

# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

DISEÑO E IMPLEMENTACIÓN DE UNA RED DE ACCESO CON FIBRA ÓPTICA UTILIZANDO TECNOLOGÍA VDSL/FTTX PARA MEJORAR LOS SERVICIOS DE TELECOMUNICACIONES, DE LA CORPORACIÓN NACIONAL DE TELECOMUNICACIONES EMPRESA PÚBLICA EN GUANO.

## ALBA VERÓNICA RAMOS FLORES.

Trabajo de Titulación modalidad: Proyectos de Investigación y Desarrollo, presentado ante el Instituto de Posgrado y Educación Continua de la ESPOCH, como requisito parcial para la obtención del grado de:

# MAGÍSTER EN SISTEMAS DE TELECOMUNICACIONES

Riobamba – Ecuador

Diciembre 2019

## ©2019, Ing. Alba Verónica Ramos Flores.

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

## ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

## CERTIFICACIÓN:

# EL TRIBUNAL DE TRABAJO DE TITULACIÓN CERTIFICA QUE:

El Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo titulado: "DISEÑO E IMPLEMENTACIÓN DE UNA RED DE ACCESO CON FIBRA ÓPTICA UTILIZANDO TECNOLOGÍA VDSL/FTTX PARA MEJORAR LOS SERVICIOS DE TELECOMUNICACIONES, DE LA CORPORACIÓN NACIONAL DE TELECOMUNICACIONES EMPRESA PÚBLICA EN GUANO", de responsabilidad de la Ing. Alba Verónica Ramos Flores, ha sido prolijamente revisado y se autoriza su presentación.

Dr. Juan Mario Vargas Guambo; Msc

PRESIDENTE

Ing. Diego Fernando Veloz Chérrez; Msc

DIRECTOR

Ing. Franklin Geovanni Moreno Montenegro; Msc

MIEMBRO DEL TRIBUNAL

Ing. Pablo Eduardo Lozada Yánez: Msc

MIEMBRO DEL TRIBUNAL

Specifolism )

Riobamba, Diciembre 2019

## **DERECHOS INTELECTUALES**

Yo, Alba Verónica Ramos Flores, declaro que soy responsable de las ideas, doctrinas y resultados expuestos en el **Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo**, y que el patrimonio intelectual generado por la misma pertenece exclusivamente a la Escuela Superior Politécnica de Chimborazo.

\_\_\_\_\_

ALBA VERÓNICA RAMOS FLORES

No. Cédula: 060427185-8

DECLARACIÓN DE AUTENTICIDAD

Yo, Alba Verónica Ramos Flores, declaro que el presente proyecto de investigación, es de mi

autoría y que los resultados del mismo son auténticos y originales. Los textos constantes en el

documento que provienen de otras fuentes están debidamente citados y referenciados.

Como autor, asumo la responsabilidad legal y académica de los contenidos de este Trabajo

de Titulación de Maestría.

ALBA VERÓNICA RAMOS FLORES

No. Cédula: 060427185-8

## **DEDICATORIA**

A Dios por darme la oportunidad de seguir aprendiendo y superándome cada día. Con mucho cariño a mi Familia por creer en mí, apoyarme y alentarme en todo momento, especialmente a mi Abuelita querida que es mi motivación para superarme cada día, a mi Tía Cecy, mis primos y a mi hermana Michu por ser mi apoyo en todo momento de mi vida y por quererme mucho.

También quiero dedicar este trabajo a una persona muy especial que al pasar de los años ha sido cómplice de todos mis sueños, proyectos y locuras, quien con sus consejos me ayudado a tomar decisiones acertadas, gracias Amor por aguantarme y amarme.

Verito.

## **AGRADECIMIENTO**

Expreso mi sincero agradecimiento a todas las personas que han contribuido en mi formación académica, por la oportunidad brindada para el mejoramiento y capacitación profesional. A los Ing. Diego Veloz, Ing. Franklin Moreno e Ing. Pablo Lozada por su paciencia, quienes han sabido transmitir sus ideas y conocimiento durante este tiempo. A mis padres y familia gracias por su apoyo. A mis amigas Taty y Mónica por apoyarme en este periodo de aprendizaje.

Verónica Ramos.

## TABLA DE CONTENIDO

| RESUN  | MEN                                                       | 13 |
|--------|-----------------------------------------------------------|----|
| SUMM   | IARY                                                      | 14 |
| CAPÍT  | ULO I                                                     | 15 |
| 1.     | Marco Referencial                                         | 15 |
| 1.1.   | Intoducción                                               | 15 |
| 1.2.   | Planteamiento del Problema                                | 15 |
| 1.2.1. | Situación problemática                                    | 15 |
| 1.2.2. | Formulación del problema                                  | 17 |
| 1.2.3. | Preguntas directrices o específicas de la investigación   | 17 |
| 1.3.   | Justificación de la Investigación                         | 18 |
| 1.4.   | Objetivo de la Investigación                              | 20 |
| 1.5.   | Hipótesis                                                 | 20 |
| 1.5.1. | Hipótesis general                                         | 20 |
| 1.6.   | Indentificación de Variables                              | 21 |
| 1.6.1. | Variable independiente                                    | 21 |
| 1.6.2. | Variable dependiente                                      | 21 |
| CAPÍT  | ULO II                                                    | 22 |
| 2.     | Marco Teórico                                             | 22 |
| 2.1.   | Antecedentes del Problema                                 | 22 |
| 2.2.   | Bases Teóricas                                            |    |
| 2.2.1. | Sistemas de Telecomunicaciones                            | 23 |
| 2.2.2. | Elementos de un Sistema de Comunicación                   | 23 |
| 2.2.3. | VDSL Very High Speed Digital Subscriber Line              | 25 |
| 2.2.4. | Red Telefónica Básica (RTB)                               |    |
| 2.2.5. | Fibra Óptica                                              | 32 |
| 2.2.6. | Redes FTTx                                                | 37 |
| 2.2.7. | Armarios Inteligentes                                     | 40 |
| 2.2.8. | Mediciones Eléctricas                                     | 41 |
| 2.2.9. | Redes de Fibra Óptica                                     | 44 |
| CAPÍT  | ULO III                                                   | 46 |
| 3.     | Metodología de la Investigación                           | 46 |
| 3.1.   | Recopilación y Análisis de datos para el diseño de la Red | 46 |
| 3.1.1. | Enfoque de la investigación                               | 46 |
| 3.1.2. | Métodos De Investigación                                  | 46 |
| 3.1.3. | Alcance de la investigación                               | 47 |
| 3.1.4. | Población de estudio                                      |    |
| 3.1.5. | Unidad de análisis                                        | 47 |
| 3.1.6. | Selección de la muestra                                   | 48 |
| 3.1.7. | Tamaño de la muestra                                      | 48 |
| 3.1.8. | Técnicas de recolección de datos primarios y secundarios  |    |
| 3.1.9. | Instrumentos para la recolección de datos                 |    |

| 3.1.10.       | Instrumentos para procesar datos recopilados                            | 49     |
|---------------|-------------------------------------------------------------------------|--------|
| 3.2.          | Recopilación y Análisis de la información                               | 49     |
| <i>3.2.3.</i> | Análisis de los datos                                                   | 79     |
| 3.2.4.        | Selección del distrito Crítico                                          | 80     |
| 3.3.          | Diseño de la Red de Acceso de Fibra Óptica utilizando Tecnologia VDSL/F | TTX 81 |
| 3.3.1.        | Análisis de la Red de Cobre Existente                                   | 82     |
| 3.3.2.        | Diseño de la red de Accesos                                             | 84     |
| 3.4.          | Simulación de la Red de Fibra Óptica                                    | 88     |
| 3.4.1.        | Esquema de la Red                                                       | 88     |
| 3.5.          | Implementación de la Red de Accesos                                     | 96     |
| CAPÍTU        | ULO IV                                                                  | 97     |
| 4.            | Resultados y Discusión                                                  | 97     |
| 4.1.          | Pruebas y Analisis de Resultados                                        | 97     |
| 4.2.          | Mediciones Eléctricas                                                   | 97     |
| 4.3.          | Analisis de Resultados                                                  | 104    |
| 4.4.          | Discusión                                                               | 105    |
| 4.5.          | Comprobación de la Hipótesis                                            | 106    |
| 4.5.1.        | Hipótesis General                                                       | 106    |
| 4.5.2.        | Demostración de la hipótesis                                            | 107    |
| CONCL         | LUSIONES                                                                | 109    |
| RECOM         | MENDACIONES                                                             | 110    |
| BIBLIC        | OGRAFÍA                                                                 |        |
|               |                                                                         |        |

**ANEXOS** 

## ÍNDICE DE TABLAS

| Tabla 1-1  | Usuarios telefonía fija e internet Central Telefónica Guano                    | 19  |
|------------|--------------------------------------------------------------------------------|-----|
| Tabla 2-1  | Velocidades típicas de VDSL en función de la longitud de la línea              | 26  |
| Tabla 2-2  | Velocidades VDSL en configuración asimétrica en sentido                        | 28  |
| Tabla 2-3  | Velocidades VDSL en configuración                                              | 29  |
| Tabla 2-4  | Velocidades típicas de VDSL en configuración                                   | 29  |
| Tabla 2-5  | Aplicaciones VDSL                                                              | 30  |
| Tabla 2-6  | Valores Resistencia de Bucle                                                   | 41  |
| Tabla 2-7  | Parámetros de Prueba                                                           | 44  |
| Tabla 3-1  | Cálculo de la Muestra                                                          | 48  |
| Tabla 3-2  | Mediciones eléctricas Distrito 1                                               | 51  |
| Tabla 3-3  | Mediciones eléctricas Distrito 2                                               | 54  |
| Tabla 3-4  | Mediciones eléctricas Distrito 3                                               | 57  |
| Tabla 3-5  | Mediciones eléctricas Distrito 4                                               | 60  |
| Tabla 3-6  | Mediciones eléctricas Distrito 5                                               | 63  |
| Tabla 3-7  | Mediciones eléctricas Distrito 6                                               | 66  |
| Tabla 3-8  | Valoración Atenuación                                                          | 69  |
| Tabla 3-9  | Valoración Resistencia de Bucle                                                | 69  |
| Tabla 3-10 | Valoración SNR                                                                 | 69  |
| Tabla 3-11 | Valoración de los parámetros eléctricos Resistencia de Bucle, Atenuación y SNR | 70  |
| Tabla 3-15 | Mediciones de Resistencia                                                      | 81  |
| Tabla 3-16 | Mediciones de Resistencia se Bucle Red Secundaria Distrito 6                   | 81  |
| Tabla 3-17 | Datos de la nueva Red telefónica                                               | 86  |
| Tabla 3-18 | Presupuesto de Red de Accesos.                                                 | 87  |
| Tabla 3-19 | Costo Beneficio de la Red de Accesos                                           | 88  |
| Tabla 4-1  | Parámetros de Mediciones en Redes Telefónicas                                  | 97  |
| Tabla 4-2  | Resistencias de Bucle servicio de Internet                                     | 97  |
| Tabla 4-3  | Mediciones de Resistencia se Bucle, Atenuación y SNR                           | 98  |
| Tabla 4-4  | Valoración Atenuación; Valoración Resistencia de Bucle; Valoración SNR         | 100 |
| Tabla 4-5  | Comparación de la valoración de los parámetros eléctricos de la Red            | 101 |
| Tabla 4-6  | Valores niveles de aceptación                                                  | 106 |
| Tabla 4-7  | Prueba de normalidad de datos con Kolmogorov                                   | 107 |
| Tabla 1-0  | Posultados de la prueba "T" en SDSS                                            | 109 |

# ÍNDICE DE FIGURAS

| Figura 1-1 Sectorización de Distritos Central Guano.         | 19 |
|--------------------------------------------------------------|----|
| Figura 2-1 Elementos de un Sistema de Comunicación           | 25 |
| Figura 2-2 Arquitectura VDSL.                                | 25 |
| Figura 2-3 Topología VDSL.                                   | 27 |
| Figura 2-4 Asignación del espectro en VDSL asimétrico.       | 28 |
| Figura 2-5 Elementos de una Red Telefónica Básica            | 31 |
| Figura 2-6 Refracción de un rayo de luz.                     | 34 |
| Figura 2-7 Arquitecturas FTTx.                               | 37 |
| Figura 2-8 Topología FTTC                                    | 38 |
| Figura 2-9 Red de Planta Externa                             | 39 |
| Figura 2-11 Red de Planta Externa                            | 40 |
| Figura 2-12 Topologías FFTN + VDSL.                          | 41 |
| Figura 2-13 Esquema de Medición Resistencia de Bucle.        | 42 |
| Figura 2-14 Esquema de Medición Atenuación.                  | 42 |
| Figura 2-15 Medición de SNR Equipo del Cliente.              | 43 |
| Figura 3-1 Detalle las fases del trabajo.                    | 50 |
| Figura 3-2 Detalle las fases del trabajo                     | 82 |
| Figura 3-3 Cobertura de Red del Distrito 6                   | 82 |
| Figura 3-4 Cobertura Red Secundaria Distrito 6               | 83 |
| Figura 3-5 Ubicación Equipo de Plataforma Exterior           | 83 |
| Figura 3-6 Equipo de Plataforma Ext. y Armario Reflejo.      | 84 |
| Figura 3-7 Red de Fibra Óptica                               | 85 |
| Figura 3-8 Diagrama de Transmisión Red de Fibra Óptica.      | 85 |
| Figura 3-9 Red Secundaria sector El Cisne.                   | 85 |
| Figura 3-10. Circuito de un sistema WDM                      | 89 |
| Figura 3-11 Analogía de un sistema WDM con la Red de Accesos | 89 |
| Figura 3-12 Propiedades del trasmisor WDM.                   | 90 |
| Figura 3-13 Ventana de tipo de Modulación                    | 90 |
| Figura 3-14 Propiedades del Multiplexor.                     | 90 |
| Figura 3-15 Analizador de espectro óptico.                   | 91 |
| Figura 3-16 Analizador de WDM.                               | 91 |
| Figura 3-17 Analizador de WDM.                               | 92 |
| Figura 3-18 Propiedades dimensiones de fibra óptica.         | 92 |
| Figura 3-19 Propiedades EDFA.                                | 92 |

| Figura 3-20 | Polarización del filtro.                 | 93 |
|-------------|------------------------------------------|----|
| Figura 3-21 | Generador Randómico de Origen.           | 93 |
| Figura 3-22 | Ventana de propiedades del Multiplexor   | 93 |
| Figura 3-23 | Ventana de propiedades del receptor WDM. | 94 |
| Figura 3-24 | Ventana Filtros pasa bajos               | 94 |
| Figura 3-25 | Ventana Características del regenerador. | 94 |
| Figura 3-26 | Señal de factor de calidad               | 95 |
| Figura 3-27 | Señal de BER mínimo.                     | 95 |
| Figura 3-28 | Señal ancho de banda.                    | 95 |
| Figura 3-29 | Señal de modalidad BER                   | 96 |

## ÍNDICE DE ANEXOS

**ANEXO A.** Normativa de Referencia

**ANEXO B.** Pruebas de Medición de Fibra Óptica.

**ANEXO C.** Fotografías de la Implementación

**ANEXO D.** Módulo de Acceso Multi-Servicio Smartax MA5603T

**ANEXO E.** Configuración del Equipo Acceso de Plataforma Exterior

**ANEXO F**. Configuración del Equipo del Cliente

#### **RESUMEN**

En el presente trabajo de investigación se detalla el diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, para mejorar los servicios de telecomunicaciones, en la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano. Como primer punto se realizó un análisis del estado del arte de las redes FTTX que utilizan tecnología VDSL desde sus inicios hasta la actualidad. El trabajo se realizó en tres fases principales; recopilación, el análisis de los datos y la implementación de la red. Se realizaron mediciones de parámetros eléctricos en 427 redes telefónicas en diferentes sectores del cantón de Guano, lo cual permitió determinar la ubicación del sector con mayor deficiencia de servicio, en el cual se implementó la red de acceso con fibra óptica utilizando la tecnología VDSL / FTTC para mejorar los servicios de telecomunicaciones de los clientes. Se realizó el Diseño, la simulación e implementación de red, conforme a las Reglamento de diseño de planta externa con plataformas de acceso externo para despliegue de red con tecnología VDSL / FTTC, de Corporación nacional de Telecomunicaciones CNT EP., en el sector de la Cisne en el cantón de Guano. Finalmente se procedió con nuevas mediciones de los parámetros eléctricos en la nueva red implementada, para verificar el funcionamiento. Evidenciando que la Red de Acceso de Fibra Óptica utilizando tecnología VDSL / FTTC implementada, cumple con todos los requisitos solicitados por la CNT EP. Asegurando el funcionamiento óptimo del servicio de voz y datos proporcionado por la empresa en el sector. Cumpliendo con el objetivo principal propuesto al comienzo del trabajo que es mejorar la calidad del servicio de los clientes actuales, así como garantizar la prestación de un servicio eficiente a los futuros clientes.

