |
| Distribución       | 2                   |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

## Fecha de inicio de labores

Inicia sus actividades en enero del 2016

## **Sector empresarial**

Industria de Alimentos: Sector Lácteo

### **Actividad Principal**

Fabricación de quesos amasados y cuajadas

### Régimen de Funcionamiento

La planta funciona todos los días del mes, los 365 días del año.

#### Resumen de las actividades

La principal actividad que se realiza en la planta es la elaboración de "queso amasado", para la producción de este producto la microempresa recibe alrededor de 550 litros de leche diarios provenientes de una hacienda cercana, la planta trabaja un turno diario, las etapas para la producción del queso amasado son: recepción de la materia prima, bombeo de la leche hacia la marmita, pasteurización de la leche, coagulación, reposo, corte, desuerado, molienda, amasado, moldeo, perchado, enfriamiento, empaquetado y sellado, distribución final.

## Características de la planta:

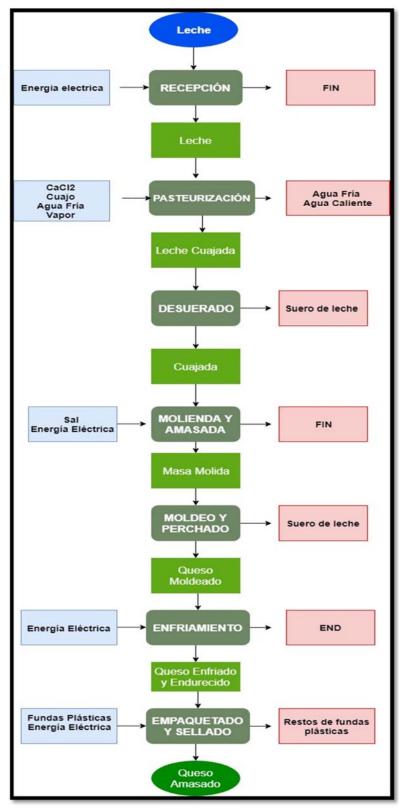
La planta cuenta con las siguientes dependencias:

- -Área de Producción
- -Área administrativa
- -Área de carga y descarga del producto
- -Área de recepción de leche
- Laboratorio
- -Bodega
- -Cuarto de Máquinas
- -Garaje
- -Baño
- -Vestuario

## 3.1.2. Análisis del Proceso Productivo de la Microempresa:

## ✓ Descripción del Proceso Productivo:

Tabla 3-3: Descripción del Proceso Productivo


| Proceso |      | Descripción                                                                         |  |  |
|---------|------|-------------------------------------------------------------------------------------|--|--|
| de      |      | La leche se recibe a partir de las 6 de la mañana, es transportada en un tanque de  |  |  |
| Bombeo  |      | acero inoxidable hasta la planta, diariamente se recibe alrededor de 550 $\rm L$ de |  |  |
| Bon     | che  | leche, los mismos que son ubicados en el tanque de almacenamiento, antes de         |  |  |
| , a     | a le | ser almacenados se realizan mediciones de pH, densidad y temperatura para           |  |  |
| pción   |      | comprobar que cumple los parámetros, además se revisa las características           |  |  |
| Rece    |      | organolépticas como: olor, color y apariencia. La leche es enviada desde el         |  |  |

|   |                                         | tanque de recepción hasta la marmita, en donde se llevará a cabo el proceso,        |
|---|-----------------------------------------|-------------------------------------------------------------------------------------|
|   |                                         | antes de llegar la leche a la marmita es filtrada para liberarla de impurezas que   |
|   |                                         | pudiesen existir.                                                                   |
| : | non                                     | El proceso para la elaboración de queso amasado inicia con la pasteurización de     |
|   | ızac                                    | la leche que es el tratamiento térmico que se lleva a cabo a 73°C con el fin de     |
|   | teur                                    | eliminar microorganismos patógenos, este es quizá uno de los procesos más           |
| 6 | Fas                                     | importantes en el tratamiento de la leche.                                          |
| : | Entriamiento y Adicion   Fasteurizacion | Una vez que la leche alcanzó los 73°C se la debe enfriar hasta llegar a 35°C,       |
| ; | A COL                                   | antes de llegar a la temperatura deseada, a los 40°C se añade Cloruro de Calcio     |
|   | ito y f<br>Colcio                       | que ayuda a la coagulación de la leche otorgándole firmeza al cuajo, la cantidad    |
|   | nen<br>Pel C                            | que se agrega es en relación de la cantidad de leche que se esté procesando, por    |
|   | rian                                    | cada 100 L de leche se agrega 50 mL de Cloruro de Calcio, se mezcla                 |
|   | Fu                                      | constantemente para ayudar a homogeneizar y enfriar.                                |
|   |                                         | Al llegar a los 35°C se realiza la coagulación, este proceso consiste en la adición |
| : | Coagulacion                             | de un agente fermentador para que se precipite la caseína, en este caso se utiliza  |
| - | ğalla                                   | el cuajo, con la coagulación la leche comienza su transformación en queso, la       |
|   |                                         | cantidad de cuajo que se agrega depende de la cantidad de leche procesada, por      |
|   |                                         | cada 100L de leche se agrega 10 mL de cuajo.                                        |
|   |                                         | Una vez concluida la coagulación se deja reposar por 30 minutos para que la         |
| , | rte                                     | leche se transforme pasando de un estado líquido a un estado semisólido. Una        |
|   | 5<br>*                                  | vez transcurrido los 30 minutos de reposo en el que se ha formado la cuajada se     |
|   | Keposo y Corte                          | procede a su corte utilizando una lira, esto facilita el drenaje inicial del suero, |
| 4 | Kep                                     | además, se va separando el cuajo del suero que se formó, esto con el fin de         |
|   |                                         | facilitar el siguiente proceso que es el desuerado y evitar pérdidas.               |
|   | ಡ                                       | Este paso es de gran importancia ya que sirve para eliminar el suero de la          |
|   | Desuerado y Monenda                     | cuajada, la expulsión del suero se da mediante la llave de la marmita y el suero    |
|   | Mol                                     | es recogido en recipientes para su posterior desecho. Una vez que se ha             |
|   | 0                                       | expulsado el suero de la marmita, se traslada la cuajada a la mesa de trabajo en    |
|   | erac                                    | donde se la deja reposar por 5 minutos más hasta que se elimine el suero restante,  |
| , | )esu                                    | una vez concluido los 5 minutos se coloca la cuajada en lavacaras medianas y se     |
| - | <b>-</b>                                | las lleva al molino para su molienda.                                               |
|   | 300                                     | Una vez que terminada la molienda tenemos la cuajada molida lista, esta se lleva    |
|   | Sal                                     | a la mesa de trabajo en donde se añade sal que realza el aroma, ayuda a la          |
| . | d0 y                                    | preservación del queso y para darle sabor al producto, la cantidad de sal que se    |
|   | Amasado y Salado                        | añade es de 100 gramos por cada lavacara de cuajada molida, y se procede a          |
|   | An                                      | mezclar para homogeneizar la masa.                                                  |

|                                                                         | Moldeo y Perchada |                                                                                                                                                                                                                     | Cuando se ha terminado de amasar la cuajada y se ha comprobado que el sabor es uniforme se procede a moldear la masa y se la coloca en diferentes moldes elaborados en PVC y de acuerdo a las distintas presentaciones en que realizan el producto, adoptando así el queso su forma y tamaño final, estos son de 125, 300, 400 y 500 gramos. |
|-------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Los quesos son sacados de los moldes y son colocados en refrigeración a |                   | Los quesos son sacados de los moldes y son colocados en refrigeración a 4°C por 2 horas para su conservación y para darle una mejor consistencia, aportando dureza al producto, hasta el momento de su empaquetado. |                                                                                                                                                                                                                                                                                                                                              |
| Empaquetado,                                                            | Sellado           | Almacenamiento                                                                                                                                                                                                      | El producto final es empaquetado en bolsas plásticas que previamente fueron fechadas y son selladas utilizando la máquina selladora, una vez que ha sido empaquetado el producto es colocado en refrigeración para mejorar su conservación.                                                                                                  |

Fuente: Microempresa "Productos Lácteos del Norte". 2018 Realizado por: Karina Ramírez. 2018

## ✓ Diagrama de Flujo del Proceso Productivo del Queso:



**Figura 1-3:** Diagrama de Flujo del Proceso Productivo del Queso **Fuente:** Microempresa "Productos Lácteos del Norte". 2018 **Realizado por:** Karina Ramírez. 2018

### 3.1.3. Recolección y Análisis de datos de las entradas en el proceso

## ✓ Principales materias primas e insumos utilizados en el proceso de producción

**Tabla 4-3:** Empleo y costo mensual de materia prima e insumos

| Materias Primas e | Cantidad    | Cantidad     | Costo Unitario | Costo Total |
|-------------------|-------------|--------------|----------------|-------------|
| insumos           | diaria (Kg) | Mensual (Kg) |                | Mensual     |
| Leche             | 559,3       | 16779,0      | \$ 0,4         | \$ 6015,3   |
| Cloruro de Calcio | 0,6         | 17,5         | \$ 0,7         | \$ 12,9     |
| Cuajo             | 0,1         | 1,8          | \$ 13,6        | \$ 24,4     |
| Sal               | 1,0         | 30,0         | \$ 0,2         | \$ 5,7      |
| TOTALES           | 560,9 kg    | 16828,3 kg   | \$14,8         | \$ 6058,3   |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

## ✓ Información del consumo de agua

La planta se abastece de agua de la Empresa Pública Municipal de Agua Potable y Alcantarillado de Tulcán, el agua que recibe es utilizada para el proceso productivo, la limpieza, consumo y todos los usos que hay en la planta, para ello dispone en sus instalaciones diferentes conexiones de tuberías para abastecer cada requerimiento, cuentan con un medidor de agua, a continuación, se detalla el consumo de los meses del año anterior:

Tabla 5-3: Detalle del consumo de agua de la planta

|                     | CONSUMO DE AGUA                      |         |  |  |  |  |
|---------------------|--------------------------------------|---------|--|--|--|--|
|                     | TARIFA RESIDENCIAL                   |         |  |  |  |  |
| MES                 | MES CANTIDAD (m³/mes) COSTO (\$/mes) |         |  |  |  |  |
| Enero (2017)        | 56                                   | \$19,35 |  |  |  |  |
| Febrero (2017)      | 58                                   | \$19,76 |  |  |  |  |
| Marzo (2017)        | 52                                   | \$18,28 |  |  |  |  |
| <b>Abril</b> (2017) | 75                                   | \$36,44 |  |  |  |  |
| Mayo (2017)         | 61                                   | \$25,00 |  |  |  |  |
| Junio (2017)        | 91                                   | \$48,46 |  |  |  |  |
| Julio (2017)        | 66                                   | \$29,11 |  |  |  |  |

| Agosto (2017)         | 64  | \$27,58 |
|-----------------------|-----|---------|
| Septiembre (2017)     | 86  | \$46,11 |
| <b>Octubre (2017)</b> | 85  | \$45,27 |
| Noviembre (2017)      | 101 | \$64,44 |
| Diciembre (2017)      | 114 | \$75,45 |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 6-3: Estadística del consumo de agua

|                        | <u> </u>    |
|------------------------|-------------|
| Consumo medio mensual  | $76 m^3$    |
| Consumo mínimo mensual | $52 m^3$    |
| Consumo máximo mensual | $114 \ m^3$ |
| Consumo en el año 2017 | $909 \ m^3$ |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 7-3: Estadística de costos de consumo de agua

| Costo medio mensual  | \$ 37,94  |
|----------------------|-----------|
| Costo mínimo mensual | \$ 18,28  |
| Costo máximo mensual | \$ 75,45  |
| Costo en el año 2017 | \$ 455,25 |

Fuente: Microempresa "Productos Lácteos del Norte". 2018 Realizado por: Karina Ramírez. 2018

# ✓ Información del consumo de energía eléctrica:

La planta se abastece de energía eléctrica a través del Sistema Nacional Interconectado correspondiente a la Empresa Eléctrica Regional Norte (EmelNorte), cuenta con un medidor trifásico, para su uso se aplica la tarifa residencial, a continuación, se detalla el consumo del año anterior:

Tabla 8-3: Detalle del consumo de luz de la planta

| t abia 6-3. Detane dei consumo de luz de la planta |                |  |  |  |
|----------------------------------------------------|----------------|--|--|--|
|                                                    | CONSUMO DE LUZ |  |  |  |
| TARIFA RESIDENCIAL                                 |                |  |  |  |
| MES CANTIDAD COSTO (\$/mes)                        |                |  |  |  |
|                                                    | (KWh/mes)      |  |  |  |

| Enero (2017)          | 118 | \$16,77 |
|-----------------------|-----|---------|
| <b>Febrero</b> (2017) | 128 | \$17,98 |
| Marzo (2017)          | 124 | \$17,52 |
| Abril (2017)          | 148 | \$20,49 |
| Mayo (2017)           | 156 | \$21,42 |
| Junio (2017)          | 150 | \$20,72 |
| Julio (2017)          | 163 | \$22,26 |
| Agosto (2017)         | 175 | \$23,70 |
| Septiembre (2017)     | 231 | \$30,43 |
| <b>Octubre (2017)</b> | 351 | \$45,52 |
| Noviembre (2017)      | 354 | \$45,75 |
| Diciembre (2017)      | 258 | \$33,61 |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 2-3: Estadística del consumo de energía

| tubia 2 0. Estadistica dei consumo de energia |          |  |  |
|-----------------------------------------------|----------|--|--|
| Consumo medio mensual                         | 196 KWh  |  |  |
| Consumo mínimo mensual                        | 118 KWh  |  |  |
| Consumo máximo mensual                        | 354 KWh  |  |  |
| Consumo en el año 2017                        | 2356 KWh |  |  |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 3-3: Estadística de costos del consumo de energía

| Costo medio mensual  | \$ 26,35   |
|----------------------|------------|
| Costo mínimo mensual | \$ 16,77   |
| Costo máximo mensual | \$ 45,75   |
| Costo en el año 2017 | \$ 316, 17 |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

La planta también utiliza otro tipo de energía que es la generada por la caldera, el mismo que funciona con el uso de diésel para la generación de vapor utilizado en la pasteurización, la información del consumo fue proporcionada por la empresa.

El combustible que se utiliza para el funcionamiento de la caldera es diésel, cuyo consumo diario aproximado por producción es de 3.5 galones, el galón de diésel tiene un precio aproximado de \$1,04.

**Tabla 4-3:** Estadística de consumo y costo del combustible (diésel)

|                    | - )          |           |
|--------------------|--------------|-----------|
|                    | Consumo      | Costos    |
| Producción diaria  | 3.5 gal/día  | \$ 3,64   |
| Producción mensual | 105 gal/mes  | \$ 109,20 |
| En el año 2017     | 1260 gal/año | \$ 1310,4 |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

### 3.1.4. Recolección y Análisis de los datos de las salidas en el proceso

## ✓ Principales productos o servicios de la microempresa

Tabla 5-3: Producción mensual de queso amasado

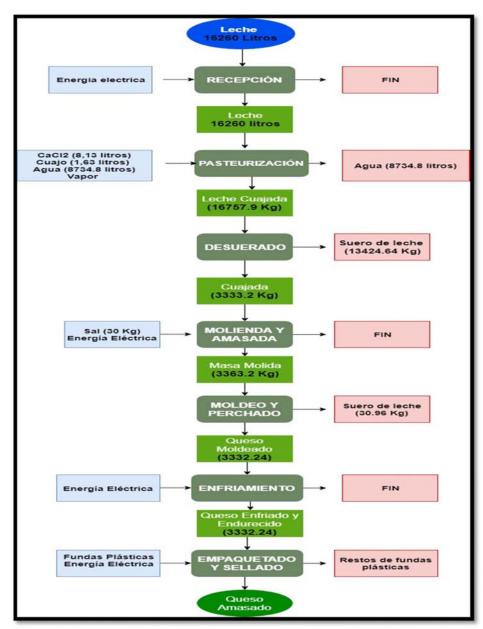
| Número | Productos     | Producción             | Producción |
|--------|---------------|------------------------|------------|
|        | elaborados    | elaborados diaria (Kg) |            |
| 1.     | Queso Amasado | 105,4                  | 3162       |
| 2.     | 2. Cuajadas   |                        | 201        |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

## ✓ Principales subproductos del proceso

El principal subproducto de la producción de quesos es el lactosuero, el cual representa entre un 80 y 90% del volumen total de la leche que se utiliza en el proceso.


Tabla 6-3: Generación mensual de suero

| Subproducto | Producción      | Producción       |
|-------------|-----------------|------------------|
|             | diaria (litros) | Mensual (litros) |
| Lactosuero  | 437             | 13110            |

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

## ✓ Diagrama de Flujo Modificado del Proceso Productivo del Queso:



**Figura 2-3:** Diagrama de Flujo Modificado del Proceso Productivo del Queso **Fuente:** Microempresa "Productos Lácteos del Norte". **Realizado por:** Karina Ramírez. 2018

# 3.1.5. Balances Mensuales del Proceso de Producción

**Tabla 7-3:** Datos cuantitativos de las entradas y salidas del proceso productivo:

| ENTRADAS                                        | ENTRADAS                                             |                    | SALIDAS                                        |                   |
|-------------------------------------------------|------------------------------------------------------|--------------------|------------------------------------------------|-------------------|
| MATERIA PRIMA, INSUMO,<br>RECURSOS              | Cantidad<br>(Kg)                                     | RECEPCIÓN          | PRODUCTOS, SUBPRODUCTOS                        | Cantidad<br>(Kg)  |
| Leche                                           | 16780,3                                              | RECEPCION          | Leche                                          | 16780,3           |
| Suma Total de Entradas                          | 16780,3                                              |                    | Suma Total de Salidas                          | 16780,3           |
| Leche<br>Cloruro de Calcio<br>Cuajo<br>Agua     | ro de Calcio 17,5<br>Cuajo 1,8 <b>PASTEURIZACIÓN</b> |                    | Agua<br>Leche cuajada                          | 8708,6<br>16799,6 |
| Suma Total de Entradas                          | 25508,2                                              |                    | Suma Total de Salidas                          | 25508,2           |
| Leche cuajada                                   | 16799,6                                              | DESUERADO          | Suero de leche<br>Cuajada                      | 13424,6<br>3375,0 |
| Suma Total de Entradas                          | 16799,6                                              |                    | Suma Total de Salidas                          | 16799,6           |
| Cuajada<br>Sal                                  | 3375,0<br>30,0                                       | MOLIENDA Y AMASADO | Masa Molida                                    | 3405,0            |
| Suma Total de Entradas                          | 3405,0                                               |                    | Suma Total de Salidas                          | 3405,0            |
| Masa Molida                                     | 3405,0                                               | MOLDEO Y PERCHADO  | Queso moldeado<br>Suero                        | 3374,0<br>31,0    |
| Suma Total de Entradas                          | 3405,0                                               |                    | Suma Total de Salidas                          | 3405,0            |
| Queso Moldeado                                  | 3363,2                                               | REFRIGERACIÓN      | Queso Enfriado                                 | 3363,2            |
| Suma Total de Entradas                          | 3363,2                                               | REFRIGERACION      | Suma Total de Salidas                          | 3363,2            |
| SUMA TOTAL DE ENTRADAS EN<br>LA PRODUCCIÓN (Kg) | 69261,2                                              |                    | SUMA TOTAL DE SALIDAS EN LA<br>PRODUCCIÓN (Kg) | 69261,2           |

Fuente: Microempresa "Productos Lácteos del Norte". 2018 Realizado por: Karina Ramírez. 2018

 Tabla 8-3: Datos cuantitativos del consumo de los equipos usados en el proceso de producción:

| EQUIPO                                                                                       | POTENCIA (W) | TIEMPO USO<br>DIARIO<br>(HORAS) | CANTIDAD     | DÍAS<br>FUNCIONA<br>AL MES | KWh/mes | Costo kwh (\$)  | Valor a<br>pagar (\$) |
|----------------------------------------------------------------------------------------------|--------------|---------------------------------|--------------|----------------------------|---------|-----------------|-----------------------|
| TANQUE DE RECEPCIÓN                                                                          | 750          | 0,42                            | 1            | 30                         | 9,45    | \$ 0,14         | \$ 1,32               |
| CALDERA MOTOR 1                                                                              | 650          | 1,58                            | 1            | 30                         | 30,81   | \$ 0,14         | \$ 4,31               |
| CALDERA MOTOR 2                                                                              | 370          | 1,58                            | 1            | 30                         | 17,54   | \$ 0,14         | \$ 2,46               |
| MOLINO - MOTOR 1                                                                             | 750          | 0,43                            | 1            | 30                         | 9,68    | \$ 0,14         | \$ 1,35               |
| MOLINO - MOTOR 2                                                                             | 3000         | 0,43                            | 1            | 30                         | 38,7    | \$ 0,14         | \$ 5,42               |
| FECHADORA                                                                                    | 60           | 0,5                             | 1            | 30                         | 0,9     | \$ 0,14         | \$ 0,13               |
| SELLADORA                                                                                    | 60           | 0,83                            | 1            | 30                         | 1,5     | \$ 0,14         | \$ 0,21               |
| REFRIGERADORA                                                                                | 600          | 12                              | 1            | 30                         | 216     | \$ 0,14         | \$ 30,24              |
| REFRIGERADORA                                                                                | 750          | 12                              | 1            | 30                         | 270     | \$ 0,14         | \$ 37,80              |
| FOCOS                                                                                        | 30           | 2                               | 13           | 30                         | 23,4    | \$ 0,14         | \$ 3,28               |
| Fuente: Microempresa "Productos Lácteos del<br>Norte"<br>Realizado por: Karina Ramírez. 2018 |              |                                 | Consumo Tota | al:                        | 619,97  | Valor<br>Total: | \$ 86,52              |

# 3.16. Matriz FODA de la microempresa

|                               | MATRIZ FODA                                                                                                                                                                                                                                                                                                         | ANÁLISIS INTERNO                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| "PRODUCTOS LÁCTEOS DEL NORTE" |                                                                                                                                                                                                                                                                                                                     | FORTALEZAS                                                                                                                                                                                                                                                                                                                                                                    | DEBILIDADES                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                               |                                                                                                                                                                                                                                                                                                                     | <ul> <li>✓ Compromiso y apoyo de la gerencia y los trabajadores al cambio.</li> <li>✓ Rentabilidad.</li> <li>✓ Infraestructura adecuada.</li> <li>✓ Demanda del producto.</li> <li>✓ Aceptación del producto en el mercado.</li> <li>✓ Buen ambiente de trabajo.</li> <li>✓ Conciencia ambiental por parte de los trabajadores.</li> <li>✓ Calidad en el producto.</li> </ul> | <ul> <li>✓ Falta de capacitación al personal.</li> <li>✓ Falta de gestión ambiental eficaz.</li> <li>✓ Falta de publicidad del producto</li> <li>✓ Mantener contrato con un solo proveedor de materia prima.</li> <li>✓ Mal manejo de los residuos sólidos y líquidos.</li> <li>✓ Falta de optimización del tiempo</li> <li>✓ Desperdicio de recursos durante el proceso.</li> <li>✓ Presencia de factores de accidentes para los trabajadores.</li> </ul> |  |  |
|                               | OPORTUNIDADES                                                                                                                                                                                                                                                                                                       | Estrategias FO (máx-máx)                                                                                                                                                                                                                                                                                                                                                      | Estrategias DO (min-máx)                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| el entorno                    | <ul> <li>Amplio mercado para la venta del producto</li> <li>Aumentar la producción aprovechando los recursos.</li> <li>Producción de diferentes productos.</li> <li>Aprovechamiento del suero.</li> <li>Materia prima disponible en los alrededores.</li> </ul>                                                     | <ul> <li>Elaboración de nuevos productos.</li> <li>Aumento de la producción.</li> <li>Aprovechar los residuos generados.</li> <li>Aprovechar los recursos disponibles.</li> <li>Estandarizar los procesos productivos.</li> <li>Llevar registros de los procesos y uso de insumos.</li> </ul>                                                                                 | <ul> <li>✓ Implementación de un tanque de recepción del suero.</li> <li>✓ Implementación de un sistema de frío para reducir el consumo de energía.</li> <li>✓ Cambios tecnológicos</li> <li>✓ Implementación de equipos de protección personal para los trabajadores.</li> </ul>                                                                                                                                                                           |  |  |
| is d                          | AMENAZAS                                                                                                                                                                                                                                                                                                            | Estrategias FA (máx-min)                                                                                                                                                                                                                                                                                                                                                      | Estrategias DA (min-min)                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Análisis del                  | <ul> <li>✓ Competencia de grandes industrias.</li> <li>✓ Dificultad con los proveedores y aumento de los precios de materia prima e insumos.</li> <li>✓ Actitud de resistencia al cambio por parte de los trabajadores.</li> <li>✓ Presencia de nuevos competidores.</li> <li>✓ Legislación ecuatoriana.</li> </ul> | <ul> <li>Expandirse en el mercado, buscar nuevos clientes</li> <li>Motivación al personal de la planta.</li> <li>Búsqueda continua del mejoramiento del producto</li> <li>Cumplir las normativas ambientales vigentes para evitar sanciones.</li> </ul>                                                                                                                       | <ul> <li>Capacitación permanente al personal.</li> <li>Buscar nuevos proveedores de materia prima.</li> <li>Conseguir que la materia prima sea entregada en la planta</li> <li>Realizar publicidad de los productos que ofertan.</li> <li>Actualización permanente en la legislación ambiental ecuatoriana.</li> </ul>                                                                                                                                     |  |  |

Fuente: Microempresa "Productos Lácteos del Norte". 2018 Realizado por: Karina Ramírez. 2018

#### 3.17. Propuesta y Evaluación Preliminar

#### ✓ Oportunidades de Producción Más Limpia a implementar

En base a la matriz FODA realizada se sugiere la implementación de las siguientes opciones de Producción Más Limpia que beneficiaran a la empresa y al ambiente.