PALABRAS CLAVES: TECNOLOGÍA Y CIENCIAS DE LA INGENIERÍA, TELECOMUNICACIONES, REDES DE TELECOMUNICACIONES FIJAS, VDSL (TECNOLOGIA), FIBRA ÓPTICA, ATENUACIÓN, RESISTENCIA DE BUCLE, SNR (PARÁMETRO)

PROCESOS TECNICOS Y ANALISIS
BIBLIOGRAFICO Y DOCUMENTAL

13 13 13 72 13

BETTAL HORA: 0 9:18

POR HORA: 0 9:18

#### **SUMMARY**

This research work details the design and implementation of a Fiber Optic Access Network using VDSL/FTTX Technology, to improve telecommunications services, in Corporación Nacional de Telecomunicaciones Public Company in Guano. As a first point, an analysis of the state of the art of FTTX networks using VDSL technology from its beginnings to the present was carried out. The work took place in three main phases: data collection, data analysis and network implementation. Measurements of electrical parameters were carried out on 427 telephone networks in different sectors of Guano canton, which made it possible to determine the location of the sector with the greatest service deficiency, where the fiber-optic access network was implemented using VDSL / FTTC technology to improve customer telecommunication services. The design, simulation and implementation of the network was carried out, in accordance with the regulations for the design of an external plant with external access platforms for network deployment with VDSL / FTTC technology, of Corporación Nacional de Telecomunicaciones CNT EP., in the sector of Cisne in Guano canton. Finally new measurements of the electrical parameters in the new implemented network were taken, to verify the operation. Evidencing that the Fiber Optic Access Network using VDSL / FTTC technology implemented, meets all the requirements requested by the CNT EP.

Ensuring the optimal operation of the voice and data service provided by the company in the sector. And thus fulfill the main objective proposed at the beginning of the work; this is to improve the quality of service of current customers, as well as to assure the provision of an efficient service to future customers.

Key Words: TECHNOLOGY AND ENGINEERING SCIENCES, TELECOMMUNICATIONS, FIXED TELECOMMUNICATIONS NETWORKS, VDSL (TECHNOLOGY), FIBER OPTIC, ATTENUATION, LOOP RESISTANCE, SNR (PARAMETER)



## CAPÍTULO I

#### 1. MARCO REFERENCIAL

#### 1.1. Introducción

El desarrollo del trabajo investigativo se encuentra orientado al análisis de los requerimientos de los clientes de servicio de telecomunicaciones en cuanto se refiere a voz y datos en redes telefónicas fijas. Tomando como objetivo principal la reutilización de una red telefónica en funcionamiento, pretendiendo implementar tecnología VDSL/FTTX para mejorar los servicios de Telecomunicaciones de los clientes del sector. Mediante la toma de mediciones en 427 redes telefónicas en diferentes sectores del cantón Guano de los principales parámetros eléctricos (resistencia de bucle, atenuación y señal ruido) y un análisis exhaustivo se identificará el sector en el cual se realizará el Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX para mejorar los servicios de Telecomunicaciones, de la Corporación Nacional de Telecomunicaciones Empresa Pública.

Finalmente se procedió con nuevas mediciones de los parámetros eléctricos en la nueva red implementada, para verificar el funcionamiento. Evidenciando que la Red de Acceso de Fibra Óptica utilizando tecnología VDSL / FTTC implementada, cumple con todos los requisitos solicitados por la CNT EP. Asegurando el funcionamiento óptimo del servicio de voz y datos proporcionado por la empresa en el sector

## 1.2. Planteamiento del problema

## 1.2.1. Situación problemática

En la actualidad las telecomunicaciones se inclinan a la integración de todo tipo de servicios en una sola infraestructura de red. Estas redes deben ofrecer un nivel de calidad de servicio, capacidad, fiabilidad y seguridad equivalente al de las redes telefónicas públicas conmutadas. Para darle solución al desarrollo de estas redes, han aparecido en el mercado numerosos equipos, técnicas, tecnologías y protocolos que permiten la creación de modelos de redes capaces de cubrir dichas necesidades. Estos modelos son conocidos como modelos de Red de Próxima Generación NGN (Next Generation Networks) (Álvarez, Campana, Berrocal, y González, 2009).

En los sectores residenciales la composición de cables de fibra óptica alimentando a las unidades ópticas de red con la conexión final a través de la red telefónica de cobre es una opción para lograr altas velocidades de transmisión de datos. Dentro de una red NGN un componente clave en los nodos de distribución se encuentra los armarios inteligentes, que proporcionan el servicio de Voz sobre IP (VoIP) y servicios de banda ancha, integra las plataformas de tecnología DSLAM (Multiplexor de Línea de Acceso de Abonado Digital) (Valarezo, 2013).

Los armarios contienen los equipos DSLAM que se necesita para dar el servicio con tecnología VDSL (Very high-bit-rate Digital Subscriber Line). Esto permite el aprovisionamiento de los servicios de voz y de banda ancha a los usuarios, además estos dispositivos permiten utilizar gran parte de los elementos de la red telefónica actual. En este escenario el objetivo es dar cobertura a los usuarios que no poseen acceso a los servicios de voz y datos (Valarezo, 2013).

El punto clave tecnológico y de diseño de VDSL es aumentar el espectro de frecuencias al generar un ancho de banda de hasta 52 Mbps, (más de 5 veces ADSL), lo cual supone que la integración de servicios de banda ancha pueden ser distribuidos por una red VDSL. VDSL es la tecnología suficiente para proveer servicios antes de FTTH. Se espera que en un futuro, sea el que esté instalado en la mayoría de redes metropolitanas, hecho que no ha sucedido aun por costos de instalación, y por falta de popularización de la mayoría de servicios (Valarezo, 2013). Una instalación telefónica consiste de un par de cables de cobre que la compañía telefónica instala en el hogar. Estos cables tienen suficiente ancho de banda para transportar data en adición de conversaciones de voz, pero dado que las conversaciones de voz consumen sólo una pequeña porción de la capacidad disponible de los cables, entonces VDSL explota esta capacidad restante para transportar información, sin deshabilitar la capacidad de transportar las

Los servicios estándar limitan las frecuencias que los switches, los teléfonos y otros equipos pueden transportar. La voz humana puede ser transportada en un ancho de banda de 4Khz, y dado que los cables pueden transportar frecuencias de varios MHz, lo equipos modernos que envían señales digitales, pueden usar mucho más que la capacidad de la línea telefónica.

conversaciones (Sigüencia & Villacreses, 2011).

Entonces, este es el punto clave de VDSL, que utiliza dos piezas de equipamiento, una del lado del usuario, otra del proveedor (Sigüencia & Villacreses, 2011).

Buscando atender los nuevos requerimientos de los clientes en cuanto a servicios de voz y datos. Se pretende reutilizar las redes telefónicas existentes con el fin de generar reducción de costos operativos, aumentar su competitividad, mejorar la calidad de servicio de los clientes y extender su escalabilidad.

En el cantón Guano en la actualidad la población cuenta con una Red Telefónica que provee servicio de voz y datos limitados en algunos sectores y en otros solo servicio de voz, por lo cual se ha tomado esta problemática para realizar el mejoramiento de la Red Telefónica incluyendo nuevos servicios de última generación que servirán para el desarrollo de este sector de Provincia de Chimborazo.

Por todo lo que antecede y la importancia del tema, se direcciona la presente investigación para el Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, para mejorar los servicios de Telecomunicaciones, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano.

### 1.2.2. Formulación del problema

• ¿Los servicio de Telecomunicaciones mejoraran con el diseño e implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, en Guano?

## 1.2.3. Preguntas directrices o específicas de la investigación

- ¿Qué tipo de Redes de telefónicas se utiliza para mejorar el acceso a los servicios de Telecomunicaciones en la actualidad?
- ¿Cuáles son los principales parámetros de calidad para el buen funcionamiento de las redes de Accesos que dotan servicios de Telecomunicaciones?
- ¿Debido a qué factores los servicios de Telecomunicaciones del cantón Guano son limitados?
- ¿En qué sector del cantón Guano servicios de Telecomunicaciones son inconsistentes?
- ¿Qué nuevos servicios ofrece la Red de Acceso con Tecnología VDSL/ FTTX?

### 1.3. Justificación de la investigación

En la actualidad las redes y sistemas de telecomunicación se enfrentan a la necesidad de proporcionar acceso con velocidades cada vez más elevadas a un mayor número de usuarios. Con el aumento de tráfico de Internet, la distribución de programas y videojuegos en línea, con el aumento de la complejidad en los contenidos de las páginas web, con la comercialización de contenidos audiovisuales y contenidos en línea adicionales, y con la introducción de la alta definición en los servicios, determinando una sociedad cada vez más interconectada.

Las actuales condiciones del mercado en cuanto a la competencia y desarrollo de nuevas tecnologías impulsan a la Corporación Nacional de Telecomunicaciones Empresa Pública a mantener su liderazgo en el mercado de las telecomunicaciones de acuerdo a la demanda que se va determinando según necesidades que se crean, es por esto, es necesario la creación de Redes de Acceso que se ajusten a la evolución de nuevas tecnologías y que se enmarquen a los objetivos corporativos como empresa pública.

Contribuyendo con las políticas y los lineamientos estratégicos del Plan Nacional para el Buen Vivir, es responsabilidad ayudar al desarrollo de nuestro país y por ende a la comunidad de tal manera que pueda llevar a la población más alejada a la par con el avance de la tecnología, el gran desarrollo experimentado hoy en día de nuevas ciencias aplicadas permite que se puedan realizar estos proyectos con gran factibilidad para que suplan este tipo de necesidades.

Es por esto que el estudio de VDSL ha sido de interés como nuevo estándar que puede proveer hasta 52Mbps al usar la misma infraestructura cableada telefónica, lo que hace que su implementación no sea excesivamente cara. De tal forma, la tarifa para los usuarios no sea exageradamente alta, razón por la cual este estándar de la familia XDSL adquiere tanta importancia a nivel mundial, dado que compañías telefónicas internacionales como TELEFÓNICA, actualmente provee estos servicios de banda ancha al usar VDSL. Antes de que se entre a la era de fibra óptica cableada hasta el hogar, VDSL puede ser la solución por el momento, antes de este inminente salto en la infraestructura tanto telefónica como de datos y video.

En el cantón Guano provincia de Chimborazo, la Corporación Nacional de Telecomunicaciones Empresa Pública, en la actualidad posee una Red Telefónica de cobre, la cual se encuentra en su máxima capacidad y al ser una red antigua no permite ofrecer un servicio de datos con mejor

ancho de banda debido a los altos niveles de resistencia del bucle de abonados actuales. Requiriéndose la necesidad de dotar de un servicio con mayor tecnología que solucione los inconvenientes en entrega de servicios y funcionamiento de los mismos para satisfacer y mejorar la demanda de servicios.

Actualmente en el cantón Guano la Corporación Nacional de Telecomunicaciones Empresa Pública CNT EP., posee una Central Telefónica, la cual provee los servicios de telefonía fija e internet a 1798 usuarios, sectorizados en 6 distritos específicamente como muestra la Tabla 1-1 y la Figura 1-1.

Tabla 1-1 Usuarios telefonía fija e internet Central Telefónica Guano.

| <b>SECTORES</b> | DISTRITOS  | USUARIOS | DIRECCIÓN                            |
|-----------------|------------|----------|--------------------------------------|
| Sector 1        | Distrito 1 | 503      | LEON HIDALGO Y JUAN MONTALVO         |
| Sector 2        | Distrito 2 | 306      | COLON Y GARCIA MORENO                |
| Sector 3        | Distrito 3 | 328      | GARCIA MORENO Y ELENPATA             |
| Sector 4        | Distrito 4 | 205      | GARCIA MORENO FRENTE 1649            |
| Sector 5        | Distrito 5 | 224      | CASIQUE TOCA 301 Y ASUNCION          |
| Sector 6        | Distrito 6 | 232      | LANGOS PANAMERICANA 3001 Y VIA A RBB |
| TOTAL           |            | 1798     |                                      |

Fuente: Sistema Open Flexis CNT EP., 2018

Elaborado por: Alba Verónica Ramos Flores, 2019.



Figura 1-1 Sectorización de Distritos Central Guano.

Fuente: (Sistema Open Flexis CNT EP., 2018).

El presente proyecto está enmarcado a cubrir las necesidades del sector en el cual se evidencie mayor limitación al acceso a los servicios de telefonía fija e internet, debido a que la red de cobre actual de algunos sectores no permite abastecer la demanda existente y del mismo modo entregar un servicio de óptima calidad. Por lo tanto se desarrollará mediciones y mediante el análisis de los principales parámetros eléctricos que son: resistencia de bucle, aislamiento, longitud de la línea, balance longitudinal, voltajes de AC y DC, relación señal a ruido, en los diferentes distritos de la Central Telefónica del cantón Guano.

La migración de los clientes a la Red de Acceso de Fibra Óptica utilizando Tecnología VDSL/FTTX permitirá reducir la distancia y resistencia de Bucle de Abonado, mejorando la velocidad del servicio de internet y ofreciendo de una alta capacidad de carga o descarga a los usuarios de la red. Por lo tanto es de vital importancia el diseño e implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, en Guano.

## 1.4. Objetivos de la investigación

## 1.4.1. *Objetivo general*

Diseñar e Implementar de una Red de Acceso con Fibra Óptica utilizando Tecnología
 VDSL/FTTX, para mejorar los servicios de telecomunicaciones, en la Corporación
 Nacional de Telecomunicaciones Empresa Pública en Guano.

## 1.4.2. Objetivos específicos

- Analizar la situación actual de la red de cobre en el cantón Guano para determinar los problemas que se producen en la transmisión de información.
- Determinar el estándar FTTX adecuado para diseñar una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL, según las necesidades del sector.
- Implementar una red que proporcione los parámetros de transmisión óptimos para el buen desempeño con el objetivo de que, en un futuro puedan funcionar sobre una única infraestructura todos los servicios de Telecomunicaciones.
- Comparar la calidad de servicio entre un red telefónica de cobre y la red de Fibra Óptica utilizando Tecnología VDSL/ FTTX.

## 1.5. Hipótesis

## 1.5.1. Hipótesis general.

El Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano, optimizara los recursos de la red existente para la mejora de servicios a los usuarios.

## 1.6. Identificación de las variables

## 1.6.1. Variable independiente

Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX

## 1.6.2. Variable dependiente

Mejora de la calidad del servicio de la infraestructura existente de Corporación Nacional de Telecomunicaciones Empresa Pública.

### CAPÍTULO II

### 2. MARCO TEÓRICO

## 2.1. Antecedentes del problema

Actualmente en el cantón Guano provincia de Chimborazo, la Corporación Nacional de Telecomunicaciones Corporación Nacional de Telecomunicaciones Empresa Pública, posee una Red Telefónica de cobre, la cual se encuentra en su máxima capacidad y al ser una red antigua no permite ofrecer un servicio de datos debido a los altos niveles de resistencia del bucle de abonados actuales.

Requiriéndose la necesidad de dotar de un servicio con mayor tecnología que solucione los inconvenientes en entrega de servicios y funcionamiento de los mismos para satisfacer y mejorar la demanda de servicios de los usuarios de este sector. Para realizar el proyecto se usa como referencia los estudios anteriormente desarrollados sobre temas afines a la propuesta que respaldan la investigación. Entre estos trabajos se tienen los siguientes:

- Tesis de titulación: "Red de acceso con Fibra Óptica mediante Tecnología FTTX para optimizar espacios y servicios en la Corporación nacional de Telecomunicaciones EP. (Empresa Pública)" (Oviedo, 2011), concluye que "Debido al avance de las telecomunicaciones a nivel mundial y nacional han surgido nuevas tecnologías capaces de proveer a los usuarios nuevos y mejores servicios, siendo las redes FTTX una buena alternativa para acceder a aplicaciones que requieren banda ancha utilizando el cableado de cobre existente, esto gracias a VDSL que también es de última generación."
- Tesis de titulación: "Estudio para la implementación de armarios inteligentes en la red telefónica de la Corporación Nacional de Telecomunicaciones E.P. del cantón Azogues para brindar servicio triple play" (Sigüencia & Villacreses, 2011). Este estudio analiza los aspectos técnicos para la instalación de los armarios inteligentes en puntos estratégicos en los diferentes sectores del cantón Azogues, evidenciando la factibilidad de implantación de la tecnología VDSL/FTTX.

 Tesis de titulación: "Despliegue de las técnicas VDSL2. Evaluación preliminar" (Valarezo, 2013). En este estudio analiza la tecnología VDSL su arquitectura física y lógica, esquemas de las diferentes Redes que pueden trabajar con esta tecnología.

#### 2.2. Bases teóricas

#### 2.2.1. Sistemas de Telecomunicaciones

La finalidad de un sistema básico de telecomunicaciones es comunicar dos o más usuarios, permitiendo la transferencia de la información entre ellos. Existen algunos tipos de redes de telecomunicaciones, tanto públicas como privadas. A nivel del mundo la telefonía pública consiste en una de las mayores redes de telecomunicaciones. Durante los últimos años se han producido avances significativos en la oferta de servicios de acceso a Internet, con un crecimiento sostenido de los accesos mediante ADSL (Asymmetric Digital Subscriber Line) y redes de cable (Álvarez et al., 2009).

En general, las tecnologías de acceso de banda ancha han experimentado un aumento importante de prestaciones en los últimos años, consiguiendo que se puedan ofrecer todo tipo de servicios, incluso los más exigentes. Las principales tecnologías de acceso, considerando tanto sus características técnicas de prestaciones y escalabilidad, como su adecuación a los servicios de telecomunicación. Siendo el objetivo principal la convergencia de redes, en un contexto en el que los operadores buscan ofrecer paquetes de servicios cada vez más completos, por ejemplo telefonía, televisión e Internet (triple play), con el objeto de mejorar su posición competitiva y captar nuevos clientes (Álvarez et al., 2009).

#### 2.2.2. Elementos de un Sistema de Comunicación.

#### 2.2.2.1. Transmisor

Realiza la adaptación entre la señal mensaje de entrada y el canal. El procesamiento de la señal realizada por el transmisor incluye amplificación, filtrado y modulación. La más importante de estas es la modulación, un proceso diseñado para adaptar las propiedades de la señal transmitida a las del canal por medio del uso de una onda portadora. La modulación es la variación sistemática de algún parámetro de una onda portadora, tal como la amplitud fase o frecuencia, de acuerdo con una función de la señal mensaje (Oviedo, 2011).

#### 2.2.2.2. Canal de transmisión

Es el enlace eléctrico entre el transmisor y el receptor. Puede ser un par de conductores, un cable coaxial, una onda de radio o una fibra óptica. Sin importar el tipo, todos los medios se caracterizan por la atenuación. La disminución progresiva de la potencia de la señal conforme aumenta la distancia (Oviedo, 2011).

## 2.2.2.3. Receptor

La función del mismo es extraer del canal la señal deseada y entregarla al transductor de salida. Como las señales son frecuencias muy débiles, el receptor debe tener varias etapas de amplificación. En todo caso la operación clave que ejecuta el receptor es la demodulación, con lo cual vuelve la señal a su forma original (Oviedo, 2011).

### 2.2.2.4. Distorsión

Es la alteración de la señal debida a la respuesta imperfecta del sistema a ella misma. A diferencia del ruido y la interferencia, la distorsión desaparece cuando la señal deja de aplicarse. El diseño de sistemas óptimos o redes de compensación reduce la distorsión. En teoría es posible lograr una compensación perfecta. En la práctica puede permitirse cierta distorsión, aunque su magnitud debe estar dentro de límites tolerables (Oviedo, 2011).

## 2.2.2.5. Interferencia

Es la contaminación por señales extrañas, generalmente artificiales y de forma similar a las de la señal. El problema es prácticamente común en emisiones de radio, donde pueden ser captadas dos o más señales simultáneamente por el receptor.

La solución al problema de interferencia es obvia: eliminar en una u otra forma la señal interferente o su fuente. En este caso es posible una solución perfecta, si bien no siempre práctica (Oviedo, 2011).

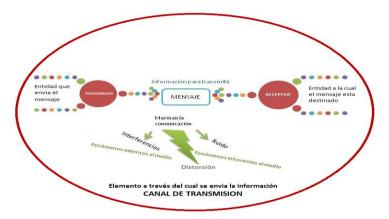



Figura 2-1 Elementos de un Sistema de Comunicación

Fuente: Alba Verónica Ramos Flores, 2019.

## 2.2.3. VDSL Very High Speed Digital Subscriber Line

Very High Speed Digital Subscriber Line o llamada también línea de abonado digital de muy alta tasa de transferencia, representa el último estándar tecnológico para la familia xDSL, al implementar la tecnología anterior ADSL, en muchos aspectos como ancho de banda, simetría y capacidad de proveer los servicios avanzados de última generación, los cuales incluyen data, video y voz (Alvarado, 2007).

El punto clave tecnológico y de diseño de VDSL es aumentar el espectro de frecuencias al generar un ancho de banda de hasta 52 Mbps, (más de 5 veces ADSL), lo cual supone que la integración de servicios de banda ancha pueden ser distribuidos por una red VDSL, sin problema alguno VDSL ha sido creado para proveer el enlace final entre una red de fibra óptica y una red de cobre, en VDSL el medio físico utilizado es autónomo. Una de las ventajas es utilizar la infraestructura existente de cableado local (Alvarado, 2007).

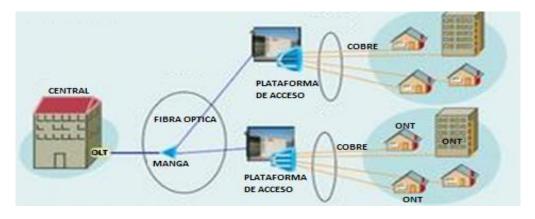



Figura 2-2 Arquitectura VDSL. Fuente: Alba Verónica Ramos Flores, 2019

Las llamadas redes de fibra FTTx (fiber-to-the, Fibra hasta), donde se llega con fibra a lugares cercanos al usuario final, pueden ser de diferente tipo, entre ellas tenemos:

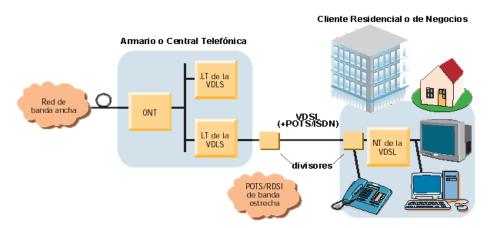
- FTTCab (hasta el gabinete)
- FTTB (hasta el edificio)
- FTTC (hasta la acera) (Sigüencia & Villacreses, 2011).

VDSL es la tecnología utilizadas por FTTCab, FTTB y FTTC, la cual permite la transferencia de datos a velocidades altas, sobre distancias cortas mediante pares trenzados de líneas de cobre con un rango de velocidad que depende principalmente de la longitud de la línea. La velocidad máxima de transmisión de la red telefónica al cliente está entre 51 y 55 Mbps sobre líneas de 0.3 Km de longitud. Las velocidades del cliente a la red van a ser también, mayores que en ADSL. VDSL opera en modo simétrico así como también en el asimétrico.

La Tabla 2-1 muestra las velocidades típicas de VDSL en función de la extensión de la línea, para los modos de funcionamiento simétrico y asimétrico (Sigüencia & Villacreses, 2011).

Tabla 2-1 Velocidades típicas de VDSL en función de la longitud de la línea.

| Distancia Velocidad de datos en (metros) sentido descendente (Mbps) |    | Velocidad de datos en<br>sentido ascendente (Mbps) |
|---------------------------------------------------------------------|----|----------------------------------------------------|
| 300                                                                 | 52 | 6.4                                                |
| 300                                                                 | 26 | 26                                                 |
| 1000                                                                | 26 | 3.2                                                |
| 1000                                                                | 13 | 13                                                 |
| 1500                                                                | 13 | 1.6                                                |


Fuente: (Sigüencia & Villacreses, 2011)

#### 2.2.3.1. Características de VDSL.

Desde el punto de vista tecnológico, la sucesora del ADSL se considera al VDSL. En sentido descendente ADSL suministra transporte de datos de varios Mbps, mientras que en sentido ascendente facilita cerca de 1 Mbps. Mientras que VDSL puede transportar datos de video y de otros tipos de tráfico a velocidades de hasta 58 Mbps, las velocidades que ofrece el VDSL son de cinco a diez veces superiores a ADSL. Adicionalmente, al instalarse de forma simétrica o asimétrica, se adecúa mejor a las exigencias del mercado (Blanco, 2010).

En el ambiente de agencias, VDSL puede satisfacer: la demanda creciente de acceso de datos más rápido, las llamadas de videoconferencia de gran calidad entre varias localidades. Entre las aplicaciones comerciales típicas que VDSL puede soportar, se encuentran la interconexión de

VPN y LAN. VDSL será suministrada a menudo desde un gabinete situado en la calle equipado con una fibra óptica conectada a la red backbone por motivo de las restricciones de distancia Esta topología, es la FTTCab y se muestra en la Figura 4-2 (Blanco, 2010).



**Figura 2-3** Topología VDSL. **Fuente:** (Blanco, 2010)

VDSL puede ofrecerse desde una central telefónica para dar servicios a los abonados situados en la proximidad inmediata de la central, topología FTTEx (fibra-hasta-la-central), otra topología posible es utilizar VDSL para la transmisión de datos y multi-video en bloques de apartamentos con una ONT (Terminación de Red Óptica) en el subterráneo, dando servicio a los departamentos individuales sobre los cables telefónicos existentes (Blanco, 2010).

VDSL se han propuesto dos códigos de línea principal: modulación DMT y modulación QAM/CAP. El TM6 del ETSI y el Comité T1E1.4 del ANSI han adoptado ambos códigos de línea para los estándares de VDSL, se ha seleccionado FDD (Duplexación por División de Frecuencia) como técnica de duplexación por parte del ETSI, ANSI y de la UIT (Blanco, 2010).

Para lograr máximas velocidades sobre líneas telefónicas, la anchura de banda de la comunicación tiene que superar más allá de los 1.1 MHz ocupados por ADSL, usando el mayor espectro de frecuencia disponible sobre el par de cobre por encima de las frecuencias usadas por los servicios POTS y RDSI, los sistemas VDSL utiliza un espectro de hasta 30 MHz, aunque en la actualidad sólo se ha especificado el plan de frecuencias hasta 12 MHz. La asignación actual del espectro varía en dependencia de la velocidad de la línea (Blanco, 2010).

La Figura 2-4 muestra un ejemplo de asignación de espectro con velocidades en sentido descendente de 25.92 Mbps y en sentido ascendente de 3.24 Mbps (Blanco, 2010).

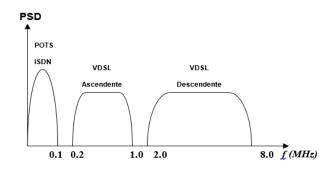



Figura 2-4 Asignación del espectro en VDSL asimétrico.

Fuente: (Blanco, 2010)

#### 2.2.3.2. VDSL Asimétrico

VDSL ha sido creada para el transporte al usuario de servicios de banda ancha asimétricos, incluyendo difusión digital de TV, telemedicina, acceso a Internet de alta velocidad, aprendizaje a distancia, video bajo demanda (VoD), entre otros. El envío de estos servicios requiere que el canal de bajada posea mayor ancho de banda que el canal de subida por lo que es asimétrico (Blanco, 2010).

Las Tablas 2-2 y 2-3 muestran las velocidades de línea establecidas en la especificación ANSI T1/E1.4. Las velocidades en sentido descendente son submúltiplos de la velocidad básica de los sistemas SONET y SDH de 155.52 Mbps, ellas son: 51.84, 25.92 y 12.96 Mbps, la distancia sobre la que pueden utilizarse tales velocidades está restringida debido a limitaciones físicas, principalmente la elevada atenuación con la frecuencia de los pares trenzados. Generalmente, VDSL funcionará en líneas de longitud inferior a 1.5 Km (Blanco, 2010).