#### MATERIA PRIMA, INSUMOS, PRODUCTOS Y SUBPRODUCTOS

Tabla 9-3: Propuesta 1 de PML

1. Disminuir las pérdidas en el proceso provocado por un manejo inadecuado de materia prima, insumos, productos y subproductos

#### Descripción:

Se observó que durante el proceso de producción ocurren pérdidas de materiales por un manejo inadecuado de los mismo, además existe un mal manejo del lactosuero que es el principal subproducto que deriva del proceso, es importante reducir la carga orgánica del efluente generado en la planta la cual se da por los derrames de leche, cuajadas, suero, etc.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe realizar capacitaciones para concientizar al personal sobre la buena manipulación de los materiales, que trabajen con cuidado para evitar derrames y proveer de equipos adecuados a las cantidades que se procesan.

#### **Beneficios:**

- Aumento de la productividad ya que se produciría mayor cantidad de productos con la misma cantidad de materiales.
- ✓ Disminución de la carga contaminante en los efluentes.
- ✓ Cumplimiento de la legislación por reducción de los niveles de contaminación en el efluente.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Tabla 10-3: Propuesta 2 de PML

#### 2. Estandarizar los parámetros y los tiempos del proceso productivo

#### Descripción:

Se pudo evidenciar que durante el proceso no existe control sobre la cantidad de materiales que se usan por lote de producción, cada una de las operaciones que conforma el proceso debe ser regulada en cuanto a parámetros como tiempo, temperatura, insumos, etc.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe llevar hojas de control de la cantidad de materiales usados por lote de producción y de los tiempos que se demora cada proceso, esto permite garantizar la calidad del producto y la optimización de los recursos, equipos y mano de obra. Además, se debe establecer los procedimientos para la elaboración del producto.

#### **Beneficios:**

- ✓ Garantiza la calidad del producto ya que se respeta los estándares establecidos para la producción.
- ✓ Optimización de los recursos y equipos disponibles.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

#### **ENERGÍA**

Tabla 11-3: Propuesta 3 de PML

| 3. Remplazar los focos por focos ahorradores (LED) |             |  |
|----------------------------------------------------|-------------|--|
| Descripción:                                       | Fotografía: |  |
| En la planta se utilizan lámparas de tipo          |             |  |
| incandescentes y fluorescente, si bien las         |             |  |

últimas son un tipo de lámparas ahorrativas las nuevas lámparas LED le llevan gran ventaja por sus beneficios y aportes. En la planta hay 13 focos los cuales se recomienda sea n sustituidos por focos LED.

Tener encendido un foco incandescente de 60W durante una hora es igual a tener encendidas 7 lámparas LED, consume la misma energía.

|              | (        | 2            |     |
|--------------|----------|--------------|-----|
|              |          | ¥            | W   |
| NCANDESCENTE | HALÓGENA | FLUORESCENTE | LED |
| 30W          | 25W      | 8W           | 3W  |
| 60W          | 50W      | 14W          | 8W  |

#### ¿Cómo se puede lograr?

Se debe realizar el cambio de los focos por los tipos LED tomando en cuenta los lúmenes requeridos en cada área para no perjudicar la calidad de iluminación. Se requiere inversión para el cambio de focos por lo que se debe considerar el cálculo del ahorro que representa el uso de estas lámparas.

#### **Beneficios:**

- ✓ Disminución del consumo energético por iluminación.
- ✓ Reducción en el pago de la planilla.
- ✓ Menos contaminante ya que no contiene mercurio y reduce las emisiones de CO<sub>2</sub> en un 80%.
- ✓ Vida útil más larga en comparación con los otros tipos de lámparas.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 12-3: Propuesta 4 de PML

# Aprovechamiento de la luz natural a través de la colocación de un calentador solar de agua

#### Descripción:

Se observó que para la limpieza de los equipos y de la planta en general se calienta agua mediante el uso de la caldera, lo cual implica consumo de combustible y energía.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe invertir en la compra de un calentador solar de agua mostrando el ahorro que implica esta adquisición. Considerar los beneficios que aportan tanto para la empresa como para el ambiente.

#### **Beneficios:**

- ✓ Necesitan de un mínimo mantenimiento a diferencia de la caldera.
- ✓ Existe ahorro de energía y combustible.
- ✓ Ofrece seguridad al personal de la planta.
- Contribución a la conservación de la calidad del aire y reducción de emisiones de gases de efecto invernadero.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 13-3: Propuesta 5 de PML

#### 5. Aislar las tuberías de vapor que conducen el vapor.

#### Descripción:

En la planta se pudo evidenciar que la tubería de distribución no está aislada lo que provoca pérdidas de calor en la distancia que recorre el vapor desde la caldera hasta la marmita, esto produce caídas en la presión de la caldera, lo que significa aumento del consumo de combustible.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe realizar la inversión en el material e instalación del aislante de acuerdo al diámetro de la tubería. Para la recuperación del condensado se debe realizar desde la marmita hacia la caldera, colocando tuberías (también aisladas) hacia un tanque de condensados que está conectado a la

#### **Beneficios:**

- ✓ Reducción de las emisiones de CO₂
- Mayor control en los tiempos del proceso.
- ✓ Reducción del consumo de combustible.
- ✓ Mantenimiento de la presión en los rangos normales del sistema.

alimentación de la caldera. Se debe invertir en la adquisición e instalación del tanque de recepción de condensados, la tubería de retorno y su aislamiento.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 14-3: Propuesta 6 de PML

#### 6. Solicitar un medidor de tipo industrial

#### Descripción:

La planta cuenta con un medidor de luz que tiene tarifa residencial por lo que está pagando un alto valor ya que la Agencia de Regulación y Control de Electricidad (ARCONEL) fija las tarifas a pagar por los consumidores y la tarifa industrial es menor a la residencial.

ARCONEL ha fijado la tarifa residencial en Tulcán de \$ 0,1285 USD/kWh y la tarifa industrial está fijada a \$ 0,069 USD/kWh.

#### ¿Cómo se puede lograr?

Es necesario que el encargado se acerque a la empresa eléctrica EmelNorte con los requisitos solicitados a solicitar el cambio de medidor, el cual no tiene ningún costo.

#### Fotografía:



#### **Beneficios:**

- ✓ Reducción en el pago de planillas mensuales.
- ✓ Cumplimiento de las leyes establecidas en el país del consumo de energía.
- ✓ Evitar sanciones por parte de la autoridad competente.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

#### **AGUA**

**Tabla 15-3:** Propuesta 7 de PML

#### 7. Realizar la limpieza en seco de los residuos sólidos

#### Descripción:

Una vez que finaliza el proceso productivo, se realiza la limpieza del área de producción en donde se encuentran residuos sólidos provenientes del proceso, como restos de queso, cuajadas, etc. Estos residuos son vertidos a través del drenaje de la planta con destino al alcantarillado. Además, la canaleta no cuenta con una rejilla que impida el paso de estos residuos. La limpieza en seco permite eliminarlos con el resto de desechos orgánicos de la planta.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe implementar una rejilla en la canaleta del área de producción e invertir en escurridores de pisos para agilizar la recolección de los desechos y supervisión continua.

#### **Beneficios:**

- ✓ Evita accidentes laborales.
- ✓ Disminución de la carga contaminante del efluente de la planta.
- ✓ Disminución del pago por consumo de agua.
- ✓ Cumplimiento de la legislación.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

**Tabla 16-3:** Propuesta 8 de PML

#### 8. Optimizar las operaciones que consumen agua

#### Descripción:

Existe un gran desperdicio de agua por lo que los procedimientos de lavado y las operaciones que requieren agua se pueden modificar para reducir el consumo.

#### Fotografía:



### ¿Cómo se puede lograr?

Esto se puede hacer con las siguientes acciones:

- ✓ Evaluar las oportunidades de reutilización de agua provenientes del lavado de equipos, enfriamiento, etc. Esta agua puede servir para lavar las áreas que no están en contacto con el producto, como pisos, patio, pasillos exteriores, etc.
- ✓ Capacitación al personal en métodos de lavado y supervisión en el lavado.
- ✓ Evitar que los recipientes se llenen muy cerca o por encima de su capacidad.

#### **Beneficios:**

- ✓ Ahorro económico en el pago de agua mensual.
- ✓ Reducción en el uso de este recurso

Fuente: Microempresa "Productos Lácteos del Norte". 2018

**Tabla 17-3:** Propuesta 9 de PML

# 9. Control y reparación de fugas de agua y mantenimiento de grifos, válvulas y tuberías

#### Descripción:

Cuando existe un mal estado de grifos, válvulas y tuberías aumenta el consumo de agua y los precios por lo que es necesario mantener vigilancia de las fugas que puedan presentarse.

#### ¿Cómo se puede lograr?

Se debe mantener vigilancia de las posibles fugas que puedan presentarse, asignando a una persona del personal como encargado.

#### Fotografía:



#### **Beneficios:**

- ✓ Reducción de costos por ahorro correctivo.
- ✓ Conservación del recurso agua.
- Ahorro económico en el pago del consumo de agua.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

#### SUSTITUCIÓN TECNOLÓGICA

Tabla 18-3: Propuesta 10 de PML

#### 10. Instalación de un sistema de enfriamiento (Chiller)

#### Descripción:

En el proceso de producción de queso se puede evidenciar un gran desperdicio de agua en la etapa de pasteurización pues utilizan agua almacenada en un tanque para bajar la temperatura de la leche de 73° a 35°C. Lograr el cambio de temperatura demora mucho pues el agua del tanque está a 12° C aproximadamente.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se recomienda la instalación de un sistema de enfriamiento que permitirá bajar la temperatura del agua del tanque utilizada en la pasteurización reduciendo el tiempo de enfriamiento de la leche y el consumo de agua.

#### Beneficios:

- Reducción en la planilla del pago de agua.
- ✓ Conservación del recurso agua.
- Reducción en el tiempo de producción.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 19-3: Propuesta 11 de PML

#### 11. Optimización del uso de agua mediante equipos de bajo volumen

#### Descripción:

Mientras se realiza la limpieza existe desperdicio de agua por la ineficiencia de las mangueras

De igual manera en los grifos existe desperdicio ya que los tienen abiertos mientras se asean o abren completamente la llave para mayor cantidad de agua.

#### ¿Cómo se puede lograr?

Se recomienda la instalación de pistolas de cierre automático en las mangueras de lavado.

Se puede realizar el cambio de los grifos por grifos de lavamanos provistos de aireadores o perlizadores que son dispositivos que se enroscan en el grifo y rompen el chorro de agua, mezclándolo con aire, logrando el aumento del volumen del chorro. Permiten un ahorro del 40% de agua en los grifos tradicionales.

#### Fotografía:



#### **Beneficios:**

- ✓ Aumento significativo en la eficiencia del consumo de agua.
- ✓ Reducción del pago de planilla por consumo de agua.
- ✓ Disminuye la demanda del recurso.
- ✓ Reducción en los volúmenes de agua arrojados a la alcantarilla.
- ✓ Baja inversión.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

#### Tabla 20-3: Propuesta 12 de PML

12. Implementación de un tanque para almacenar el suero mediante la instalación de tubería que envíe el subproducto de manera directa al tanque desde la marmita.

#### Descripción:

El suero de leche al salir de la marmita es recolectado en recipientes de diferentes volúmenes y trasladado al patio para ser almacenado en canecas, lo que produce desperdicio de tiempo, derrames de suero y problemas de ergonomía en los trabajadores por el esfuerzo y la posición que emplean.