**Tabla 2-2** Velocidades VDSL en configuración asimétrica en sentido descendente (ANSI T1/E1.4).

| Distancia típica<br>del Servicio | Velocidad de bit<br>(Mbps) | Distancia típica<br>del Servicio | Velocidad de bit<br>(Mbps) |
|----------------------------------|----------------------------|----------------------------------|----------------------------|
|                                  | 51.84                      |                                  | 12.96                      |
| Corta Distancia<br>300 m         | 38.88                      | Larga Distancia<br>1350 m        | 9.72                       |
| 300 m                            | 29.16                      | 1330 III                         | 6.48                       |
|                                  | 25.92                      |                                  |                            |
|                                  | 25.92                      |                                  |                            |
| Media Distancia                  | 22.68                      |                                  |                            |
| 1000 m                           | 19.44                      |                                  |                            |
|                                  | 19.44                      |                                  |                            |
|                                  | 16.20                      |                                  |                            |
|                                  | 14.58                      |                                  |                            |
|                                  | 12.96                      |                                  |                            |

Fuente:(Blanco, 2010)

Tabla 2-3 Velocidades VDSL en configuración simétrica en sentido ascendente (ANSI T1/E1.4).

| Distancia típica del<br>Servicio | Velocidad de bit<br>(Mbps) |
|----------------------------------|----------------------------|
| Corta Distancia                  | 6.48                       |
| 300 m                            | 4.86                       |
|                                  | 3.24                       |
| Media Distancia                  | 3.24                       |
| 1000 m                           | 2.43                       |
|                                  | 1.62                       |
| Larga Distancia                  | 3.24                       |
| 1350 m                           | 2.43                       |
|                                  | 1.62                       |

Fuente: (Blanco, 2010)

## 2.2.3.3. VDSL Simétrico

VDSL ha sido creado para proveer servicios simétricos para clientes de negocios pequeños y medianos, aplicaciones de datos de alta velocidad, aplicaciones de video de teleconferencia y tele consulta, entre otras. El VDSL simétrico puede ser utilizado para proveer circuitos nxT1 de corto alcance. La Tabla 5-2 muestra las velocidades de línea establecidas en la especificación ANSI T1/E1.4 para servicios simétricos. Aunque ANSI no especifica la distancia y velocidades para servicios simétricos de alto rango, se soportan lazos desde 900 m a 3000 m a velocidades desde 6 Mbps a 15 Mbps (Blanco, 2010).

**Tabla 2-4** Velocidades típicas de VDSL en configuración simétrica (ANSI T1/E1.4).

| Distancia Típica del Servicio | Velocidad de bit<br>(Mbps) |
|-------------------------------|----------------------------|
| Corta Distancia               | 25.92                      |
| 300 m                         | 19.44                      |
| Media Distancia               | 12.96                      |
| 1000 m                        | 9.72                       |
|                               | 6.48                       |

Fuente: (Blanco, 2010)

La tecnología VDSL basada en equipos de arquitectura de banda ancha satisface la demanda de mayor ancho de banda para el transporte de servicios, lo cual puede simultáneamente proporcionar un acceso a Internet más rápido, video interactivo y mayor velocidad para los servicios de comunicación de voz y datos (Vega, 2002).

## 2.2.3.4. Conjunto de servicios basados en VDSL

La tecnología VDSL brinda una variedad de servicios simultáneos, dando la oportunidad a los proveedores de servicios de ofrecer nuevos servicios multimedia y aumentar sus subscriptores. Estos, que actualmente ofrecen servicios de telefonía y datos podrán ampliar sus negocios ofreciendo servicios completos y un host de aplicaciones de video como muestra la Tabla 6-2 permitiéndoles competir con los operadores de cable (Sigüencia & Villacreses, 2011).

Tabla 2-5 Aplicaciones VDSL

| Servicios completos | Multimedia Real        | Acceso a Internet de alta |
|---------------------|------------------------|---------------------------|
|                     |                        | velocidad                 |
| Video bajo demanda  | TV digital de difusión | Aprendizaje a distancia   |
| Telemedicina        | Video interactivo      | Video conferencia         |
| HDTV                | Comercio electrónico   | Publicación electrónica   |
|                     | Video juegos           | Karaoke bajo demanda      |

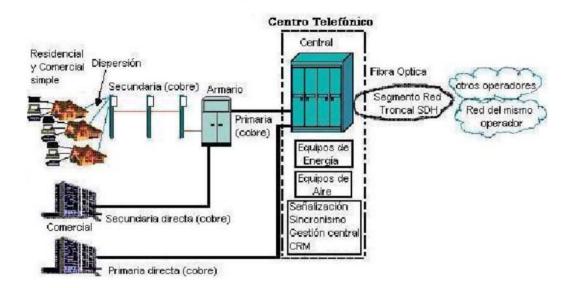
Fuente: (Sigüencia & Villacreses, 2011).

#### 2.2.3.5. Internet de alta velocidad

Suministrar acceso a Internet de alta velocidad, es de fundamental importancia para los usuarios residenciales, negocios medianos, etc. VDSL tiene la capacidad para resistir las aplicaciones actuales y futuras. Con el incremento de Internet, ha aumentado el backbone ATM (Modo de Transferencia Asíncrona). La combinación de VDSL y ATM proveerá los servicios Internet de hoy y una arquitectura que soportará las aplicaciones emergentes del mañana (Sigüencia & Villacreses, 2011).

### 2.2.3.6. Servicios de telefonía

VDSL resiste el servicio POTS y además de esta funcionalidad ofrece otras adicionales, como el envío de canales voz sobre el mismo par de cobre. Las tecnologías voz sobre IP (VoIP), voz telefónica sobre ATM (VToA) y el servicio de emulación de lazo local (LES) proveen servicios de telefonía de calidad estándar sobre una red digital. Debido al hecho de que ATM puede transportar comunicaciones basadas en IP, ATM over VDSL soportará tales estándares de telefonía digital. El mayor ancho de banda provisto por VDSL proporcionará un mayor envío de canales de voz que VoDSL, donde el ancho de banda constituye también una limitante (Blanco, 2010).


## 2.2.4. Red Telefónica Básica (RTB)

Se define la RTB como los conjuntos de elementos constituido por todos los medios de transmisión y conmutación necesarios que permite enlazar a voluntad dos equipos terminales mediante un circuito físico que se establece específicamente para la comunicación y que desaparece una vez que se ha completado la misma. Se trata por tanto, de una red de telecomunicaciones conmutada (Haros, 2011).

## 2.2.4.1. Elementos de una Red Telefónica Básica

Básicamente la red de telefonía básica está conformada por tres grandes módulos:

- Módulo de Acceso
- Módulo de Conmutación
- Módulo Troncal (Haros, 2011)



**Figura 2-5** Elementos de una Red Telefónica Básica **Fuente:** https://es.slideshare.net/chris10rz/red-telefnica-de-conmutacin-pblica-pstn-15304430

Módulo de Acceso está integrado por segmentos de red en cable de cobre o de fibra óptica:

- Segmento de Red Primaria
- Segmento de Red Secundaria
- Segmento de Dispersión (Haros, 2011)

Módulo de Conmutación puede estar integrado por una sola central telefónica de conmutación o por más de una. La configuración mínima de red permite la interconexión con las demás redes telefónicas adyacentes y/o complementarias. Este módulo está integrado por: (Haros, 2011).

- Etapa de abonado
- Matriz de Conmutación
- Etapa Troncal
- Procesamiento y control
- Señalización
- Sincronismo
- Gestión (Haros, 2011)

Al Módulo Troncal pertenecen todos los equipos e infraestructura necesarios para la conexión entre las diferentes centrales telefónicas de conmutación, cuando hay más de una central en la red, y para la interconexión de la red con las demás redes telefónicas adyacentes y/o complementarias, mediante fibra óptica con tecnología SDH (Synchronous Digital Hierarchy) (Haros, 2011).

## 2.2.5. Fibra Óptica

La fibra óptica es un medio guiado para transmitir información en forma de luz (visible o infrarroja), muy utilizada en la actualidad por las ventajas que ofrece en relación a otros medios como: el par trenzado, cable coaxial, aire, etc. (Prieto, 2014).

Las ventanas típicas en las que opera la fibra óptica son los 850, 1310 y 1550 nm de longitud de onda correspondiente a la luz infrarroja, sin que esto signifique que en la fibra óptica no opere la luz visible, la cual, tendrá una mayor atenuación que el infrarrojo (Prieto, 2014).

En el transmisor se necesita un conversor electro-óptico para pasar señales eléctricas a señales luminosas, mientras que en el receptor se necesitará un conversor óptico-eléctrico que transforma las señales ópticas a eléctricas (Prieto, 2014).

### 2.2.5.1. Ventajas de la Fibra Óptica.

Entre las ventajas que tiene la fibra óptica se citan las siguientes:

• Permite altas velocidades de transmisión por el gran ancho de banda que soporta.

- Son inmunes a la diafonía (crosstalk), en pares de cobre se presenta acoplamiento magnético entre conductores, la fibra óptica está construida de plástico o vidrio, es decir, no son conductores y eliminan este problema.
- Son inmunes a la interferencia por estática, es decir son inmunes al ruido causado por motores eléctricos, rayos, luces fluorescentes, etc.
- No generan ruido electromagnético debido a que como se dijo anteriormente las fibras están construidas con materiales no conductores y por lo tanto no radian energía.
- Las fibras eléctricas no transmiten señales eléctricas sino luz, por esta razón son más seguras que los medios que transportan señales eléctricas en ambientes con presencia de gases o líquidos volátiles.
- Se puede decir que el costo por metro de fibra óptica, en la actualidad, es aproximadamente igual al cobre. Los sistemas de fibra óptica tienen menor atenuación, lo que representa un menor número de equipos repetidores y amplificadores, razón por la que se reduce costos en este sentido (Prieto, 2014).

## 2.2.5.2. Desventajas de la Fibra Óptica.

- Los equipos de interconexión de fibra son costosos, para que la instalación sea útil, la transformación de las señales eléctricas en luz requerirán de conversores opto-eléctricos, además de otros equipos como multiplexores y de multiplexores.
- Tienen menor resistencia a la tensión mecánica que otros medios de transmisión como el cable coaxial. Esto puede solucionarse con recubrimientos en la fibra con chaquetas protectoras de PVC o Kevlar normal (polímero altamente cristalino).
- Es más difícil así como costosa la reparación y empalme de la fibra óptica en relación al cobre (Prieto, 2014).

### 2.2.5.3. Refracción, índice de refracción y Ley de Snell

En fibra óptica, uno de los fenómenos físicos más importantes relacionados con la propagación de ondas electromagnéticas, es la refracción de la luz. Un rayo de luz o en general una onda electromagnética se refracta cuando pasa de un material a otro, más concretamente cuando se propaga desde un material con cierta densidad a otro con distinta densidad. La refracción implica que una onda cambie de velocidad y dirección en el límite de los dos materiales.Para que exista refracción la onda incidente debe llegar en forma oblicua a la superficie de separación de los dos medios (González & Vega, 2009).

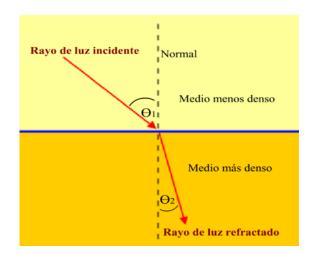



Figura 2-6 Refracción de un rayo de luz.

Fuente: (González y Vega, 2009).

En la Figura 2-6., se visualiza la refracción de la luz, cuando un rayo pasa de un medio menos denso a uno más denso, se puede observar como el rayo refractado es desviado hacia la normal  $(\Theta 1 > \Theta 2)$ . Por el contrario, si un rayo pasa de un medio más denso a uno menos denso, el rayo refractado se desvía con un mayor ángulo en relación con la normal  $(\Theta 1 < \Theta 2)$  (González y Vega, 2009).

La cuantificación de la desviación o refracción en el límite de dos materiales de diferente densidad se puede determinar, y depende del índice de refracción (η) propio de cada medio o material (González y Vega, 2009).

El índice de refracción está dado por la siguiente ecuación:

$$n = \frac{c}{v}$$

Fuente: (González & Vega, 2009)

Donde:

- $\triangleright$  c: es la velocidad de la luz en el espacio libre (3\*10<sup>8</sup> m/s)
- v: es la velocidad de la luz en el material.

Con la ayuda de la figura anterior, la Ley de Snell se resume en la siguiente ecuación:

 $n1sen\emptyset1 = n2sen\emptyset2$ 

Fuente: (González & Vega, 2009)

Donde:

*n1*= índice de refracción en el primer material (adimencional)

*n2* = índice de refracción en el segundo material (adimencional)

 $\Theta$ 1 = ángulo de incidencia (grados)

Θ2= ángulo de refracción (grados) (González & Vega, 2009).

#### 2.2.5.4. Fibra Monomodo

Las fibras monomodo poseen un diámetro del núcleo muy estrecho, de manera que solo permiten un modo de transmisión. Poseen una atenuación típica de entre 0,1 dB y 0,4 dB por kilómetro. El núcleo mide entre 8 µm y 10 µm, por lo que requiere un acoplamiento de la luz muy confinado y preciso. Este diámetro tan estrecho causa además, que el haz se propague siguiendo una trayectoria muy paralela al eje de la fibra por lo que se evita el desfase al final de la transmisión y reduce la dispersión causada (Prieto, 2014).

Aunque la dispersión modal no tenga sentido en la fibra monomodo, sí que la tiene por contrario, la dispersión cromática. Al disponer de un ancho de banda tan elevado, existe el problema de que no todas las longitudes de onda llegan al mismo tiempo a su destino, por lo que la dispersión cromática tiene un efecto muy considerable sobre el diseño (Prieto, 2014).

El elevado ancho de banda de este tipo de fibras, junto con sus bajas pérdidas y su dispersión modal inexistente, la convierten en una fibra idónea para enlaces de larga distancia. No obstante a menudo requiere de una minuciosa instalación y mantenimiento, ya que su minúsculo diámetro da lugar a un cono de aceptación sustancialmente menor que el de las fibras multimodo (Prieto, 2014).

No fue hasta que se solucionaron los problemas del acoplo de la señal de luz al núcleo de la fibra óptica mediante lentes esféricas, y habiendo perfeccionado las técnicas de empalme y conectorización de fibras, cuando se comenzó a trabajar con fibras monomodo para así poder eliminar el problema de la dispersión intermodal. Fue este tipo de fibra el que permitió las redes de larga distancia mediante comunicaciones ópticas (Prieto, 2014).

#### 2.2.5.5. Fibra Multimodo

En las fibras multimodo se engloban todas aquellas en las cuales el diámetro del núcleo de este tipo de fibras es amplio, por lo que es capaz de propagar varios modos de transmisión simultáneamente. Poseen una atenuación típica de entre  $0.3~\mathrm{dB}$  y  $1~\mathrm{dB}$  por kilómetro. El núcleo mide en torno a  $50~\mu\mathrm{m}$  ó  $62.5~\mu\mathrm{m}$ , por lo que el acoplamiento de la luz en sus diferentes modos es más sencillo. Debido a esto, es posible utilizar un LED como fuente emisora, así como conectores más sencillos y una instalación y mantenimiento con menos coste que la fibra monomodo (Prieto, 2014).

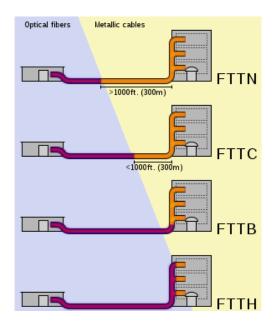
Las fibras ópticas multimodo pueden construirse de índice de refracción fijo, o bien de índice gradual. Las fibras de índice de refracción fijo o salto de índice, presentan un salto brusco entre el núcleo y el revestimiento que además, es constante en ambos. En las fibras multimodo de índice gradual el núcleo posee un índice que varía decreciendo según el radio desde el eje hacia el exterior (Prieto, 2014).

El hecho de que transmitan varios modos simultáneamente, hace que este tipo de fibras posean una dispersión particular llamada dispersión intermodal. Se produce debido a que los haces de luz recorren distancias diferentes y no llegan a su destino al mismo tiempo (Prieto, 2014).

Dentro de las fibras multimodo, las de índice gradual poseen menos dispersión intermodal ya que los haces de luz describen direcciones onduladas, de manera que los más cercanos al eje recorren menos distancia pero son más lentos. Una dispersión intermodal más baja, permite que éste tipo de fibras admitan distancias de propagación mayores que las de índice escalonado (Prieto, 2014).

Este tipo de fibra inicialmente fue el más utilizado debido a los problemas mecánicos que se presentaban a la hora de trabajar con las fibras monomodo. Estos problemas estaban relacionados con el acoplo de la señal de luz al interior del núcleo de la fibra, con el cortado y empalmado de las fibras, así como con la conectorización de estas (Prieto, 2014).

De ahí, que los primeros sistemas de comunicaciones ópticas empleasen fibras multimodo de salto de índice. Más tarde se desarrollarían las fibras multimodo de índice gradual que paliaron en gran medida el problema de la dispersión intermodal (Prieto, 2014).


#### **2.2.6.** *Redes FTTx*

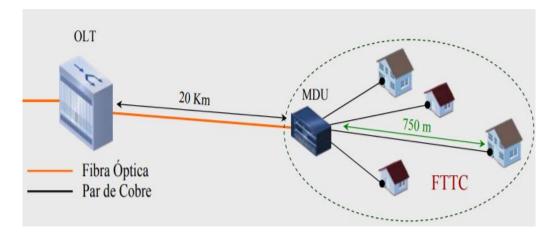
El desarrollo de la fibra óptica monomodo con su enorme capacidad de transmisión, ha abierto la puerta al despliegue de redes ópticas punto a punto. El uso de la fibra como sustituto del cable de cobre ha permitido aumentar de forma significativa la calidad del servicio (QoS) sin sufrir aumentos relevantes del precio de este, permitiendo de esta manera que cada vez haya más usuarios que adquieran este tipo de servicio.

El acrónimo FTTx es conocido ampliamente como Fiber-to-the-x, donde x puede denotar distintos destinos (Marchukov, 2011).

Los más importantes son:

- FTTN (Fiber-to-the-node): el tramo de fibra termina en una cabina situada en la calle de entre 1,5 a 3 km del usuario.
- FTTC (Fiber-to-the-curb): hasta la acera y la terminación con xDSL hasta la residencia. En este caso la cabina se encuentra más próxima al usuario, a una distancia entre 300 y 600 metros.
- FTTB (Fiber-to-the-building o Fiber-to-the-basement): el proveedor de servicio llega hasta el cuarto de distribución del edificio. A partir de este punto se llega hasta el usuario normalmente utilizando par de cobre.
- FTTH (Fiber-to-the-home): la fibra llega al interior o a la fachada de la vivienda (Marchukov, 2011).




**Figura 2-7** Arquitecturas FTTx. **Fuente:** (Marchukov, 2011)

#### 2.2.6.1. Red FTTC

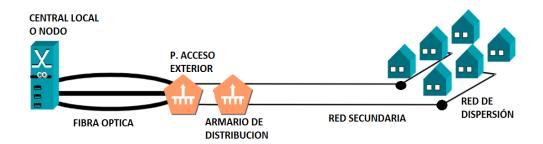
Fibra hasta la acera es una arquitectura avanzada de red de fibra/cobre híbrida que ofrece más capacidad de ancho de banda que las redes de cobre tradicionales. La arquitectura híbrida de fibra/cobre utiliza infraestructura de fibra óptica implementada desde el centro de conmutación central hasta la acera y aprovecha el uso de la infraestructura de cobre heredada existente para el suscriptor final (Marchukov, 2011).

El nodo de conexión se encuentra a una distancia inferior a los 300 metros del punto final (la conexión en el domicilio). Al ser el sistema FTTC un sistema en banda base el mecanismo de multiplexado para repartir la información a los usuarios se realiza con técnicas TDM. El multiplexado de la unidad óptica puede realizarse mediante un conmutador ATM que maneja anchos de banda del bucle de abonado cercanos a los 50 Mbits sobre cable de cobre (Marchukov, 2011).

La MDU (Multi-Drewling Unit) sería en este caso un mini-DSLAM con un puerto GPON hacia la central del operador y puertos VDSL2, en ocasiones también ofrecen puertos RF, E1/T1 o FE/GbE) hacia los usuarios (Marchukov, 2011).



**Figura 2-8** Topología FTTC. **Fuente:** Alba Verónica Ramos Flores, 2019.


## 2.2.6.2. Red de Acceso FTTC

La red de acceso consta de toda serie de elementos y equipamientos necesarios para realizar la conexión entre el proveedor de servicio y el bucle de abonado. El nodo central es el punto en el cual los proveedores de servicios realizan la interconexión con la red de acceso. La red de acceso local se denomina como "la última milla" o "el bucle local". La red de acceso puede ser

implementada de distintas maneras, pero la mejor elección es el medio de acceso óptico. Esto es, se considera una de las mejores opciones para el futuro debido al inmejorable rendimiento que ofrece la fibra óptica para las redes FTTC, gran capacidad, pocas pérdidas, etc., (Marchukov, 2011).

Una Red de Planta Externa se encuentra conformada por:

- Red de Dispersión
- Red Secundaria
- Plataforma de Accesos
- Armario de Distribución (Reflejo) según el escenario.
- Fibra Óptica Central local o nodo.(CNT EP, 2015).



**Figura 2-9** Red de Planta Externa **Fuente:** Alba Verónica Ramos Flores, 2019.

## 2.2.6.3. Arquitectura de red FTTH

La sección óptica de un sistema de red de acceso local puede ser activa o pasiva y su arquitectura puede ser punto a punto o punto a multipunto. La figura11-2 muestra las arquitecturas disponibles, que van de la fibra hasta la vivienda FTTH, pasando por la fibra hasta el edificio/a la acometida (FTTB/C, fibre to the building/curb), hasta la fibra hasta el armario (FTTCab, fibre to the cabinet) (ITU-T, 2003).

La OAN (red de acceso óptico) es común a todas las arquitecturas presentadas en la figura 11-2; por consiguiente, la uniformidad de este sistema ofrece la posibilidad de generar grandes volúmenes a escala mundial. Las diferencias entre las opciones de red fibra al edificio (FTTB, fibre to the building), fibra a la acometida (FTTC, fibre to the curb), fibra al armario (FTTCab, fibre to the cabinet) y FTTH estriban principalmente en los distintos servicios que ofrecen, y por lo tanto pueden tratarse como equivalentes en esta Recomendación (ITU-T, 2003).

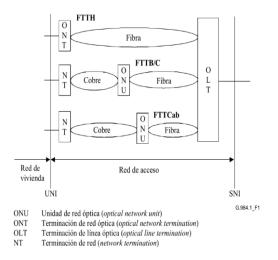
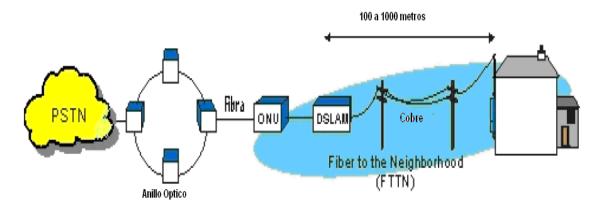



Figura 2-10 Red de Planta Externa

**Fuente:** (ITU-T, 2003)

## 2.2.7. Armarios Inteligentes


Dentro de una red NGN un componente clave en los nodos de distribución se encuentra los armarios inteligentes, que proporcionan el servicio de Voz sobre IP (VoIP) y servicios de banda ancha, integra las plataformas de tecnología DSLAM. Los armarios contienen los equipos DSLAM que se necesita para dar el servicio con tecnología VDSL. Esto permite el aprovisionamiento de los servicios de banda ancha a los usuarios, además estos dispositivos permiten utilizar gran parte de los elementos de la red actual (Sigüencia & Villacreses, 2011).

El objetivo es dar cobertura a los usuarios que no poseen acceso a los servicios VDSL, para suministrar altas velocidades, del orden de 50 Mbit/s, lo que podría suponer efectivamente un salto cuantitativo significativo respecto a la tecnología ADSL y posibilitar servicios como la recepción simultánea de varios canales de televisión en formato de alta definición, sería necesario situar el equipo DSLAM a una distancia más próxima al usuario, del orden de 200–300 metros (Sigüencia & Villacreses, 2011).

Puesto que el número de bucles de corta longitud en las centrales es muy reducido, para dar este servicio a un porcentaje amplio de la población es necesario ubicar los equipos DSLAM no en la central, sino en armarios situados a la distancia necesaria de los usuarios (Sigüencia y Villacreses, 2011).

La arquitectura resultante sería la esquematizada en la Figura 12-2. Si la velocidad objetivo fuese menor (de unos 25 Mbit/s), desde central se podría cubrir a una parte importante de la población (Sigüencia y Villacreses, 2011).

Los armarios inteligentes pueden estar situados en la calle o en un local (como sótanos de edificios) y darían servicio a los usuarios que estuvieran dentro del área de cobertura. Los pares de cobre provenientes de los usuarios servidos confluirían de este modo en estos armarios. Su situación, por tanto, debe considerar el trazado de la planta exterior de cobre existente (Sigüencia & Villacreses, 2011).



**Figura 2-11** Topologías FFTN + VDSL. **Fuente**:(Sigüencia & Villacreses, 2011)

#### 2.2.8. *Mediciones Eléctricas*

#### 2.2.8.1. Resistencia de Bucle

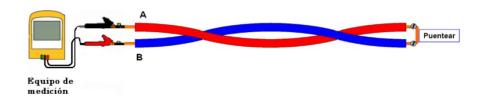

El objetivo principal es detectar fallas de continuidad (abiertos), es decir verificar que el cable en sí y las uniones en los respectivos empalmes del par en prueba estén correctamente elaboradas. La condición óptima de resistencia de bucle para los pares seleccionados debe ser menor ó igual a 900 Ohmios, adicionalmente se deben considerar los valores que se encuentran en la tabla 7-2 esto debido a que en la actualidad a más de servicio de voz se brinda servicio de transmisión de datos (CNT EP, 2012).

Tabla 2-6 Valores Resistencia de Bucle

| SERVICIOS                    | RESISTENCIA<br>DE LAZO | CONDUCTOR<br>DE 0.4mm. |
|------------------------------|------------------------|------------------------|
| Servicio de Voz              | ≤900 Ω                 | 4,28 Km.               |
| Servicios xDSL hasta 1Mbps   | ≤900 Ω                 | 3.080 Km.              |
| Servicios xDSL hasta 2Mbps   | ≤710 Ω                 | 2.570 Km.              |
| Servicios xDSL hasta 3Mbps   | ≤590 Ω                 | 2.140 Km.              |
| Servicios xDSL hasta 4 Mbps  | ≤ 505 Ω                | 1.825 Km.              |
| Servicios xDSL hasta 5Mbps   | ≤383 Ω                 | 1.390 Km.              |
| Servicios xDSL hasta 10 Mbps | $\leq 154\Omega$       | 0.555 Km.              |

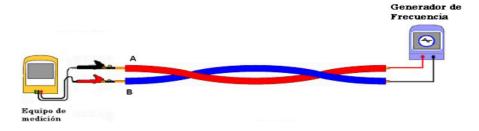
Fuente: CNT EP. 2017

Realización de la Prueba: La prueba se debe realizar desde el MDF (Distribuidor o Armario), en todo el recorrido del par hasta la caja Terminal respectiva, sea esta de red rígida (directa) ó red flexible. Se sugiere hacerlo en cuatro pares cualquiera de cada regleta para la red primaria y para la red secundaria dos pares por cada caja de dispersión. Para esto se debe corto circuitar en uno de los extremos el par a realizar la prueba y en el otro extremo el equipo para ver el valor de la resistencia de bucle (CNT EP, 2012).



**Figura 2-12** Esquema de Medición Resistencia de Bucle. **Fuente:** (CNT EP, 2012).

#### 2.2.8.2. Atenuación

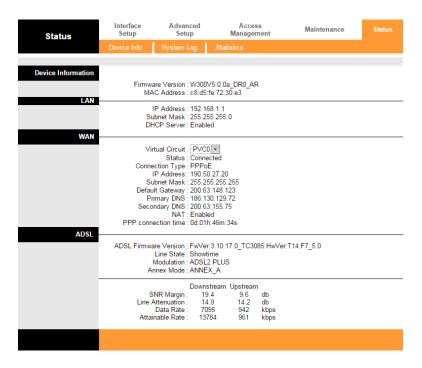

El Objetivo es verificar que los valores de perdida por inserción a una frecuencia determinada sea la que corresponda a la simetría del par en prueba y satisfaga los valores de atenuación establecidos (CNT EP, 2012).

Realización de la Prueba: La prueba debe ser realizada para el par en todo su recorrido, desde el MDF (Distribuidor o Armario) directo a la caja de dispersión respectiva. Inyectar una frecuencia de 1.000 y 1.600 Hz, como prueba básica del par en cable 0.4mm, los valores aceptados son:

Para 1000 Hz < = 1.622 dBm/km

Para 1600 Hz < = 2.052 dBm/Km

Se acepta una tolerancia de  $\pm$  10% (CNT EP, 2012).




**Figura 2-13** Esquema de Medición Atenuación. **Fuente**: (CNT EP, 2012)

Relación Señal a Ruido (SNR): En la relación señal a ruido el esquema de modulación DMT utiliza subcanales donde se envían los bits de información, estos son modulados usando modulación digital QAM, a medida que se envían más símbolos en cada subcanal implica que la relación señal a ruido tiene que ser mayor.