#### ¿Cómo se puede lograr?

Se recomienda la implementación de un tanque de almacenamiento para el suero de capacidad de 300 litros conectado directamente a la marmita mediante tubería.

#### Fotografía:



#### **Beneficios:**

- ✓ Disminución de la carga contaminante en el efluente.
- ✓ Disponibilidad de tiempo para incrementar la producción.
- ✓ Evitar el derrame de lactosuero por trasiego manual.
- ✓ Reducción de problemas ergonómicos en el personal

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

**Tabla 21-3:** Propuesta 13 de PML

#### 13. Adquisición de una enfundadora al vacío para el producto

#### Descripción:

El empaquetado del producto se lo realiza de manera manual, produciendo generación de residuos plásticos ya que las fundas son más grandes, además implica tiempo del personal en enfundar, fechar y sellar y le quita vida útil al producto por el aire que queda dentro.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se sugiere la implementación de una empaquetadora al vacío de los quesos que generaría la posibilidad de salir del mercado local.

#### **Beneficios:**

- Mayor tiempo de vida útil del producto.
- ✓ Reducción en la generación de residuos.
- ✓ Incrementación en la calidad del producto.
- ✓ Disminución del tiempo de producción.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

#### **RESIDUOS**

Tabla 22-3: Propuesta 14 de PML

#### 14. Capacitación al personal sobre el manejo adecuado de residuos sólidos

#### Descripción:

En la planta no existe un correcto manejo de los residuos producidos, todos los residuos sólidos generados son desechados en un mismo tacho.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se deben realizar capacitaciones al personal sobre el correcto desecho de los residuos sólidos generados, los tipos de tachos que existen y sobre el reciclaje.

#### **Beneficios:**

- ✓ Disminuye la contaminación y permite ahorrar recursos pues en la basura se pueden encontrar alternativas para sustituir o reutilizar.
- ✓ Evita la contaminación cruzada de un desecho con otro disminuyendo la propagación de enfermedades.
- ✓ Posibilidad de producir composta con los residuos orgánicos.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Tabla 23-3: Propuesta 15 de PML

# 15. Instalación de tachos recolectores de basura para cada tipo de residuo con su respectiva señalética

#### Descripción:

En la planta no existen tachos para cada tipo de residuo, existe uno general para toda la basura.

#### Fotografía:



#### ¿Cómo se puede lograr?

Se debe adquirir tachos de basura y ubicarlos dentro de la planta para un correcto desecho de los residuos.

#### **Beneficios:**

- ✓ Disminuye la contaminación y permite ahorrar recursos pues en la basura se pueden encontrar alternativas para sustituir o reutilizar.
- ✓ Evita la contaminación cruzada de un desecho con otro disminuyendo la propagación de enfermedades.
- ✓ Posibilidad de producir composta con los residuos orgánicos.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

#### **OTRAS OPCIONES**

Tabla 24-3: Propuesta 16 de PML

#### 16. Realizar capacitaciones al personal

#### Descripción:

Es la falta de conocimiento lo que mayor problema causa, por lo que se deben realizar capacitaciones continuas al personal que abarquen temas importantes como:

✓ Correcta manipulación de la materia prima y los productos obtenidos.

#### Fotografía:



- ✓ Optimización de los recursos y productos usados en el proceso y en la limpieza.
- ✓ Uso correcto y mantenimiento básico de los equipos.
- ✓ Control y prevención de la contaminación generada.
- ✓ Manejo adecuado de los residuos.
- ✓ Salud Ocupacional y Seguridad Industrial.



#### ¿Cómo se puede lograr?

Se debe planificar capacitaciones periódicas y entrenamiento para el personal de la planta.

#### **Beneficios:**

- ✓ Incremento en la calidad del producto.
- ✓ Manejo adecuado de los equipos.
- ✓ Reducción del riesgo de accidentes laborales.
- ✓ Disminución de la contaminación provocada.
- ✓ Cumplimiento de la legislación.

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

Tabla 25-3: Propuesta 17 de PML

#### 17. Control de la producción utilizando sistemas de indicadores

#### Descripción:

En la microempresa no se lleva un control de la producción y es importante registrar las entradas y salidas de materia prima, insumos y suministros para poder generar indicadores de control de los procesos para detectar anormalidades. Los registros ayudan a fortalecer la gestión de la microempresa mediante un control real de los costos de producción.

#### Fotografía:



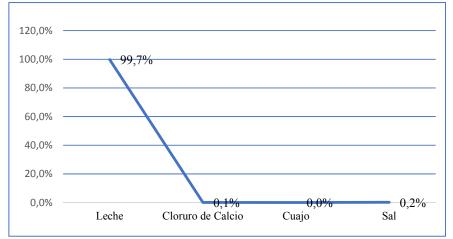
#### ¿Cómo se puede lograr?

Se debe diseñar hojas de registro que ayuden a controlar las entradas y salidas del proceso, identificando los puntos del proceso en donde se debe llevar el registro escrito, los formatos deben ser sencillos y tener la información necesaria como cantidad de materia prima procesada, precio, hora, las pruebas que se realizan (densidad, temperatura, etc.)

Fuente: Microempresa "Productos Lácteos del Norte". 2018

Realizado por: Karina Ramírez. 2018

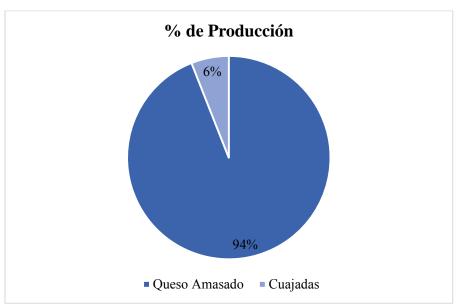
#### **Beneficios:**


- ✓ Control de las entradas y salidas del proceso y cuantificación de los costos de producción.
- ✓ Disminución del riesgo de pérdidas en la entrada de la materia prima.
- ✓ Manejo de indicadores reales de rendimiento por proceso de producción.

#### 3.2. Resultados, análisis y discusión

#### 3.2.1. MATERIA PRIMA, INSUMOS, PRODUCTOS Y SUBPRODUCTOS

#### ✓ Análisis del consumo de materias primas e insumos


#### % de consumo de materias primas e insumos mensual (Kg)

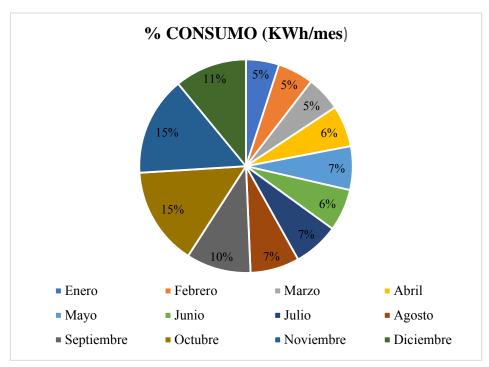


**Gráfico 1-3:** Porcentaje de consumo de materias primas e insumos mensual (Kg) **Realizado por:** Karina Ramírez, 2018

La principal materia prima utilizada en el proceso de elaboración del queso es la leche la cual representa el 99,7% del total de insumos utilizados durante el proceso por lo mismo representa el principal egreso para la microempresa. Los insumos son utilizados en el proceso de acuerdo a la sugerencia del fabricante.

#### ✓ Análisis de la producción




**Gráfico 2-3:** Porcentaje de Producción **Realizado por:** Karina Ramírez, 2018

El principal producto elaborado en la planta es el queso amasado que ocupa un 94% del total de producción seguido de las cuajadas que ocupan el 6% del total de la producción.

Mientras que el principal subproducto que resulta del proceso productivo es el suero de leche el cual de acuerdo al total de leche procesada representa el 81% concordado con lo dicho por el Centro de Investigaciones tecnológicas de la Industria Láctea que indica que el suero representa entre el 80 y 90% del volumen total de la leche que se utiliza en el proceso e indica que este subproducto contiene el 50% de los nutrientes de la leche original.

#### 3.2.2. ENERGÍA

#### ✓ Análisis del consumo de energía



**Gráfico 3-3:** Porcentaje de Consumo (KWh/mes) **Realizado por:** Karina Ramírez, 2018

De acuerdo al análisis de consumo de energía en el 2017 se consumió 2356 KWh totales de los cuales el congelador industrial es el que más consume, se puede evidenciar que a partir del mes de octubre hay un aumento significativo en el consumo debido a que en ese mes se instaló el congelador, los primeros meses del año mantienen un consumo menor de energía.

Tomando en cuenta el consumo promedio mensual de energía y las toneladas de leche procesada en el 2017 se tiene un indicador de consumo de 115.3 KWh/ tonelada de queso, el Centro de Producción Más Limpia de Nicaragua en su Guía de Aplicación de PML en el sector lácteo muestra un indicador de consumo de energía con respecto a la cantidad de queso producido, el valor promedio sugerido es de 211.11 KWh/ tonelada de queso, de acuerdo a este indicador la planta se encuentra dentro del consumo normal.

La planta también utiliza otro tipo de energía que es la generada por la caldera, la misma que funciona con el uso de diésel, la cantidad de diésel utilizado es de 3,5 galones por producción, representando un alto costo para la microempresa.

#### 3.2.3. AGUA:

# ✓ Caracterización de parámetros físico-químicos y microbiológicos de la muestra de agua del proceso productivo:

Los resultados de los análisis que se realizaron del muestreo del agua residual se muestran a continuación:

**Tabla 26-3:** Caracterización física-química y microbiológica de la muestra de agua residual

| PARÁMETRO           | UNIDAD    | RESULTADO     |
|---------------------|-----------|---------------|
| рН                  |           | 6,6           |
| Temperatura         | °C        | 30            |
| Conductividad       | μs/cm     | 2660          |
| Sólidos Totales     | mg/l      | 24688         |
| Sólidos Suspendidos | mg/l      | 4900          |
| Fosfatos            | mg/l      | 4700          |
| Nitratos            | mg/l      | 1140          |
| Nitritos            | mg/l      | 4,3           |
| Cloruros            | mg/l      | 6590          |
| DBO□                | mg/l      | 22600         |
| DQO                 | mg/l      | 27300         |
| Aceites y grasas    | mg/l      | 1454          |
| Coliformes totales  | NMP/100ml | <1 (AUSENCIA) |
| Coliformes fecales  | NMP/100ml | <1 (AUSENCIA) |

Fuente: UNACH. 2018

Realizado por: Karina Ramírez. 2018

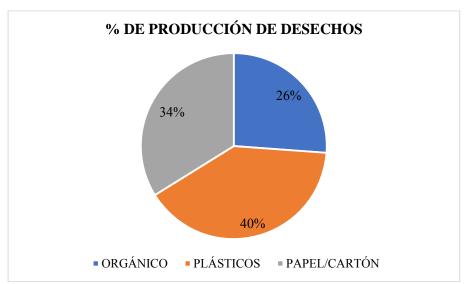
Los resultados obtenidos del análisis presentan altos valores de DBO□ y DQO debido a la presencia de materia orgánica de acuerdo con las características descritas por la EOI (2008). Además, presentan elevados valores de sólidos suspendidos y conductividad ya que se trata de una industria dedicada a la elaboración de quesos.

De acuerdo a la Tabla 11 de límites de descarga al alcantarillado público de la Norma de Calidad Ambiental y Descarga de efluentes del Libro VI, Anexo 1, Recurso Agua los valores de los análisis realizados no cumplen los límites permisibles este hecho se debe principalmente a la presencia de lactosuero en las aguas de descarga ya que este subproducto provoca el aumento en la *DBO*<sub>5</sub> y DQO según lo mencionado por CAR/PL (2002).

Sin embargo, los valores de temperatura, pH, conductividad y sólidos suspendidos están dentro de los rangos establecidos para aguas residuales generadas en industrias lácteas y productoras de quesos por la Escuela de Organización Industrial [EOI] (2008) y los resultados de sólidos totales, nitratos, cloruros, fosfatos, DBO<sub>5</sub>, DQO y aceites y grasas sobrepasan los rangos descritos por el autor.

# \*Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre

✓ Análisis del consumo de agua


**Gráfico 4-3:** Porcentaje de Consumo (m³/mes) **Realizado por:** Karina Ramírez, 2018

En el año 2017 para la producción de quesos se utilizó  $909 \, m^3$  de los cuales la mayor cantidad es ocupada en la limpieza y en el enfriamiento de la leche al momento de pasteurizar, se puede observar que en el mes de diciembre se consumió el mayor porcentaje de agua mientras que en los primeros meses el consumo es menor. Tomando en cuenta el consumo promedio mensual de agua y los Kg de leche procesada en el 2017 se tiene un indicador de consumo de 9,06 litros de agua/Kg de leche que de acuerdo a la UNEP (Programa de las Naciones Unidas para el Ambiente) es un valor elevado ya que el valor recomendado es 0,8-1,0 litros de agua/Kg de leche.