La relación señal a ruido puede ser medida de dos formas:

- a) Utilizando equipos de medición que cumplan con la normas ANSI.T1.413 y UIT-T G.992.1
- b) A través del equipo CPE (Equipo Local del Cliente),(Mynor & Ramírez, 2011)



**Figura 2-14** Medición de SNR Equipo del Cliente. **Fuente:** Alba Verónica Ramos Flores, 2019.

## 2.2.8.3. Protocolos de Pruebas

## Redes de Cobre

Para la recepción de redes de cobre se realizarán las siguientes pruebas:

Tabla 2-7 Parámetros de Prueba

| TIPO DE PRUEBA                                | PATRÓN DE ACEPTACIÓN                                                                                                                                    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDENTIFICACIÓN Y CONTINUIDAD                  | EL 100% DE TODOS LOS PARES                                                                                                                              |
| RESISTENCIA AL AISLAMIENTO                    | 10.000 MEGAOHMIOS / KM A 500 VDC                                                                                                                        |
| RESISTENCIA DE TIERRA                         | MÁXIMO ADMISIBLE 10 OHMIOS EN CAJAS EN POSTES O                                                                                                         |
|                                               | MURALES Y EMPALMES Y DE 5 OHMIOS EN ARMARIOS.                                                                                                           |
|                                               | (TODOS LOS PUNTOS AL MISMO NIVEL DE POTENCIAL).                                                                                                         |
|                                               | PARA LLEGAR A ESTOS VALORES DE RESISTENCIA SE                                                                                                           |
|                                               | INSTALARÁ EL SISTEMA DE PUESTA A TIERRA MAS                                                                                                             |
|                                               | ADECUADO.                                                                                                                                               |
| RESISTENCIA DE BUCLE                          | DEPENDE DEL CALIBRE. 280 OHM/KM. PARA CABLES DE                                                                                                         |
|                                               | $\emptyset = 0.4 \text{ mm} +/-5\%$                                                                                                                     |
| DESEQUILIBRIO RESISTIVO                       | NO EXCEDERÁ DEL 1.5% PROMEDIO Y 5% MÁXIMO PAR                                                                                                           |
| RUIDO DE TIERRA                               | NO EXCEDERÁ DE –45 DBM EN SU VALOR ABSOLUTO                                                                                                             |
| RUIDO METÁLICO                                | NO EXCEDERÁ DE –70 DBM EN SU VALOR ABSOLUTO                                                                                                             |
|                                               |                                                                                                                                                         |
| ATENUACIÓN                                    | PARA 0.4 mm Y 1000 Hz. DEBERÁ SER 1.622 DB/KM +/- 10%                                                                                                   |
|                                               | 1600 Hz. DEBERÁ SER MENOR QUE 2.052 DB/KM                                                                                                               |
| DIAFONÍA                                      | DEBERÁ SER SUPERIOR A –60 DB A 1600 Hz                                                                                                                  |
| VOLTAJE INDUCIDO                              | MÁXIMO ADMISIBLE 2 VAC                                                                                                                                  |
| CONTINUIDAD DE LA                             | LA RESISTENCIA DE PANTALLA DEBERÁ SER MÁXIMO 5                                                                                                          |
| PANTALLA                                      | OHMIOS/KM                                                                                                                                               |
| DIAFONÍA  VOLTAJE INDUCIDO  CONTINUIDAD DE LA | 1600 Hz. DEBERÁ SER MENOR QUE 2.052 DB/KM  DEBERÁ SER SUPERIOR A –60 DB A 1600 Hz  MÁXIMO ADMISIBLE 2 VAC  LA RESISTENCIA DE PANTALLA DEBERÁ SER MÁXIMO |

Fuente: (CNT EP, 2012)

# 2.2.9. Redes de Fibra Óptica

Para la recepción de las redes de fibra óptica se realizarán las siguientes pruebas:

- Prueba de hermeticidad de las cajas de empalme
- Prueba de verificación de Marker (cámaras interurbanas)
- Prueba de verificación de ductos (mandrilado)
- Revisión de cámaras y/o postes
- Medición de la longitud óptica
- Medición de la pérdida total del trayecto
- Potencia retrodifusa
- Conexiones y terminaciones en distribuidores de fibra óptica. (CNT EP, 2015)

El control se efectuará según el siguiente detalle:

- Medida de la longitud óptica verificada en dos fibras.
- Pérdida total de trayecto efectuada al 100%
- Gráficas de retrodifusión efectuadas al 100%
- Pérdida de los empalmes medidos al 100%

- Pérdida de conexión a nivel del distribuidor de fibra óptica al 100%.
- Inspección visual de la instalación en áreas de acceso directo en toda la red de fibra óptica. (CNT EP, 2015)

Para el cálculo de la atenuación total de la red de fibra se debe considerar lo siguiente:

- Pérdida máxima por empalme: 0,1 dB
- Pérdida máxima por conector en ODF: 0,5 dB
- Atenuación máxima en cable de fibra G.652: 0.35 @ 1550nm

Potencia retrodifusa recibida en conector máxima: -50 dBm (CNT EP, 2015)

## CAPÍTULO III

## 3. METODOLOGÍA DE LA INVESTIGACIÓN

## 3.1. Recopilación y Análisis de Datos para el Diseño de la Red.

## 3.1.1. Enfoque de la investigación

Esta investigación tiene un enfoque cualitativo y cuantitativo, porque se basará en métodos para la recolección de datos, que servirán para documentar en la investigación, datos cuantitativos que determinaran los resultados y conclusiones finales, así mismo como las descripciones y observaciones directamente desde el sitio investigado, permitiendo realizar un estudio exhaustivo, centralizado y profundo, mediante la realización de una investigación objetiva y controlada consiguiendo así niveles de validez y confiabilidad a los eventos y respuestas obtenidas, indagando las causas y explicaciones de los hechos de estudio.

## 3.1.2. Métodos De Investigación

Se utilizarán los siguientes métodos de investigación:

- **De campo:** En la cual permitirá la obtención de la información directamente en el lugar de investigación mediante la recolección de información, permitiendo identificar a profundidad los problemas existentes.
- Deductivo: Porque se analizará el problema desde su globalidad para establecer soluciones específicas que ayudarán a mejorar la calidad del servicio en la nueva red implementada.
- Inductivo: Debido a que se basara en la observación y la experimentación empezando
  por recolección, el análisis de los datos para luego llegar a una conclusión general.
   Científico: Ya que se basa en una serie de pasos sistemáticos (formular el problema,
  recopilar datos, probar la hipótesis y concluir) e instrumentos que nos permiten realizar
  la presente investigación.

- Experimental: Debido a que en la presente investigación se manipularan variables con el objetivo de evaluar y examinar los efectos que se manifiestan en la variable dependiente cuando se introduce la variable independiente, es decir observar sus consecuencias, en este caso el mejoramiento de calidad de servicio.
- Analítico: Se analizará cada elemento de la red para observar las causas, la naturaleza y
  los efectos para comprender de mejor manera su comportamiento. Este método nos
  permite conocer más del objeto de estudio, con lo cual se puede: explicar, hacer
  analogías, comprender mejor su comportamiento y establecer nuevas teorías.

## 3.1.3. Alcance de la investigación

El alcance de este trabajo investigativo es de carácter aplicado con una connotación experimental y correlacional debido a que se tuvo la integración de variables o índices técnicos eléctricos tales como resistencia de bucle, aislamiento, longitud de la línea, balance longitudinal, voltajes de AC y DC y relación señal a ruido SNR, se pretende saber cómo se comporta una variable respecto a la otra y describir su relación, así como el análisis sobre el aporte a favor o en contra de la hipótesis.

#### 3.1.4. Población de estudio

La población para este estudio se considera a todos los usuarios del servicio de telefonía fija e internet suscritos a la Corporación Nacional de Telecomunicaciones Empresa Pública en el sector de Guano, actualmente son un total de 1798 usuarios distribuidos es 6 sectores estratégicos.

## 3.1.5. Unidad de análisis

La unidad de análisis que referencia a la presente investigación, es la disponibilidad de los datos de la CNT EP. Perteneciente a una de las empresas de distribución del servicio telefónico fijo más grandes del Ecuador. Para el correcto uso de los datos se consideró analizarlos previo al ingreso del modelo, y para algunos casos se depuró la información obtenida eliminando datos atípicos presentados por los equipos que realizaron mediciones en campo, para el efecto se utilizaron métodos convencionales para el tratamiento de datos en aras de mejorar la confiabilidad de los mismos. Los datos a ser analizados serán todos y cada uno de los valores obtenidos durante las pruebas de campo realizadas de los parámetros de la red como son:

Resistencia de bucle, aislamiento, longitud de la línea, voltajes de AC y DC y relación señal a ruido SNR.

#### 3.1.6. Selección de la muestra

Se cuenta con una muestra de tipo probabilística ya que todos los elementos de la población tienen la misma probabilidad de ser escogidos. Debido a que la población esta subdividida en sectores o estratos, para seleccionar el tamaño de la muestra se utilizara un muestreo estratificado aleatorio de la población en estudio.

## 3.1.7. Tamaño de la muestra

Sera obtendrá mediante la respectiva formula estadística correspondiente al muestreo estratificado aleatorio, que nos determina su tamaño en consideración al parámetro de estudio y el tipo de población, debiéndose calcular para cada uno de los sectores involucrados en la presente trabajo de investigación.

$$n = \frac{Z^2 * q * p * N}{N * E^2 + Z^2 * (p * q)}; (1)$$

En donde:

N: Tamaño de la Población

E: Error o Precisión =>(0.10) = 10%

Z: Nivel de Confianza =>(1.96) correspondiente al 95%

p: Variabilidad Positiva =>(0.5)

q: Variabilidad Negativa => (0.5)

Tabla 3-1 Cálculo de la Muestra.

| Sectores | Distritos  | Usuarios | Muestra      |
|----------|------------|----------|--------------|
| Sector 1 | Distrito 1 | 503      | 80 usuarios  |
| Sector 2 | Distrito 2 | 306      | 73 usuarios  |
| Sector 3 | Distrito 3 | 328      | 74 usuarios  |
| Sector 4 | Distrito 4 | 205      | 65 usuarios  |
| Sector 5 | Distrito 5 | 224      | 67 usuarios  |
| Sector 6 | Distrito 6 | 232      | 68 usuarios  |
| TOTAL    |            | 1798     | 427 abonados |

Fuente: Alba Verónica Ramos Flores

## 3.1.8. Técnicas de recolección de datos primarios y secundarios.

- Revisión Documental: para recopilar archivos de datos primarios y secundarios con el objetivo de obtener información relacionada al tema de estudio.
- Lectura: para la comprensión de información o ideas primarias y secundarias en textos, artículos científicos y Normativas vigentes referentes al tema de estudio.
- Observación: para las fuentes primarias y secundarias verificando los datos y su comportamiento permitiendo determinar los resultados de las pruebas realizadas en campo.

## 3.1.9. Instrumentos para la recolección de datos

- Para la revisión documental y lectura se realizará fichas bibliográficas.
- Para la observación fichas de las mediciones de los parámetros de la red.
- Para la realización de las pruebas de campo se utilizará el Equipo Dynatel 965AMS.

Adicionalmente, se utilizarán recursos clásicos de recopilación de información que permitieron dar nuevas aristas a la investigación desarrollada, el apoyo en estas fuentes informativas (libros, artículos, revistas, etc.) fue crucial para el desarrollo del estudio del arte del presente trabajo investigativo, lo cual permitió avizorar de una forma anticipada el modelo mitigante planteado para el presente proyecto de titulación.

## 3.1.10. Instrumentos para procesar datos recopilados

- Excel
- Tabulación organizada
- Sistema Open Flexis (CNT EP.)

## 3.2. Recopilación y análisis de la información

El presente capítulo de este trabajo investigativo se orienta en cuatro fases debidamente detalladas y analizadas, siempre con el propósito de cumplir con el objetivo principal, el cual es mejorar el servicio en redes telefónicas, las cuatro fases planteadas son:

- Recopilación de los datos.
- Mediciones eléctricas.
- Análisis de los datos.
- Selección del distrito Crítico.



**Figura 3-1** Detalle las fases del trabajo. **Fuente:** Alba Verónica Ramos Flores, 2019.

En la figura (Figura 3-1) se indica las fases utilizadas en el presente proyecto.

## 3.2.1. Recopilación de los datos.

Según los planos de la red de cobre de la CNT EP del sector de Guano en la actualidad se encuentra conformada por 6 distritos en el cantón Guano en un total de 1798 usuarios, como muestra la Tabla 1-1, mediante la ecuación (2) nos permitió determinar el tamaño de la muestra obteniendo como resultado los datos de la tabla 1-3 por cada distrito los cuales serán tomados de forma aleatoria para realizar las mediciones eléctricas en la respectivas redes telefónicas. Adicional a esto se solicitó los listados de los clientes existentes en cada distrito, información adquirida del sistema Open Flexis y GIS de la CNT EP., y con la ayuda de un generador aleatorio de números se seleccionó las redes telefónicas a ser medidas.

#### 3.2.2. *Mediciones Eléctricas*.

Para la realización de las pruebas de campo se utilizó el Equipo Dynatel 965AMS este quipo combina los instrumentos de medición más comunes de uso en redes de telecomunicaciones de cobre para Voz y Banda Ancha con la facilidad de usar módulos de prueba enchufables, posee un TDR + Analizador + Localizador de fallas en red Telefónica + MODEM ADSL2. A continuación en las tablas 2-3,3-3,4-3,5-3,6-3 y 7-3 se detalla los valores de las mediciones realizas.

# 3.2.2.1. Mediciones Eléctricas Distrito 1

Se realizaron las mediciones en las redes telefónicas de 80 clientes, como se muestra en la (tabla 10-3).

**Tabla 3-2** Mediciones eléctricas Distrito 1.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NÚMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 1     | 487             | 60     | 41  | A1   | 1   | 32902000 | 0.787                | OL               | 0.04              | 0                 | 217.999                  | 11.805             | 23       |
| 1     | 137             | 21     | 10  | A2   | 6   | 32900448 | 0.803                | OL               | 0.16              | 0                 | 222.431                  | 12.045             | 15       |
| 1     | 56              | 60     | 39  | A2   | 7   | 32900188 | 0.822                | OL               | 0.13              | 0                 | 227.694                  | 12.33              | 17       |
| 1     | 449             | 23     | 35  | A2   | 10  | 32901898 | 0.844                | OL               | 0.05              | 0                 | 233.788                  | 12.66              | 28       |
| 1     | 351             | 24     | 22  | A3   | 5   | 32901498 | 1.058                | OL               | 0.03              | 0                 | 293.066                  | 15.87              | 17       |
| 1     | 177             | 19     | 38  | A3   | 8   | 32900603 | 0.957                | OL               | 0.02              | 0                 | 265.089                  | 14.355             | 28       |
| 1     | 180             | 20     | 43  | A4   | 5   | 32900608 | 0.896                | OL               | 0.08              | 0                 | 248.192                  | 13.44              | 20       |
| 1     | 378             | 58     | 45  | A4   | 6   | 32901685 | 0.913                | OL               | 0.08              | 0                 | 252.901                  | 13.695             | 16       |
| 1     | 76              | 21     | 7   | A5   | 3   | 32900265 | 0.967                | OL               | 0.11              | 0                 | 267.859                  | 14.505             | 25       |
| 1     | 5               | 20     | 2   | A5   | 5   | 32900024 | 0.99                 | OL               | 0.04              | 0                 | 274.23                   | 14.85              | 25       |
| 1     | 181             | 20     | 46  | A5   | 8   | 32900609 | 0.869                | OL               | 0.05              | 0                 | 240.713                  | 13.035             | 32       |
| 1     | 306             | 19     | 11  | B1   | 10  | 32901093 | 0.912                | OL               | 0.01              | 0                 | 252.624                  | 13.68              | 25       |
| 1     | 184             | 21     | 22  | B2   | 3   | 32900613 | 0.898                | OL               | 0.02              | 0                 | 248.746                  | 13.47              | 25       |
| 1     | 480             | 23     | 43  | B2   | 7   | 32901976 | 0.916                | OL               | 0.07              | 0                 | 253.732                  | 13.74              | 21       |
| 1     | 330             | 24     | 27  | B2   | 10  | 32901265 | 0.942                | OL               | 0.14              | 0                 | 260.934                  | 14.13              | 32       |
| 1     | 99              | 20     | 24  | В3   | 4   | 32900339 | 0.715                | OL               | 0.03              | 0                 | 198.055                  | 10.725             | 18       |
| 1     | 154             | 21     | 39  | B4   | 7   | 32900529 | 0.749                | OL               | 0.15              | 0                 | 207.473                  | 11.235             | 29       |
| 1     | 292             | 24     | 42  | B4   | 10  | 32900972 | 0.771                | OL               | 0.13              | 0                 | 213.567                  | 11.565             | 27       |
| 1     | 149             | 22     | 9   | В5   | 1   | 32900516 | 0.828                | OL               | 0.15              | 0                 | 229.356                  | 12.42              | 19       |
| 1     | 117             | 20     | 41  | В5   | 7   | 32900386 | 0.864                | OL               | 0.18              | 0                 | 239.328                  | 12.96              | 27       |
| 1     | 168             | 24     | 35  | В5   | 8   | 32900575 | 0.767                | OL               | 0.15              | 0                 | 212.459                  | 11.505             | 18       |