El Centro de Producción Más Limpia de Nicaragua en su Guía de Aplicación de PML en el sector lácteo muestra los indicadores de consumo de agua con respecto a la leche acopiada indica un valor promedio de consumo de 1,3-2,5 litros de agua/Kg de leche de acuerdo a la tabla de valoración de consumo de agua la empresa tiene un alto consumo.

#### 3.2.4. RESIDUOS

#### ✓ Análisis de la producción de residuos



**Gráfico 5-3:** Porcentaje de Producción de Desechos **Realizado por:** Karina Ramírez, 2018

De acuerdo a la caracterización de residuos realizada se tiene una producción per cápita de 1,8 Kg de basura/habitante al día en la planta y se puede evidenciar que del total de basura generado el mayor porcentaje es de plástico que ocupa el 40% del total generado, seguido del papel y cartón con un 34% y con un 26% los desechos orgánicos.

Estos resultados concuerdan con lo señalado en la Guía de Aplicación de PML en el sector lácteo de Nicaragua que indica que el mayor porcentaje de residuos producidos corresponden a los residuos plásticos utilizados para el enfundado de queso.

#### 3.3. Análisis de la Implementación de las Propuestas de PML

Para la implementación de las opciones de Producción Más Limpia generadas se las han jerarquizado en función del tiempo tomando en cuenta el siguiente indicador de tiempo:

**Tabla 27-3:** Jerarquización de Medidas de PML

| JERARQUIZACIÓN | DURACIÓN   |
|----------------|------------|
| Corto Plazo    | 1-11 meses |
| Mediano Plazo  | 1-2 años   |
| Largo Plazo    | ≥3 años    |

OPC-1: Disminuir las pérdidas en el proceso provocado por un manejo inadecuado de materia

Realizado por: Karina Ramírez. 2018

#### ✓ Propuestas de PML: Materia Prima, Insumos Productos y Subproductos

Tabla 28-3: Propuesta 1 de PML aplicable a la microempresa

| prima, insumos, productos y subproductos.                              |                                            |  |
|------------------------------------------------------------------------|--------------------------------------------|--|
| Tipo de Oportunidad: Reducción en origen                               | Re diseño de proceso: Buenas Prácticas     |  |
| Tiempo de Implementación: Corto plazo                                  | Etapa/Operación: Producción del producto   |  |
| Problemática ambiental:                                                |                                            |  |
| Generación de desechos sólidos y líquidos con alta carga contaminante. |                                            |  |
| Oportunidad de Prevención de la Contamina                              | ación:                                     |  |
| Reducción de los desechos sólidos producid                             | os por la pérdida de insumos y de la carga |  |
| contaminante.                                                          |                                            |  |
| Implantación:                                                          | Costo de Implementación: \$ 0,0            |  |
| ✓ Capacitación al personal sobre el                                    | Ahorro generado:                           |  |
| buen manejo.                                                           | ✓ Ingresos económicos por el aumento       |  |
| ✓ Control de insumos y materiales                                      | de producción con la misma cantidad        |  |
| utilizados.                                                            | de insumos.                                |  |
| ✓ Estandarización de procesos y                                        | ✓ Reducción en la generación de            |  |
| consumo de productos.                                                  | residuos sólidos.                          |  |
|                                                                        | ✓ Reducción de la carga contaminante       |  |
|                                                                        | de las aguas residuales por el mal         |  |
|                                                                        | manejo del suero.                          |  |
| Realizado por: Karina Ramírez. 2018                                    | I                                          |  |

Tabla 29-3: Propuesta 2 de PML aplicable a la microempresa

| <b>OPC-2:</b> Estandarizar los parámetros y los tiempos del proceso productivo                          |  |  |  |
|---------------------------------------------------------------------------------------------------------|--|--|--|
| Tipo de Oportunidad:         Reducción en origen         Re diseño de proceso:         Buenas Prácticas |  |  |  |
| Tiempo de Implementación: Corto Plazo Etapa/Operación: Todo el proceso                                  |  |  |  |
| Problemática ambiental:                                                                                 |  |  |  |

Producción de residuos en las etapas de producción de queso.

# Oportunidad de Prevención de la Contaminación:

Reducción de desechos sólidos y consumo de agua y energía.

| Implantación: |                                     | Costo de Implementación: \$ 0,0 |                                      |
|---------------|-------------------------------------|---------------------------------|--------------------------------------|
| ✓             | Capacitar al personal.              | Ahorre                          | o generado:                          |
| ✓             | Instalar hojas de control.          | ✓                               | Aumento de la producción.            |
| ✓             | Seleccionar una persona responsable | ✓                               | Reducción en el uso de materia prima |
|               | del control.                        |                                 | e insumos.                           |
|               |                                     | ✓                               | Eficiencia en los procesos.          |

Realizado por: Karina Ramírez. 2018

# ✓ Propuestas de PML: Energía

Tabla 30-3: Propuesta 3 de PML aplicable a la microempresa

| OPC-3: Remplazar los focos por focos ahorradores (LED)                                        |                                             |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Tipo de Oportunidad: Reducción en origen.                                                     | Re diseño de proceso: Sustitución de        |  |
|                                                                                               | instrumentos                                |  |
| <b>Tiempo de Implementación:</b> Mediano Plazo                                                | Etapa/Operación: Todo el proceso            |  |
| Problemática ambiental:                                                                       |                                             |  |
| Elevado consumo de energía durante por las empresas del sector lácteo.                        |                                             |  |
| Oportunidad de Prevención de la Contaminación:                                                |                                             |  |
| La implementación de focos led permite reducir el consumo de energía en la planta, ya que los |                                             |  |
| focos led son los más eficientes que existen en                                               | el mercado pues consumen menos energía y no |  |
| contienen sustancias peligrosas.                                                              |                                             |  |
| Implantación:                                                                                 | Costo de Implementación:                    |  |
| ✓ Se puede realizar de manera                                                                 | \$ 196,00                                   |  |
| paulatina, es decir, se pueden ir                                                             | Ahorro generado:                            |  |
| sustituyendo los focos que se vayan                                                           | ✓ Existe un ahorro del 20% del consumo      |  |
| dañando.                                                                                      | y gasto de energía aproximadamente          |  |
|                                                                                               | con el cambio de luminarias.                |  |
| Realizado por: Karina Ramírez. 2018                                                           |                                             |  |

Tabla 31-3: Propuesta 4 de PML aplicable a la microempresa

| OPC-4: Aprovechamiento de la luz natural a través de la colocación de un calentador |                                               |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| solar de agua                                                                       |                                               |  |  |  |
| Tipo de Oportunidad: Reducción en origen                                            | Re diseño de proceso: Sustitución de equipos. |  |  |  |
| <b>Tiempo de Implementación:</b> Mediano Plazo                                      | Etapa/Operación: Limpieza de la planta.       |  |  |  |
| D 11 72 11 4 1                                                                      |                                               |  |  |  |

#### Problemática ambiental:

Alto consumo de energía y combustible para calentar el agua utilizado para la limpieza de la planta.

#### Oportunidad de Prevención de la Contaminación:

La implementación de un calentador solar permite utilizar energía renovable que se traduce en un ahorro de energía y combustible que es utilizado actualmente por la caldera para calentar el agua para la limpieza de la planta.

| Implantación: |                                      | Costo | de Implementación: \$ 750          |
|---------------|--------------------------------------|-------|------------------------------------|
| ✓             | Se debe adquirir un calentador solar | Ahorr | o generado:                        |
|               | de acuerdo a la capacidad de agua    | ✓     | Reducción del costo y consumo de   |
|               | utilizada para la limpieza de agua.  |       | agua.                              |
| ✓             | Capacitar al personal sobre su uso.  | ✓     | Reducción del costo por consumo de |
|               |                                      |       | diésel y energía.                  |
|               |                                      | ✓     | Disminución de emisiones de gases. |

Realizado por: Karina Ramírez. 2018

Tabla 32-3: Propuesta 5 de PML aplicable a la microempresa

| <b>OPC-5:</b> Aislar las tuberías de vapor y recuperar los condensados                  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|
| Tipo de Oportunidad: Reducción en origen         Re diseño de proceso: Buenas Prácticas |  |  |  |
| Tiempo de Implementación: Mediano Plazo Etapa/Operación: Pasteurización                 |  |  |  |
| Problemática ambiental:                                                                 |  |  |  |

Pérdidas de calor en la distancia que recorre el vapor desde la caldera hasta la marmita, lo que produce caídas en la presión de la caldera y significa aumento del consumo de combustible y energía.

#### Oportunidad de Prevención de la Contaminación:

Aislar las tuberías que conectan la caldera con la marmita disminuyendo la cantidad de combustible consumido en el proceso de producción.

| Implantación: |                                        | Costo de Implementación: \$ 280    |
|---------------|----------------------------------------|------------------------------------|
| ✓             | Se debe realizar el aislamiento de las | Ahorro generado:                   |
|               | tuberías para evitar pérdidas de calor | ✓ Reducción del gasto y consumo de |
|               | en la distancia que recorre el vapor.  | combustible.                       |
|               |                                        | ✓ Reducción del pago de energía.   |

Tabla 33-3: Propuesta 6 de PML aplicable a la microempresa

| <b>OPC-6:</b> Solicitar un medidor de tipo industrial                                   |                                                |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Tipo de Oportunidad: Reducción en origen                                                | Re diseño de proceso: Buenas Prácticas         |  |  |
| Tiempo de Implementación:                                                               | Etapa/Operación: Etapas del proceso en         |  |  |
| Corto Plazo                                                                             | donde se consuma energía.                      |  |  |
| Problemática ambiental:                                                                 |                                                |  |  |
| Alto consumo de energía durante la producción                                           | n de queso amasado.                            |  |  |
| Oportunidad de Prevención de la Contamin                                                | Oportunidad de Prevención de la Contaminación: |  |  |
| Solicitar a la empresa eléctrica la instalación de un nuevo medidor de tipo industrial. |                                                |  |  |
| Implantación:                                                                           | Costo de Implementación:                       |  |  |
| ✓ Solicitar a la Empresa Eléctrica un                                                   | \$ 0,00                                        |  |  |
| medidor de tipo industrial.                                                             | Ahorro generado:                               |  |  |
| ✓ Con el medidor industrial controla el                                                 | ✓ Reducción en el costo del pago de            |  |  |
| factor de potencia.                                                                     | planilla mensual.                              |  |  |
|                                                                                         | ✓ Cumplimiento de la ley.                      |  |  |

# ✓ Propuestas de PML: Agua

**Tabla 34-3:** Propuesta 7 de PML aplicable a la microempresa

| Tubia 5 1 5. 1 Topaesia 7 de 1 1/12 apricado a la 1                                          |                                               |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| OPC-7: Realizar la limpieza en seco de los re                                                | esiduos sólido                                |  |
| Tipo de Oportunidad: Reducción en origen.                                                    | Re diseño de proceso: Buenas Prácticas        |  |
| Tiempo de Implementación: Corto Plazo                                                        | Etapa/Operación: Limpieza del área.           |  |
| Problemática ambiental:                                                                      |                                               |  |
| Las operaciones de limpieza implican que se consuma gran cantidad de agua y el vertido de    |                                               |  |
| aguas residuales, durante la limpieza se arrastran sólidos los mismos que son eliminados con |                                               |  |
| el efluente final a la alcantarilla lo que da paso                                           | al aumento de la carga contaminante del agua  |  |
| residual.                                                                                    |                                               |  |
| Oportunidad de Prevención de la Contamina                                                    | ación:                                        |  |
| Disminuir el consumo de agua y la cantidad                                                   | de residuos que llegan al efluente durante la |  |
| limpieza de las instalaciones y de los equipos.                                              |                                               |  |
| Implantación:                                                                                | Costo de Implementación:                      |  |
| ✓ Retirar los residuos sólidos en seco                                                       | \$ 250,00                                     |  |
| mediante la utilización de escurridores de                                                   | Ahorro generado:                              |  |
| pisos o escobas.                                                                             | ✓ Disminución en el costo y consumo           |  |
|                                                                                              | de agua.                                      |  |
| 8                                                                                            | 0                                             |  |

| ✓ | Instalar una rejilla en la canaleta del área | ✓ Disminución de la carga  |
|---|----------------------------------------------|----------------------------|
|   | de producción para evitar que los            | contaminante del efluente. |
|   | residuos entren en el sistema de             |                            |
|   | evacuación de aguas residuales.              |                            |
| ✓ | Formación del personal.                      |                            |

Tabla 35-3: Propuesta 8 de PML aplicable a la microempresa

| OPC-8: Optimizar las operaciones que cons                                                       | umen agua                              |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Tipo de Oportunidad: Reducción en origen                                                        | Re diseño de proceso: Buenas Prácticas |  |
| Tiempo de Implementación: Corto Plazo                                                           | Etapa/Operación: Etapas del proceso en |  |
|                                                                                                 | donde se consuma agua.                 |  |
| Problemática ambiental:                                                                         |                                        |  |
| Existe un elevado consumo de agua por las em                                                    | presas del sector lácteo.              |  |
| Oportunidad de Prevención de la Contamin                                                        | ación:                                 |  |
| La optimización de los consumos de agua permite utilizar el agua de una etapa en otro servicio, |                                        |  |
| por ejemplo, el agua del enfriamiento de la lecl                                                | ne puede servir para la limpieza.      |  |
| Implantación:                                                                                   | Costo de Implementación:               |  |
| ✓ Análisis del uso de agua en diferentes                                                        | \$ 0,00                                |  |
| servicios.                                                                                      | Ahorro generado:                       |  |
| ✓ Capacitación al personal.                                                                     | ✓ Reducción del gasto por consumo de   |  |
|                                                                                                 | agua.                                  |  |
|                                                                                                 | ✓ Reducción del uso de agua.           |  |

Tabla 36-3: Propuesta 9 de PML aplicable a la microempresa

| OPC-9: Control y reparación de fugas de agua y mantenimiento de grifos, válvulas y |                                        |  |
|------------------------------------------------------------------------------------|----------------------------------------|--|
| tuberías                                                                           |                                        |  |
| Tipo de Oportunidad: Reducción de origen                                           | Re diseño de proceso: Buenas Prácticas |  |
| Tiempo de Implementación: Corto Plazo                                              | Etapa/Operación: Etapas del proceso en |  |
|                                                                                    | donde se consuma agua.                 |  |
| Problemática ambiental:                                                            |                                        |  |
| Elevado consumo de agua de agua en las etapa                                       | s de producción de queso.              |  |

#### Oportunidad de Prevención de la Contaminación:

El control periódico del consumo de agua permite detectar fugas, grifos abiertos y la diferencia de consumo entre turnos puede permitir ajustar los caudales de consumo a lo estrictamente necesario.

| Implai                                           | ntación:  |            |    |    |          | Costo   | de Implementación:                   |
|--------------------------------------------------|-----------|------------|----|----|----------|---------|--------------------------------------|
| <ul> <li>✓ Capacitación del personal.</li> </ul> |           |            |    |    |          | \$ 0.00 |                                      |
| ✓                                                | Persona   | encarga    | de | la | revisión | Ahorro  | o generado:                          |
|                                                  | periódica | l <b>.</b> |    |    |          | ✓       | Varios autores coinciden en que se   |
|                                                  |           |            |    |    |          |         | consiguen reducciones superiores al  |
|                                                  |           |            |    |    |          |         | 5% del gasto y consumo de agua por   |
|                                                  |           |            |    |    |          |         | el hecho de establecer un sistema de |
|                                                  |           |            |    |    |          |         | control del consumo.                 |

Realizado por: Karina Ramírez. 2018

#### Propuestas de PML: Sustitución Tecnológica

Tabla 37-3: Propuesta 10 de PML aplicable a la microempresa

| <b>OPC-10:</b> Instalación de un sistema de enfriam | iento (Chiller)                              |
|-----------------------------------------------------|----------------------------------------------|
| Tipo de Oportunidad: Reducción en origen            | Re diseño de proceso: Sustitución de equipos |
| Tiempo de Implementación:                           | Etapa/Operación: Pasteurización              |
| Largo Plazo                                         |                                              |

#### Problemática ambiental:

Alto consumo de agua durante la etapa de pasteurización por el consumo para enfriamiento de la leche.

#### Oportunidad de Prevención de la Contaminación:

| Dismin    | nución del consumo de agua de agua en l | la etapa | de enfriamiento de la leche.        |  |  |
|-----------|-----------------------------------------|----------|-------------------------------------|--|--|
| Implai    | ntación:                                | Costo    | Costo de Implementación: \$ 2000,00 |  |  |
| ✓         | Implementar un sistema de               | Ahorr    | o generado:                         |  |  |
|           | enfriamiento para el agua utilizada     | ✓        | Reducción en el costo y consumo de  |  |  |
|           | para el enfriamiento de la leche en la  |          | agua.                               |  |  |
|           | está de pasteurización.                 | ✓        | Reducción del tiempo de producción. |  |  |
| ✓         | Capacitar al personal.                  |          |                                     |  |  |
| Realizado | por: Karina Ramírez. 2018               |          |                                     |  |  |

Tabla 38-3: Propuesta 11 de PML aplicable a la microempresa

| OPC-11: Optimización del uso de agua mediante equipos de bajo volumen |                                              |  |
|-----------------------------------------------------------------------|----------------------------------------------|--|
| Tipo de Oportunidad: Reducción en origen                              | Re diseño de proceso: Sustitución de equipos |  |
| Tiempo de Implementación: Largo Plazo                                 | Etapa/Operación: Todo el proceso.            |  |
| Problemática ambiental:                                               |                                              |  |
| Alto consumo de agua durante el proceso de pr                         | roducción de queso.                          |  |
| Oportunidad de Prevención de la Contaminación:                        |                                              |  |
| Reducción del consumo de agua en la planta.                           |                                              |  |
| Implantación:                                                         | Costo de Implementación: \$ 120,0            |  |
| ✓ Cambiar los grifos de la planta.                                    | Ahorro generado:                             |  |
| ✓ Instalación de pistolas de cierre                                   | ✓ Permiten un ahorro del 40% de agua         |  |
| automático en las mangueras de                                        | que los grifos tradicionales.                |  |
| lavado.                                                               |                                              |  |

Tabla 39-3: Propuesta 12 de PML aplicable a la microempresa

| OPC-12: Implementación de un tanque para almacenar el suero mediante la instalación de |                                               |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------|--|
| tubería que envíe el subproducto de manera directa al tanque desde la marmita.         |                                               |  |
| Tipo de Oportunidad: Reducción en origen                                               | Re diseño de proceso: Sustitución de equipos. |  |
| <b>Tiempo de Implementación:</b> Largo Plazo                                           | Etapa/Operación: Todo el proceso.             |  |
| Problemática ambiental:                                                                |                                               |  |

Alto contenido orgánico en las aguas residuales del proceso de producción por el mal manejo

# Oportunidad de Prevención de la Contaminación:

Disminución de la carga contaminante de las aguas residuales y reducción de la contaminación de los cuerpos recentores

| de los c        | cuerpos receptores.                    |                                       |  |  |
|-----------------|----------------------------------------|---------------------------------------|--|--|
| Implantación: C |                                        | Costo de Implementación: \$ 500,0     |  |  |
| ✓               | Adquirir e instalar un tanque de acero | Ahorro generado:                      |  |  |
|                 | inoxidable con capacidad de 300L       | ✓ Cumplimiento de la legislación.     |  |  |
|                 | para el almacenamiento de suero.       | ✓ Reducción de la carga contaminante. |  |  |
| $\checkmark$    | Capacitación al personal sobre el      | ✓ Disminución de riesgos laborales y  |  |  |
|                 | manejo del suero.                      | del tiempo de producción.             |  |  |
| Realizado 1     | nor: Karina Ramírez 2018               |                                       |  |  |

Realizado por: Karina Ramírez. 2018

de suero.

Tabla 40-3: Propuesta 13 de PML aplicable a la microempresa

| <b>OPC-13:</b> Adquisición de una enfundadora al v                                                         | acío para el producto                             |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Tipo de Oportunidad: Reducción en origen                                                                   | Re diseño de proceso: Sustitución de equipos.     |
| <b>Tiempo de Implementación:</b> Largo Plazo                                                               | <b>Etapa/Operación:</b> Empaquetado del producto. |
| <b>Problemática ambiental:</b> Producción de residuos en las empresas lácteas                              | s.                                                |
| Oportunidad de Prevención de la Contamin<br>Disminución de la producción de residuos plás<br>Implantación: |                                                   |
|                                                                                                            | Costo de Implementación: \$ 5000,00               |

# ✓ Propuestas de PML: Residuos

Tabla 41-3: Propuesta 14 de PML aplicable a la microempresa

| <b>OPC-14:</b> Capacitación al personal sobre el ma | nejo adecuado de residuos sólidos           |  |
|-----------------------------------------------------|---------------------------------------------|--|
| Tipo de Oportunidad: Reducción en origen            | Re diseño de proceso: Buenas Prácticas      |  |
| Tiempo de Implementación:                           | Etapa/Operación: Etapas del proceso en      |  |
| Corto Plazo                                         | donde se produce desechos.                  |  |
| Problemática ambiental:                             |                                             |  |
| Producción de desechos sólidos en las etapas o      | de producción de queso amasado y mal manejo |  |
| de los residuos generados.                          |                                             |  |
| Oportunidad de Prevención de la Contamin            | ación:                                      |  |
| Correcto manejo de los residuos producidos y        | reutilización de los desechos.              |  |
| Implantación:                                       | antación: Costo de Implementación           |  |
| ✓ Capacitar al personal sobre el manejo             | Ahorro generado:                            |  |
| de residuos sólidos.                                |                                             |  |

| ✓ Manejo adecuado de los residuos | ✓ Posibilidad de aprovechamiento de |
|-----------------------------------|-------------------------------------|
| generados.                        | los residuos generando fuentes de   |
|                                   | ingreso para la industria.          |
|                                   | ✓ Reducción de la contaminación y   |
|                                   | ahorro de recursos con alternativas |
|                                   | para sustituir o reutilizar.        |
|                                   | ✓ Disminución de la propagación de  |
|                                   | enfermedades.                       |

| Tabla 42-3: Propuesta 15 de PML aplicable a la microempresa                           |                                            |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| <b>OPC-15:</b> Instalación de tachos recolectores                                     | de basura para cada tipo de residuo con su |  |  |
| respectiva señalética                                                                 |                                            |  |  |
| Tipo de Oportunidad: Reducción en origen                                              | Re diseño de proceso: Buenas Prácticas     |  |  |
| Tiempo de Implementación:                                                             | Etapa/Operación: Etapas del proceso en     |  |  |
| Mediano Plazo                                                                         | donde se produce desechos.                 |  |  |
| Problemática ambiental:                                                               |                                            |  |  |
| Producción de residuos y su mal manejo lo que produce enfermedades y pérdidas para la |                                            |  |  |
| empresa.                                                                              |                                            |  |  |
| Oportunidad de Prevención de la Contaminación:                                        |                                            |  |  |
| Instalar tachos recolectores para un correcto manejo de los residuos.                 |                                            |  |  |
|                                                                                       |                                            |  |  |

#### Implantación:

- ✓ Adquirir tachos recolectores ubicarlos en la planta en puntos estratégicos.
- Capacitar al personal.

# Costo de Implementación: \$ 90

#### Ahorro generado:

- ✓ Posibilidad de aprovechamiento de los residuos generando fuentes de ingreso para la industria.
- ✓ Reducción de la contaminación y ahorro de recursos con alternativas para sustituir o reutilizar.
- ✓ Disminución de la propagación de enfermedades.