| 1 | 62  | 24 | 21 | C1 | 7  | 32900223 | 0.926 | OL | 0.15 | 0 | 256.502 | 13.89  | 26 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 1 | 95  | 20 | 22 | C3 | 4  | 32900320 | 0.975 | OL | 0.01 | 0 | 270.075 | 14.625 | 21 |
| 1 | 204 | 22 | 32 | C3 | 8  | 32900639 | 0.993 | OL | 0.12 | 0 | 275.061 | 14.895 | 22 |
| 1 | 77  | 19 | 24 | C4 | 2  | 32900266 | 1.046 | OL | 0.01 | 0 | 289.742 | 15.69  | 30 |
| 1 | 164 | 22 | 1  | C5 | 7  | 32900561 | 0.97  | OL | 0.16 | 0 | 268.69  | 14.55  | 19 |
| 1 | 3   | 19 | 47 | C5 | 9  | 32900011 | 1.048 | OL | 0.07 | 0 | 290.296 | 15.72  | 19 |
| 1 | 158 | 21 | 32 | C5 | 10 | 32900538 | 1.066 | OL | 0.05 | 0 | 295.282 | 15.99  | 22 |
| 1 | 21  | 20 | 6  | D1 | 7  | 32900081 | 0.847 | OL | 0.18 | 0 | 234.619 | 12.705 | 25 |
| 1 | 157 | 22 | 22 | D5 | 7  | 32900535 | 0.885 | OL | 0.07 | 0 | 245.145 | 13.275 | 25 |
| 1 | 198 | 22 | 21 | E1 | 7  | 32900631 | 0.29  | OL | 0.09 | 0 | 80.33   | 4.35   | 17 |
| 1 | 358 | 59 | 43 | E2 | 8  | 32901534 | 0.328 | OL | 0.06 | 0 | 90.856  | 4.92   | 26 |
| 1 | 121 | 58 | 43 | E3 | 2  | 32900397 | 0.366 | OL | 0.12 | 0 | 101.382 | 5.49   | 31 |
| 1 | 393 | 62 | 9  | E3 | 8  | 32901728 | 0.392 | OL | 0.15 | 0 | 108.584 | 5.88   | 17 |
| 1 | 211 | 62 | 5  | E4 | 4  | 32900648 | 0.255 | OL | 0.15 | 0 | 70.635  | 3.825  | 17 |
| 1 | 85  | 21 | 36 | E5 | 3  | 32900288 | 0.229 | OL | 0.16 | 0 | 63.433  | 3.435  | 16 |
| 1 | 49  | 19 | 4  | E5 | 5  | 32900161 | 0.251 | OL | 0.04 | 0 | 69.527  | 3.765  | 15 |
| 1 | 472 | 24 | 43 | E5 | 7  | 32901955 | 0.268 | OL | 0.12 | 0 | 74.236  | 4.02   | 31 |
| 1 | 104 | 20 | 28 | E5 | 10 | 32900345 | 0.284 | OL | 0.06 | 0 | 78.668  | 4.26   | 31 |
| 1 | 428 | 61 | 3  | F3 | 1  | 32901824 | 0.367 | OL | 0.07 | 0 | 101.659 | 5.505  | 18 |
| 1 | 133 | 23 | 10 | F3 | 8  | 32900436 | 0.446 | OL | 0.02 | 0 | 123.542 | 6.69   | 19 |
| 1 | 68  | 20 | 9  | F4 | 2  | 32900238 | 0.565 | OL | 0.18 | 0 | 156.505 | 8.475  | 26 |
| 1 | 113 | 21 | 21 | F4 | 7  | 32900376 | 0.583 | OL | 0.02 | 0 | 161.491 | 8.745  | 27 |
| 1 | 120 | 23 | 29 | F4 | 9  | 32900394 | 0.601 | OL | 0.19 | 0 | 166.477 | 9.015  | 15 |
| 1 | 276 | 24 | 23 | G2 | 5  | 32900953 | 1.667 | OL | 0.12 | 0 | 461.759 | 25.005 | 25 |
| 1 | 280 | 58 | 26 | G3 | 4  | 32900958 | 1.528 | OL | 0.15 | 0 | 423.256 | 22.92  | 21 |
| 1 | 488 | 61 | 9  | G5 | 9  | 32902004 | 1.531 | OL | 0.04 | 0 | 424.087 | 22.965 | 32 |
| 1 | 421 | 61 | 1  | H1 | 1  | 32901804 | 0.737 | OL | 0.04 | 0 | 204.149 | 11.055 | 17 |
| 1 | 167 | 21 | 29 | H1 | 2  | 32900574 | 0.756 | OL | 0.19 | 0 | 209.412 | 11.34  | 16 |

| 1 | 334 | 60 | 40 | H1 | 5  | 32901332 | 0.78  | OL | 0.11 | 0 | 216.06  | 11.7   | 27 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 1 | 163 | 59 | 48 | НЗ | 8  | 32900552 | 0.348 | OL | 0.16 | 0 | 96.396  | 5.22   | 15 |
| 1 | 459 | 21 | 6  | I1 | 7  | 32901927 | 0.646 | OL | 0.01 | 0 | 178.942 | 9.69   | 21 |
| 1 | 159 | 61 | 26 | I1 | 9  | 32900539 | 0.672 | OL | 0.1  | 0 | 186.144 | 10.08  | 25 |
| 1 | 29  | 61 | 48 | I3 | 1  | 32900103 | 0.609 | OL | 0.1  | 0 | 168.693 | 9.135  | 19 |
| 1 | 223 | 23 | 21 | I4 | 8  | 32900669 | 0.661 | OL | 0.09 | 0 | 183.097 | 9.915  | 18 |
| 1 | 442 | 61 | 5  | I5 | 9  | 32901884 | 0.708 | OL | 0.18 | 0 | 196.116 | 10.62  | 16 |
| 1 | 468 | 59 | 7  | J1 | 3  | 32901943 | 0.616 | OL | 0.16 | 0 | 170.632 | 9.24   | 28 |
| 1 | 250 | 59 | 22 | J1 | 10 | 32900839 | 0.639 | OL | 0    | 0 | 177.003 | 9.585  | 30 |
| 1 | 155 | 58 | 49 | J2 | 1  | 32900530 | 0.502 | OL | 0.13 | 0 | 139.054 | 7.53   | 28 |
| 1 | 350 | 61 | 44 | J2 | 3  | 32901496 | 0.586 | OL | 0.09 | 0 | 162.322 | 8.79   | 30 |
| 1 | 423 | 59 | 32 | J2 | 4  | 32901810 | 0.604 | OL | 0.01 | 0 | 167.308 | 9.06   | 29 |
| 1 | 406 | 59 | 6  | K4 | 8  | 32901757 | 1.26  | OL | 0.09 | 0 | 349.02  | 18.9   | 16 |
| 1 | 318 | 61 | 21 | L1 | 2  | 32901198 | 0.864 | OL | 0    | 0 | 239.328 | 12.96  | 22 |
| 1 | 275 | 58 | 22 | L3 | 4  | 32900952 | 0.825 | OL | 0.15 | 0 | 228.525 | 12.375 | 26 |
| 1 | 409 | 59 | 19 | L3 | 5  | 32901762 | 0.844 | OL | 0.05 | 0 | 233.788 | 12.66  | 15 |
| 1 | 376 | 21 | 38 | M1 | 1  | 32901675 | 1.663 | OL | 0.1  | 0 | 460.651 | 24.945 | 32 |
| 1 | 383 | 23 | 5  | M2 | 2  | 32901706 | 1.668 | OL | 0.04 | 0 | 462.036 | 25.02  | 30 |
| 1 | 359 | 21 | 9  | M5 | 7  | 32901536 | 1.646 | OL | 0.09 | 0 | 455.942 | 24.69  | 19 |
| 1 | 435 | 59 | 36 | N1 | 5  | 32901871 | 0.857 | OL | 0.02 | 0 | 237.389 | 12.855 | 28 |
| 1 | 299 | 58 | 32 | N3 | 2  | 32900992 | 0.86  | OL | 0.17 | 0 | 238.22  | 12.9   | 27 |
| 1 | 341 | 58 | 34 | N3 | 4  | 32901386 | 0.884 | OL | 0.19 | 0 | 244.868 | 13.26  | 23 |
| 1 | 59  | 60 | 14 | N4 | 10 | 32900208 | 0.868 | OL | 0.03 | 0 | 240.436 | 13.02  | 18 |
| 1 | 372 | 23 | 46 | N5 | 2  | 32901660 | 0.946 | OL | 0.12 | 0 | 262.042 | 14.19  | 21 |
| 1 | 333 | 62 | 20 | N5 | 6  | 32901329 | 0.97  | OL | 0.13 | 0 | 268.69  | 14.55  | 32 |
| 1 | 445 | 59 | 40 | O2 | 1  | 32901890 | 0.908 | OL | 0.19 | 0 | 251.516 | 13.62  | 29 |
| 1 | 381 | 22 | 23 | O5 | 2  | 32901704 | 0.991 | OL | 0.17 | 0 | 274.507 | 14.865 | 16 |
| 1 | 311 | 61 | 16 | P2 | 1  | 32901170 | 1.076 | OL | 0.15 | 0 | 298.052 | 16.14  | 17 |

| 1 | 75  | 58 | 10 | P3 | 4 | 32900251 | 1.109 | OL | 0    | 0 | 307.193 | 16.635 | 28 |
|---|-----|----|----|----|---|----------|-------|----|------|---|---------|--------|----|
| 1 | 415 | 59 | 24 | Р3 | 8 | 32901783 | 1.128 | OL | 0.02 | 0 | 312.456 | 16.92  | 15 |
| 1 | 300 | 60 | 27 | Р3 | 9 | 32900994 | 1.012 | OL | 0.15 | 0 | 280.324 | 15.18  | 21 |

Fuente: Alba Verónica Ramos Flores, 2019

## 3.2.2.2. Mediciones Eléctricas Distrito 2

Se realizaron las mediciones en las redes telefónicas de 73 clientes, como se puede observar en la (tabla 11-3)

**Tabla 3-3** Mediciones eléctricas Distrito 2.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NÚMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 2     | 36              | 13     | 4   | D5   | 1   | 32900149 | 0.199                | OL               | 0.11              | 0                 | 55.123                   | 2.985              | 32       |
| 2     | 176             | 17     | 9   | C5   | 4   | 32900897 | 0.212                | OL               | 0.09              | 0                 | 58.724                   | 3.18               | 29       |
| 2     | 46              | 13     | 21  | C5   | 7   | 32900197 | 0.235                | OL               | 0.07              | 0                 | 65.095                   | 3.525              | 28       |
| 2     | 49              | 13     | 43  | C5   | 9   | 32900210 | 0.254                | OL               | 0                 | 0                 | 70.358                   | 3.81               | 31       |
| 2     | 133             | 16     | 43  | C5   | 1   | 32900722 | 0.259                | OL               | 0.03              | 0                 | 71.743                   | 3.885              | 23       |
| 2     | 219             | 30     | 20  | D5   | 5   | 32901048 | 0.275                | OL               | 0.14              | 0                 | 76.175                   | 4.125              | 21       |
| 2     | 7               | 13     | 32  | C5   | 2   | 32900014 | 0.276                | OL               | 0.12              | 0                 | 76.452                   | 4.14               | 24       |
| 2     | 126             | 30     | 2   | Н5   | 3   | 32900687 | 0.283                | OL               | 0.07              | 0                 | 78.391                   | 4.245              | 25       |
| 2     | 138             | 17     | 29  | D5   | 6   | 32900731 | 0.298                | OL               | 0.04              | 0                 | 82.546                   | 4.47               | 15       |
| 2     | 5               | 13     | 38  | Н5   | 8   | 32900008 | 0.307                | OL               | 0.09              | 0                 | 85.039                   | 4.605              | 23       |
| 2     | 269             | 13     | 17  | D5   | 9   | 32901658 | 0.317                | OL               | 0.04              | 0                 | 87.809                   | 4.755              | 29       |
| 2     | 31              | 17     | 39  | D4   | 3   | 32900118 | 0.323                | OL               | 0.13              | 0                 | 89.471                   | 4.845              | 31       |
| 2     | 32              | 13     | 14  | H5   | 10  | 32900129 | 0.325                | OL               | 0.17              | 0                 | 90.025                   | 4.875              | 23       |
| 2     | 11              | 17     | 8   | D3   | 1   | 32900022 | 0.334                | OL               | 0.13              | 0                 | 92.518                   | 5.01               | 29       |
| 2     | 87              | 15     | 39  | D4   | 5   | 32900446 | 0.342                | OL               | 0.18              | 0                 | 94.734                   | 5.13               | 27       |
| 2     | 42              | 13     | 34  | C1   | 3   | 32900193 | 0.344                | OL               | 0.19              | 0                 | 95.288                   | 5.16               | 31       |
| 2     | 257             | 13     | 30  | H4   | 10  | 32901468 | 0.348                | OL               | 0.1               | 0                 | 96.396                   | 5.22               | 21       |