# ✓ Propuestas de PML: Otras Opciones

Tabla 43-3: Propuesta 16 de PML aplicable a la microempresa

| <b>OPC-16:</b> Realizar capacitaciones al personal |                                                         |  |  |
|----------------------------------------------------|---------------------------------------------------------|--|--|
| Tipo de Oportunidad: Reducción en origen           | Re diseño de proceso: Buenas Prácticas                  |  |  |
| Tiempo de Implementación: Corto plazo              | Etapa/Operación: Todo el proceso.                       |  |  |
| Problemática ambiental:                            |                                                         |  |  |
| Alto consumo de agua y energía. Generación d       | Alto consumo de agua y energía. Generación de residuos. |  |  |
| Oportunidad de Prevención de la Contamin           | ación                                                   |  |  |
| Buen manejo de los residuos generados en la pl     | anta y optimización de los recursos disponibles.        |  |  |
| Implantación:                                      | Costo de Implementación: \$0,00                         |  |  |
| ✓ Capacitación continua al personal que            | Ahorro generado:                                        |  |  |
| trabaja en la planta.                              | ✓ Optimización de los procesos.                         |  |  |
|                                                    | ✓ Buen manejo de los materiales,                        |  |  |
|                                                    | insumos, recursos y equipos                             |  |  |
|                                                    | disponibles.                                            |  |  |
|                                                    | ✓ Aumento de la producción.                             |  |  |

Realizado por: Karina Ramírez. 2018

Tabla 44-3: Propuesta 17 de PML aplicable a la microempresa

**OPC-17:** Control de la producción utilizando sistemas de indicadores

| Tipo d   | e Oportunidad: Reducción de origen                                                         | Re diseño de proceso: Buenas Prácticas                                         |  |  |
|----------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Tiemp    | o de Implementación: Corto Plazo                                                           | Etapa/Operación: Todo el proceso                                               |  |  |
| Proble   | mática ambiental:                                                                          |                                                                                |  |  |
| Alto co  | onsumo de energía y agua en las plantas                                                    | de producción de lácteos.                                                      |  |  |
| Oporti   | Oportunidad de Prevención de la Contaminación                                              |                                                                                |  |  |
| Reduce   | Reducción de la generación de desechos y buen manejo de los mismos. Control del uso de los |                                                                                |  |  |
| recurso  | s disponibles.                                                                             |                                                                                |  |  |
| Implar   | ntación:                                                                                   | Costo do Implementación, © 5.0                                                 |  |  |
| Pitti    | itacion.                                                                                   | Costo de Implementación: \$ 5,0                                                |  |  |
| _        | Diseñar hojas de registro para el                                                          | Ahorro generado:                                                               |  |  |
| _        |                                                                                            | _                                                                              |  |  |
| _        | Diseñar hojas de registro para el                                                          | Ahorro generado:                                                               |  |  |
| _        | Diseñar hojas de registro para el control de las entradas y salidas del                    | Ahorro generado:  ✓ Optimización de los recursos.                              |  |  |
| <b>✓</b> | Diseñar hojas de registro para el control de las entradas y salidas del proceso.           | Ahorro generado:  ✓ Optimización de los recursos.  ✓ Aumento de la producción. |  |  |

#### **CONCLUSIONES**

- Se realizó el diagnóstico de la situación actual de la microempresa logrando identificar los principales aspectos e impactos ambientales que se producen durante el proceso de elaboración de queso amasado.
- Se realizaron los diferentes monitoreos en cada fase del proceso de producción para la obtención de datos cualitativos y cuantitativos, con los cuales se realizó: balances de materiales, identificación de las Fortalezas, Oportunidades, Debilidades y Amenazas de las fases productivas de la microempresa y la propuesta de estrategias incluyentes en la Producción Más Limpia para los aspectos identificados dentro del análisis FODA.
- La determinación real del consumo de agua y energía permitió conocer el consumo promedio
  mensual de estos recursos y compararlos con los indicadores establecidos para la industria
  láctea, reconociendo que el consumo de agua fue de 9,06 litros de agua/Kg de leche,
  valor elevado de acuerdo a los indicadores establecidos. Se conoció el consumo de energía
  de 115.3 KWh/ tonelada de queso, que de acuerdo a los indicadores establecido se encuentra
  dentro del consumo normal.
- Mediante el análisis de la matriz FODA y la determinación real de la situación actual de la
  microempresa se identificaron 17 opciones de Producción Más Limpia aplicables a la
  microempresa que generarán grandes beneficios ambientales y económicos ya que son más
  rentable desde el punto de vista de la disminución de costos, insumos y recursos de la
  microempresa.

#### RECOMENDACIONES

- El proceso productivo de la microempresa representa un mundo de oportunidades de implementación de Producción Más Limpia, la mayor cantidad de oportunidades tiene que ver con cambios de actitud y buenos hábitos de los trabajadores, por lo que se recomienda empezar por la capacitación y motivación al personal en busca de beneficios ambientales y económicos para la empresa.
- Se recomienda que la implementación del Modelo de Producción Más Limpia empiece por las oportunidades identificadas como de Corto Plazo ya que no se requiere de gran inversión monetaria pero su aplicación brindará beneficios significativos tanto para el ambiente como para la microempresa.
- La microempresa y el ambiente se beneficiarán con la implementación del Modelo de Producción Más Limpia por lo que se recomienda se realice la implementación de cada oportunidad identificada para la optimización de recursos y disminución de contaminantes, además, la aplicación de PML sugiere un aumento en la producción para cumplir este aumento se debe primero cumplir con la implementación de las demás oportunidades identificadas para obtener resultados favorables.

#### **BIBLIOGRAFÍA:**

**Altham, W.** "Benchmarking to trigger cleaner production in small businesses: drycleaning case study" 2007. *Journal of Cleaner Production* [En línea], 2007, (Australia) 15(8-9), pp. 798-813 [Consulta: 16 de Mayo de 2018.] Disponible en: https://www.sciencedirect.com/science/article/pii/S0959652606002368?via%3Dihub

Carrera, Julio. Análisis y mejoramiento de los procesos productivos de la empresa de Lácteos llano verde (LLANOLAC S.A.) en la elaboración de yogurt natural bríos ubicada en el cantón rumiñahui [En línea] (Tesis) (Maestría) Pontificia Universidad Católica del Ecuador, Quito, Ecuador. 2015. [Consulta: 16 de Mayo de 2018.] Disponible en: http://repositorio.puce.edu.ec/bitstream/handle/22000/10176/TESIS%20FINAL.pdf?sequence= 1&isAllowed=y

Centro de Actividad Regional para la Producción Limpia (CAR/PL), Prevención de la contaminación en la Industria Láctea. [En línea]. Barcelona, 2002. [Consulta: 14 de Mayo de 2018.] Disponible en: http://infolactea.com/biblioteca/prevencion-de-la-contaminacion-en-la-industria-lactea/

Centro de Eficiencia Tecnológica de Lima (CET). Guía de Producción Más Limpia. [En línea]. Lima, Perú., 2005. [Consulta: 14 de Mayo de 2018.] Disponible en: http://www.minagri.gob.pe/portal/download/pdf/direccionesyoficinas/dgca/normatividad-lacteos/Proteccion\_del\_Medio\_Ambiente/Guia\_para\_implementacion\_de\_la\_Produccion\_Mas\_Limpia\_INDECOPI.pdf

Centro Ecuatoriano de Eficiencia de Recursos (CEER). Sobre CEER Y Producción Más Limpia [En línea] 2016. [Consulta: 17 de Mayo de 2018.] Disponible en: http://ceer.ec/index.php/antecedentes/

Centro de Producción más Limpia de Nicaragua. *Guía de Aplicación de Producción más Limpia en el Sector Lácteo*. [En línea]. Nicaragua, 2008. [Consulta: 22 de Mayo de 2018.] Disponible en: https://www.pml.org.ni/index.php/informese/publicaciones/file/203-gpmssl-ga

Centro de Promoción de Tecnologías Sostenibles de Bolivia. Guía Técnica General de Producción Más Limpia. [En línea]. La Paz, Bolivia, 2005. [Consulta: 24 de Mayo de 2018.]

Disponible en: http://latinamericacaribbean.recpnet.org/uploads/resource/4b752b07eb3d0652f72e024d1ee55b3 8.pdf

Centro Nacional de Producción más Limpia de Honduras (CNP+LH). Guía de Producción Más Limpia para el cultivo y procesamiento de Tilapia. . [En línea]. Honduras, 2009. [Consulta: 24 de Mayo de 2018.] Disponible en: http://cnpml-honduras.org/wp-content/uploads/docu\_tecnicos/P\_mas\_L/Guia\_P\_mas\_L\_para\_el\_cultivo\_de\_Tilapia.pdf

**Domínguez, Luis.** Implementación de un Sistema de Producción Más Limpia en la Universidad Nacional de Chimborazo, campus Máster Edison Riera. [En línea] (Tesis) (Pregrado) Universidad Nacional de Chimborazo, Riobamba, Ecuador. 2016. [Consulta: 17 de Mayo de 2018.] Disponible en: http://dspace.unach.edu.ec/bitstream/51000/3064/1/UNACH-ING-AMB-2016-0013.pdf

Escaño, L. Guía Práctica y Estudios de Caso, Programa Buenos Aires Produce Más Limpio. [En línea]. Buenos Aires, 2010. [Consulta: 26 de Mayo de 2018.] Disponible en: https://www.buenosaires.gob.ar/areas/med\_ambiente/pol\_ambiental/archivos/1.ProduccionMas Limpia\_IndiceyPrologo.pdf

Escuela Organización Industrial (EOI). Los vertidos del sector lácteo. [En línea] 2008. [Consulta: 17 de Mayo de 2018.] Disponible en: http://api.eoi.es/api\_v1\_dev.php/fedora/asset/eoi:48159/componente48157.pdf.

**Espigares, M y Pérez, J.** *Aguas residuales composición.* [En línea] s,f. [Consulta: 22 de Mayo de 2018.] Disponible en: http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas\_Residuales\_composicion.pdf.

**González, M.** "ASPECTOS MEDIO AMBIENTALES ASOCIADOS A LOS PROCESOS DE LA INDUSTRIA LÁCTEA". *Revista Electrónica Ganadera Mundo Pecuario* Mundo Pecuario [En línea], 2012, Vol. VIII, pp. 16-32. Consulta: 26 de Mayo de 2018.] Disponible en:

http://www.saber.ula.ve/bitstream/123456789/34620/1/articulo2.pdf

Guerra, Karla. "Diseño de un Sistema de Gestión Ambiental para la Empresa Arboriente s.a. - Puyo". . [En línea] (Tesis) (Pregrado) Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2015. [Consulta: 17 de Mayo de 2018.] Disponible en: http://dspace.espoch.edu.ec/bitstream/123456789/4076/1/236T0131%20UDCTFCl.pdf

Intriago, Melanie. Implementación de un Programa De Producción Más Limpia (PML) en la Empresa Metalmecánica Esacero S.A. . [En línea] (Tesis) (Pregrado) Universidad Internacional SEK, Quito, Ecuador, 2011. [Consulta: 17 de Mayo de 2018.] Disponible en: https://docplayer.es/8007128-Universidad-internacional-sek-facultad-de-ciencias-ambientales.html

**Lanuza, D.** Diagnóstico de Producción Más Limpia de la empresa Láctea Renacer, Palacagüina, departamento de Madriz. . [En línea] (Tesis) (Pregrado) Universidad Nacional de Ingeniería, Estelí, Nicaragua. 2012 [Consulta: 17 de Mayo de 2018.] Disponible en: http://ribuni.uni.edu.ni/1448/1/39600.pdf

Medina, Armando; Medellín, Pedro. "La experiencia de adopción de la producción más limpia en el sector de la fundición de México". INNOVAR [En línea], 2006, (México) Vol. (16), pp. 173-186. [Consulta: 29 de Mayo de 2018.] Disponible en: http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0121-50512006000200010

Ministerio de Industrias y Productividad. Centro de Eficiencia de Recursos Y Producción Más Limpia En Ecuador. [En línea] 2016. [Consulta: 17 de Mayo de 2018.] Disponible en: http://www.industrias.gob.ec/centro-de-eficiencia-de-recursos-y-produccion-mas-limpia/

Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia. *Guía Ambiental de la Industria Láctea*. [En línea] Medellín, Colombia. 2007. [Consulta: 14 de Mayo de 2018.] Disponible en: file:///C:/Users/User/Downloads/AdjuntoIZ-ZcopiaZ7.pdf

**Orozco, M.** Un tercio de la producción láctea se dedica al queso. *REVISTA LÍDERES*. [En línea] 16 de febrero de 2015. [Consulta: 23 de Mayo de 2018.] Disponible en: http://www.revistalideres.ec/lideres/ecuador-produccion-lactea-queso.html

**Palomino, Paula.** Implementacion de un Modelo de Producción Más Limpia (PML) en dos fincas piloto del Valle de Aburrá del Municipio de Bello – Antioquia. [En línea] (Tesis) (Posgrado) Universidad CES. Medellín, 2012. [Consulta: 13 de Mayo de 2018.] Disponible en: http://bdigital.ces.edu.co:8080/jspui/bitstream/10946/1106/2/Implementaci%C3%B3n\_modelo\_produccion.pdf

**Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).** *Producción Más Limpia y Desarrollo Sostenible*. [En línea]. Diciembre de 2003. [Consulta: 26 de Junio de 2018.] Disponible en: https://www.unenvironment.org/es/node/1379

Quintero, O., & Salichs, A. Herramientas para la aplicación de Producción Más Limpia. BID. [En línea], Argentina, 2007. Informe para el Programa de Gestión Ambiental para una Producción Más Limpia en la Región Centro de Argentina. [Consulta: 13 de Mayo de 2018.] Disponible en: file:///C:/Users/User/Downloads/Gesti%C3%B3n-ambiental-para-una-producci%C3%B3n-m%C3%A1s-limpia-en-la-regi%C3%B3n-centro-de-Argentina-Herramientas-para-la-aplicaci%C3%B3n-de-producci%C3%B3n-m%C3%A1s-limpia-Alternativas-de-mejora-en-actividades-de-servicios-Manual-para-consultores.pdf

**Restrepo, Mauricio.** "Producción Más Limpia en la Industria Alimentaria". *ResearchGate*. [En línea], 2006, Vol. I, pp. 88-101. [Consulta: 28 de Mayo de 2018.] Disponible en: http://81.47.175.201/segarra2020/documents/industria/mas\_limpia.pdf

Sainoz, M. Buenas Prácticas de Manufactura para la Producción Más Limpia en una Industria de Lácteos. [En línea] (Tesis) (Maestría) Instituto Politécnico Nacional, Durango, México. 2010.

[Consulta: 13 de Junio de 2018.] Disponible en: https://www.repositoriodigital.ipn.mx/bitstream/123456789/13522/1/Tesis%20Mara%20Sainoz. pdf

**Schmidt, E.** Instituto Nacional de Tecnología Industrial (INTI). [En línea]. 2004. [Consulta: 05 de Junio de 2018.] Disponible en: https://www.inti.gob.ar/lacteos/pdf/aspectos.pdf.

**Uguña, M.** Estudio del comporamiento de las variables de Producción Más Limpia en las haciendas lecheras modelos de las parroquias Tarqui y Victoria del Portete del Cantón Cuenca Provincia del Azuay. [En línea] (Tesis) (Maestría) Universidad de Cuenca, Cuenca, Ecuador. 2010. [Consulta: 18 de Junio de 2018.] Disponible en: http://dspace.ucuenca.edu.ec/bitstream/123456789/2596/1/tm4368.pdf

Vargas, J. Diseño de un Programa de Produccion Más Limpia para su implementación en la Industria Cervecera Bavaria S.A. [En línea] (Tesis) (Maestría) Universidad de La Salle, Bogota, Colombia. 2006. [Consulta: 10 de Junio de 2018.] Disponible en: http://repository.lasalle.edu.co/bitstream/handle/10185/14811/00798305.pdf;jsessionid=ACE06 B4EFB59DCF3E5ABF9DE40E1C52A?sequence=1

Varela, I. "Definición de Producción Más Limpia". Tecnología en Marcha. [En línea]. 2003, Vol.
(16). pp. 3-12. [Consulta: 03 de Junio de 2018.] Disponible en: file:///C:/Users/User/Downloads/Dialnet-DefinicionDeProduccionMasLimpia-4835815.pdf

# ANEXO A. Recopilación Fotográfica













Fotografías 1A. Equipos utilizados en el proceso de producción de queso



Fotografía 2A. Muestreo del Agua Residual





Fotografía 3A. Medición de Caudales (Muestreo de agua)







Fotografía 4 A. Caracterización de residuos



#### LABORATORIO DE SERVICIOS AMBIENTALES



Laboratorio de ensayo acreditado por el SAE con acreditación No. OAE LE C 12-006

Nº SE: 089 - 18

#### INFORME DE ANALISIS

NOMBRE:

Karina Ramirez

INFORME Nº: 089 - 18

EMPRESA: Proyecto de Tesis ESPOCH Nº SE: 089 - 18

DIRECCIÓN: Av. Lizarzaburu TELÉFONO: 0987780752

FECHA DE RECEPCIÓN: 09 - 08 - 18

FECHA DE INFORME: 16-08-18

NÚMERO DE MUESTRAS: 1, Agua residual industria láctea

TIPO DE MUESTRA:

IDENTIFICACIÓN: MA - 178 -18 Agua

El laboratorio se responsabiliza solo del análisis, no de la obtención de las muestras.

RESULTADO DE ANÁLISIS

MA-178-16

| PARÁMETROS               | UNIDADES   | MÉTODO/PROCEDIMIENTO                        | RESULTADO      | U(K=2)   | FECHA DE<br>AMÁLISIS |
|--------------------------|------------|---------------------------------------------|----------------|----------|----------------------|
| * Aceitos y grasas       | mgt        | EPA 418.1                                   | 1454           | N/A      | 09-08-18             |
| Conductividad            | uSion      | PE-LSA-02                                   | 2660           | 4/- 8 %  | 09-08-18             |
| Sólidos Totales          | mg/t       | PE-LSA-04                                   | 24688          | +/- 5 %  | 09-08-18             |
| ' Sdildos<br>Suspendidos | mg/l       | STANDARD METHODS<br>2540 D                  | 4900           | NIA.     | 09 - 08 - 18         |
| * Foefsios               | mg/l       | STANDARD METHODS<br>4500 - P - E            | 4700           | N/A.     | 09-08-18             |
| * Nitratos               | mg#        | STANDARD METHODS<br>4500 NO E mod.          | 1140           | N/A      | 09-08-18             |
| * Nitritos               | mg/l       | STANDARD METHODS<br>4500-NO <sub>2</sub> -B | 4,3            | N/A.     | 09-08-16             |
| * Cloruros               | ngfi       | STANDARD METHODS<br>3500 - CI E mod         | 6590           | N/A      | 09-08-18             |
| *0805                    | mg 028     | STANDARD METHODS<br>5210 - B                | 22900          | N/A      | 09-08-18             |
| DQO                      | mgfl       | STANDARD METHODS<br>5220 - D mod            | 27300          | +/- 10 % | 09-06-18             |
| * Coldomes<br>Totales    | UFC/100 ml | STANDARD METHODS<br>9221 C                  | <1 (Ausencia)  | N/A      | 09-08-18             |
| * Colifornes<br>Fecales  | UFC/100 ml | STANDARD METHODS<br>9221 C                  | < 1 (Ausencia) | NA       | 09-08-18             |

MÉTODOS UTILIZADOS: Métodos Normalizados para el Antilisis de Aguas Potables y Residualez APIA, AWWA, WPCP, STANDAPO METHODS 21º EDICIÓN y militados HACH adaptados del STANDARD METHODS 22º EDICIÓN,

#### RESPONSABLES DEL ANÁLISIS:

Dr. Juan Carlos Lara R. Denito Mendaza T., I'h.D.

TECNICO L.S.A.

Les residados de esta informe correspondes informente a lejó muertra(r) antificada (r).

- Los espayos suscedos cera (°) no se estruentas destro del alcance de arrectizción del SAII.

de proble la reproducción parcial de cata informe da la actorización del laboratorio.

FMC2101-01

#### ANEXO C. Modelo de encuesta



# ESCUELA SUPERIOR POLITECNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS QUÍMICAS

| ESCUELA SUPERIOR POLITECNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS QUÍMICAS INGENIERÍA EN BIOTECNOLOGÍA AMBIENTAL                                                                                                                                                                 |                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ENCUESTA DE IDENTIFICACIÓN DE IMPACTOS  ORIENTACIONES: El presente instrumento tiene como finalidad conocer los posibles impactos ambientales producidos por la microempresa "PRODUCTOS LACTEOS DEL NORTE" en sus alrededores. Por favor marcar con una X en el ítem que usted considere adecuado. | Si                                                                                                       |
| Encuesta No.                                                                                                                                                                                                                                                                                       | <ol> <li>¿Fiensa usted que la microempresa en sus alrededores emana olores<br/>desagradables?</li> </ol> |
| DATOS INFORMATIVOS:  1. Género: Masculino Femenino                                                                                                                                                                                                                                                 | Si                                                                                                       |
| 2. Edad: zños remembo remembo zños                                                                                                                                                                                                                                                                 | 7. ¿Ha observado que los alrededores de la planta están libres de plagas?                                |
|                                                                                                                                                                                                                                                                                                    | Si No N                                                                                                  |
| CUESTIONARIO                                                                                                                                                                                                                                                                                       | 8. ¿Ha observado que de la microempresa existen derrames de agua?                                        |
| 1. ¿Conoce usted la microempresa "PRODUCTOS LÁCTEOS DEL NORTE?                                                                                                                                                                                                                                     |                                                                                                          |
| Si No N                                                                                                                                                                                                                                                                                            | Si No No                                                                                                 |
| <ol><li>¿Considera usted que la microempresa se encuentra bien ubicada en este<br/>sector?</li></ol>                                                                                                                                                                                               |                                                                                                          |
| Si No N                                                                                                                                                                                                                                                                                            |                                                                                                          |
| ¿Porqué?                                                                                                                                                                                                                                                                                           |                                                                                                          |
| 3. ¿Ha identificado alguna molestia ocasionada por la microempresa?                                                                                                                                                                                                                                |                                                                                                          |
| Si                                                                                                                                                                                                                                                                                                 |                                                                                                          |
| 4. En caso de ser afirmativa su respuesta ¿Qué tipo de contaminación considera que genera?                                                                                                                                                                                                         |                                                                                                          |
| Contaminación del agua                                                                                                                                                                                                                                                                             |                                                                                                          |

#### ANEXO D. Modelo de Entrevista



#### ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS QUÍMICAS INGENIERÍA EN BIOTECNOLOGÍA AMBIENTAL

#### ENTREVISTA ESTRUCTURADA DE IDENTIFICACIÓN DE IMPACTOS

ORIENTACIONES: El presente instrumento tiene como finalidad conocer los posibles impactos ambientales producidos por la microempresa "PRODUCTOS LÁCTEOS DEL NORTE" en sus instalaciones y alrededores. Por favor marcar con una X en el item que usted considere adecuado.

Estimado/a empresario/a: los siguientes cuesticoarios han sido preparados especialmente para usted. Lo que a continuación va a realizar es una «Autoevaluación rápida de las necesidades, capacidad técnica y competitividado de su empresa.

Lea con cuidado y despacio cada pregunta. Lea toda la pregunta antes de contestar.

| 2.<br>3. | Edad:<br>Cargo que de                                          | метрейя:      |        |  |  |
|----------|----------------------------------------------------------------|---------------|--------|--|--|
| 5.       | Lugar de rezidencia:<br>Tiempo que crabaja eu la microempresa: |               |        |  |  |
| DESCF    | RIPCIÓN GEN                                                    | IERAL DE LA E | MPRESA |  |  |
| 1.1 No   | mbre de la em                                                  | '             |        |  |  |
|          |                                                                |               |        |  |  |
| 1.2 Dire | ección:                                                        |               |        |  |  |
|          | ección:<br>s de acceso (r                                      |               |        |  |  |
| 1.3 Via  | s de acceso (r                                                 |               |        |  |  |

| 1.7 Número total de «<br>1.8 Titulos de propie | empleados: Mujeres:            | Hombres:                         |
|------------------------------------------------|--------------------------------|----------------------------------|
| Propia                                         |                                |                                  |
| :: Alquilada<br>:: Cedida o prestada           |                                |                                  |
| : Otros                                        |                                |                                  |
| 1.9 El área ocupada                            | por la empresa es de:          |                                  |
| m                                              | 1                              |                                  |
|                                                |                                |                                  |
| Instalaciones:                                 |                                |                                  |
| l. La ubicación de la                          | empresa se decidió en funci    | ion de                           |
| a. La propia residencia                        | L.                             |                                  |
| b. Criterios como oero                         | anía con clientes y proveedo   | nes.                             |
| e. Disposiciones muni                          | cipales.                       |                                  |
| 2. En cuanto a las ins                         | talaciones                     |                                  |
| a. La planta es făcil de                       | limpiar.                       |                                  |
| b. La planta funciona e<br>menores.            | n parte al aire libre por lo q | ue los problemas de limpieza son |
| c. La planta es dificil o                      | le limpiar.                    |                                  |
|                                                |                                |                                  |
| Equipos y procesos                             |                                |                                  |
| 3. ¿Dispone del equip                          | o adecuado para realizar el    | trabajo?                         |
| a. El equipo es de caps                        | ocidad reducida para el tama   | ño del mercado.                  |
| b. Todo se hace manu                           | almente.                       |                                  |
| e. El equipo es suficie                        | nte para atender la demanda    | del mercado.                     |

Respecto al servicio de los equipos
 Es fácil encontrar apoyo técnico en la zona.