| 2 | 22  | 14 | 27 | C2 | 2 | 32900068 | 0.358 | OL | 0.01 | 0 | 99.166  | 5.37   | 26 |
|---|-----|----|----|----|---|----------|-------|----|------|---|---------|--------|----|
| 2 | 43  | 13 | 47 | D3 | 2 | 32900194 | 0.36  | OL | 0.02 | 0 | 99.72   | 5.4    | 25 |
| 2 | 48  | 15 | 1  | D4 | 8 | 32900207 | 0.364 | OL | 0.18 | 0 | 100.828 | 5.46   | 25 |
| 2 | 88  | 15 | 43 | C1 | 7 | 32900453 | 0.37  | OL | 0.1  | 0 | 102.49  | 5.55   | 22 |
| 2 | 92  | 17 | 30 | C1 | 8 | 32900467 | 0.388 | OL | 0.06 | 0 | 107.476 | 5.82   | 30 |
| 2 | 216 | 15 | 11 | В3 | 2 | 32901041 | 0.41  | OL | 0.03 | 0 | 113.57  | 6.15   | 23 |
| 2 | 178 | 17 | 24 | H4 | 2 | 32900904 | 0.411 | OL | 0.05 | 0 | 113.847 | 6.165  | 32 |
| 2 | 105 | 16 | 41 | В3 | 6 | 32900555 | 0.428 | OL | 0.01 | 0 | 118.556 | 6.42   | 15 |
| 2 | 33  | 13 | 12 | H4 | 4 | 32900133 | 0.429 | OL | 0.13 | 0 | 118.833 | 6.435  | 16 |
| 2 | 118 | 14 | 35 | D1 | 2 | 32900616 | 0.433 | OL | 0    | 0 | 119.941 | 6.495  | 30 |
| 2 | 181 | 15 | 50 | H4 | 8 | 32900929 | 0.447 | OL | 0    | 0 | 123.819 | 6.705  | 18 |
| 2 | 16  | 16 | 45 | D1 | 9 | 32900041 | 0.453 | OL | 0.16 | 0 | 125.481 | 6.795  | 24 |
| 2 | 68  | 15 | 18 | B1 | 5 | 32900377 | 0.517 | OL | 0.07 | 0 | 143.209 | 7.755  | 20 |
| 2 | 30  | 13 | 18 | H1 | 3 | 32900117 | 0.532 | OL | 0.09 | 0 | 147.364 | 7.98   | 30 |
| 2 | 164 | 56 | 30 | A5 | 7 | 32900783 | 0.588 | OL | 0.12 | 0 | 162.876 | 8.82   | 24 |
| 2 | 214 | 29 | 46 | E5 | 6 | 32901026 | 0.634 | OL | 0.16 | 0 | 175.618 | 9.51   | 26 |
| 2 | 171 | 13 | 9  | Ј3 | 4 | 32900834 | 0.654 | OL | 0.01 | 0 | 181.158 | 9.81   | 18 |
| 2 | 268 | 16 | 4  | G3 | 5 | 32901623 | 0.661 | OL | 0.11 | 0 | 183.097 | 9.915  | 26 |
| 2 | 166 | 17 | 10 | F2 | 1 | 32900798 | 0.668 | OL | 0.12 | 0 | 185.036 | 10.02  | 29 |
| 2 | 296 | 15 | 40 | Ј3 | 9 | 32901996 | 0.673 | OL | 0.14 | 0 | 186.421 | 10.095 | 19 |
| 2 | 264 | 13 | 20 | A3 | 2 | 32901568 | 0.68  | OL | 0    | 0 | 188.36  | 10.2   | 19 |
| 2 | 100 | 17 | 19 | F2 | 3 | 32900515 | 0.686 | OL | 0.08 | 0 | 190.022 | 10.29  | 20 |
| 2 | 225 | 15 | 4  | A3 | 7 | 32901068 | 0.696 | OL | 0.02 | 0 | 192.792 | 10.44  | 25 |
| 2 | 169 | 17 | 16 | F2 | 9 | 32900826 | 0.705 | OL | 0.1  | 0 | 195.285 | 10.575 | 24 |
| 2 | 156 | 18 | 33 | G1 | 9 | 32900772 | 0.736 | OL | 0.19 | 0 | 203.872 | 11.04  | 32 |
| 2 | 185 | 29 | 6  | I1 | 5 | 32900986 | 0.747 | OL | 0.01 | 0 | 206.919 | 11.205 | 25 |
| 2 | 37  | 15 | 49 | Ј3 | 2 | 32900165 | 0.751 | OL | 0.14 | 0 | 208.027 | 11.265 | 24 |
| 2 | 174 | 17 | 11 | G2 | 2 | 32900876 | 0.752 | OL | 0.13 | 0 | 208.304 | 11.28  | 29 |

| 2 | 199                     | 29 | 25 | <b>I</b> 4 | 2  | 32901005 | 0.76  | OL       | 0.08 | 0 | 210.52  | 11.4   | 18 |
|---|-------------------------|----|----|------------|----|----------|-------|----------|------|---|---------|--------|----|
| 2 | 294                     | 29 | 12 | F1         | 7  | 32901003 | 0.764 | OL       | 0.19 | 0 | 211.628 | 11.46  | 32 |
| 2 | 188                     | 29 | 9  | I1         | 9  | 32900989 | 0.769 | OL       | 0.13 | 0 | 213.013 | 11.535 | 16 |
| 2 | 113                     | 18 | 29 | G5         | 8  | 32900587 | 0.777 | OL       | 0.08 | 0 | 215.229 | 11.655 | 19 |
| 2 | 125                     | 16 | 11 | J4         | 1  | 32900686 | 0.777 | OL       | 0.07 | 0 | 215.229 | 11.655 | 28 |
| 2 | 229                     | 56 | 34 | F1         | 8  | 32901106 | 0.777 | OL       | 0.07 | 0 | 216.614 | 11.73  | 18 |
| 2 | 6                       | 13 | 40 | A1         | 2  | 32900013 | 0.786 | OL       | 0.01 | 0 | 217.722 | 11.79  | 31 |
| 2 | 213                     | 29 | 45 | J4         | 4  | 32901025 | 0.786 | OL       | 0.14 | 0 | 220.215 | 11.925 | 19 |
| 2 | 98                      | 16 | 6  | A1         | 4  | 32900488 | 0.804 | OL       | 0.14 | 0 | 222.708 | 12.06  | 15 |
| 2 | 59                      | 13 | 19 | F1         | 5  | 32900304 | 0.804 | OL       | 0.10 | 0 | 223,262 | 12.00  | 26 |
| 2 | 89                      | 15 | 41 | G4         | 2  | 32900454 | 0.807 | OL       | 0.03 | 0 | 223.539 | 12.105 | 32 |
| 2 | 160                     | 18 | 41 | A2         | 9  | 32900434 | 0.807 | OL       | 0.03 | 0 | 224.924 | 12.103 | 25 |
| 2 | 27                      | 16 | 19 | J5         | 7  | 32900777 | 0.812 | OL<br>OL | 0.12 | 0 | 227.14  | 12.16  | 29 |
| 2 | 58                      | 16 | 16 | I1         | 1  | 32900300 | 0.824 | OL<br>OL | 0.12 | 0 | 228.248 | 12.36  | 31 |
|   | 50                      | 13 |    | I3         | _  | 32900300 |       | OL<br>OL |      |   | 228.802 |        |    |
| 2 |                         | _  | 11 |            | 2  |          | 0.826 |          | 0.14 | 0 |         | 12.39  | 16 |
| 2 | 168                     | 16 | 29 | A1         | 10 | 32900811 | 0.83  | OL       | 0.04 | 0 | 229.91  | 12.45  | 24 |
| 2 | 221                     | 30 | 36 | G1         | 7  | 32901064 | 0.839 | OL       | 0.15 | 0 | 232.403 | 12.585 | 32 |
| 2 | 278                     | 13 | 48 | I3         | 3  | 32901787 | 0.842 | OL       | 0.06 | 0 | 233.234 | 12.63  | 22 |
| 2 | 107                     | 17 | 6  | I4         | 6  | 32900565 | 0.844 | OL       | 0.18 | 0 | 233.788 | 12.66  | 21 |
| 2 | 253                     | 15 | 9  | I1         | 2  | 32901434 | 0.85  | OL       | 0.13 | 0 | 235.45  | 12.75  | 24 |
| 2 | 112                     | 17 | 3  | I4         | 7  | 32900586 | 0.862 | OL       | 0.01 | 0 | 238.774 | 12.93  | 30 |
| 2 | 108                     | 17 | 5  | J1         | 3  | 32900572 | 0.862 | OL       | 0.05 | 0 | 238.774 | 12.93  | 17 |
| 2 | 192                     | 29 | 16 | I3         | 4  | 32900996 | 0.865 | OL       | 0.19 | 0 | 239.605 | 12.975 | 32 |
| 2 | 265                     | 14 | 16 | E1         | 5  | 32901581 | 0.866 | OL       | 0.06 | 0 | 239.882 | 12.99  | 17 |
| 2 | 298                     | 15 | 23 | J1         | 5  | 32902006 | 0.879 | OL       | 0.06 | 0 | 243.483 | 13.185 | 19 |
| 2 | 173                     | 14 | 4  | I4         | 8  | 32900875 | 0.88  | OL       | 0.16 | 0 | 243.76  | 13.2   | 17 |
| 2 | 70<br>na Verónica Ramos | 13 | 31 | G5         | 3  | 32900391 | 0.899 | OL       | 0.14 | 0 | 249.023 | 13.485 | 21 |

Fuente: Alba Verónica Ramos Flores, 2019.

# 3.2.2.3. Mediciones Eléctricas Distrito 3

Se realizaron las mediciones en las redes telefónicas de 74 clientes, como se muestra en la tabla (3-4)

 Tabla 3-4
 Mediciones eléctricas Distrito 3.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NÚMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 3     | 309             | 10     | 46  | C3   | 7   | 32900107 | 1.022                | OL               | 0.12              | 0                 | 283.094                  | 15.33              | 29       |
| 3     | 103             | 11     | 16  | C3   | 9   | 32901263 | 1.045                | OL               | 0.02              | 0                 | 289.465                  | 15.675             | 15       |
| 3     | 314             | 7      | 23  | C4   | 9   | 32900073 | 1.05                 | OL               | 0.07              | 0                 | 290.85                   | 15.75              | 23       |
| 3     | 317             | 7      | 31  | C2   | 9   | 32900059 | 1.061                | OL               | 0.09              | 0                 | 293.897                  | 15.915             | 24       |
| 3     | 226             | 7      | 22  | D2   | 9   | 32900545 | 1.072                | OL               | 0.12              | 0                 | 296.944                  | 16.08              | 26       |
| 3     | 111             | 53     | 31  | C3   | 1   | 32901187 | 1.089                | OL               | 0.17              | 0                 | 301.653                  | 16.335             | 15       |
| 3     | 26              | 52     | 31  | C3   | 4   | 32901889 | 1.126                | OL               | 0.1               | 0                 | 311.902                  | 16.89              | 28       |
| 3     | 69              | 8      | 42  | D5   | 4   | 32901587 | 1.127                | OL               | 0.05              | 0                 | 312.179                  | 16.905             | 16       |
| 3     | 251             | 8      | 16  | D4   | 7   | 32900390 | 1.149                | OL               | 0.19              | 0                 | 318.273                  | 17.235             | 18       |
| 3     | 213             | 51     | 14  | J1   | 8   | 32900695 | 1.15                 | OL               | 0.07              | 0                 | 318.55                   | 17.25              | 26       |
| 3     | 85              | 11     | 39  | C1   | 9   | 32901416 | 1.152                | OL               | 0.05              | 0                 | 319.104                  | 17.28              | 27       |
| 3     | 243             | 8      | 24  | D4   | 8   | 32900455 | 1.165                | OL               | 0.04              | 0                 | 322.705                  | 17.475             | 15       |
| 3     | 44              | 51     | 39  | D2   | 2   | 32901809 | 1.174                | OL               | 0                 | 0                 | 325.198                  | 17.61              | 29       |
| 3     | 96              | 52     | 33  | В3   | 4   | 32901289 | 1.193                | OL               | 0.14              | 0                 | 330.461                  | 17.895             | 17       |
| 3     | 264             | 53     | 33  | D2   | 8   | 32900322 | 1.194                | OL               | 0.11              | 0                 | 330.738                  | 17.91              | 24       |
| 3     | 52              | 11     | 27  | D4   | 4   | 32901769 | 1.211                | OL               | 0.02              | 0                 | 335.447                  | 18.165             | 17       |
| 3     | 50              | 11     | 18  | J1   | 4   | 32901779 | 1.214                | OL               | 0                 | 0                 | 336.278                  | 18.21              | 23       |
| 3     | 267             | 8      | 40  | D3   | 4   | 32900317 | 1.222                | OL               | 0.01              | 0                 | 338.494                  | 18.33              | 24       |
| 3     | 110             | 10     | 1   | J1   | 5   | 32901189 | 1.232                | OL               | 0.18              | 0                 | 341.264                  | 18.48              | 24       |
| 3     | 59              | 51     | 24  | J4   | 5   | 32901726 | 1.284                | OL               | 0.05              | 0                 | 355.668                  | 19.26              | 32       |
| 3     | 181             | 9      | 38  | B5   | 3   | 32900823 | 1.299                | OL               | 0.13              | 0                 | 359.823                  | 19.485             | 27       |
| 3     | 302             | 7      | 2   | В3   | 2   | 32900163 | 1.31                 | OL               | 0.06              | 0                 | 362.87                   | 19.65              | 15       |

| 3 | 56  | 53 | 10 | K1 | 3  | 32901744 | 1.318 | OL | 0.09 | 0 | 365.086 | 19.77  | 23 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 3 | 1   | 10 | 2  | B4 | 3  | 32902062 | 1.329 | OL | 0.14 | 0 | 368.133 | 19.935 | 19 |
| 3 | 4   | 51 | 40 | K1 | 6  | 32902005 | 1.344 | OL | 0.01 | 0 | 372.288 | 20.16  | 20 |
| 3 | 234 | 9  | 3  | B4 | 7  | 32900496 | 1.353 | OL | 0.08 | 0 | 374.781 | 20.295 | 31 |
| 3 | 8   | 51 | 36 | I1 | 3  | 32901961 | 1.353 | OL | 0.02 | 0 | 374.781 | 20.295 | 28 |
| 3 | 7   | 52 | 45 | I3 | 7  | 32901987 | 1.362 | OL | 0.13 | 0 | 377.274 | 20.43  | 18 |
| 3 | 151 | 53 | 11 | K1 | 8  | 32901100 | 1.362 | OL | 0.1  | 0 | 377.274 | 20.43  | 30 |
| 3 | 16  | 53 | 4  | B4 | 9  | 32901937 | 1.371 | OL | 0.15 | 0 | 379.767 | 20.565 | 18 |
| 3 | 131 | 11 | 17 | I1 | 6  | 32901142 | 1.377 | OL | 0.18 | 0 | 381.429 | 20.655 | 31 |
| 3 | 47  | 9  | 20 | I4 | 2  | 32901792 | 1.391 | OL | 0.05 | 0 | 385.307 | 20.865 | 27 |
| 3 | 77  | 52 | 40 | В5 | 2  | 32901493 | 1.393 | OL | 0.05 | 0 | 385.861 | 20.895 | 26 |
| 3 | 324 | 7  | 15 | A1 | 3  | 32900031 | 1.413 | OL | 0.09 | 0 | 391.401 | 21.195 | 31 |
| 3 | 48  | 53 | 2  | I4 | 10 | 32901789 | 1.413 | OL | 0.18 | 0 | 391.401 | 21.195 | 16 |
| 3 | 208 | 51 | 22 | I5 | 5  | 32900729 | 1.419 | OL | 0.07 | 0 | 393.063 | 21.285 | 27 |
| 3 | 57  | 11 | 20 | K1 | 2  | 32901741 | 1.42  | OL | 0.09 | 0 | 393.34  | 21.3   | 22 |
| 3 | 169 | 53 | 15 | I2 | 6  | 32900925 | 1.43  | OL | 0.05 | 0 | 396.11  | 21.45  | 17 |
| 3 | 73  | 51 | 33 | A1 | 5  | 32901574 | 1.434 | OL | 0    | 0 | 397.218 | 21.51  | 16 |
| 3 | 42  | 53 | 3  | I5 | 9  | 32901823 | 1.438 | OL | 0.05 | 0 | 398.326 | 21.57  | 28 |
| 3 | 308 | 53 | 23 | I2 | 9  | 32900109 | 1.448 | OL | 0.11 | 0 | 401.096 | 21.72  | 15 |
| 3 | 170 | 53 | 32 | I5 | 10 | 32900907 | 1.462 | OL | 0.08 | 0 | 404.974 | 21.93  | 27 |
| 3 | 24  | 51 | 23 | B1 | 7  | 32901916 | 1.464 | OL | 0.09 | 0 | 405.528 | 21.96  | 18 |
| 3 | 118 | 51 | 45 | A1 | 2  | 32901165 | 1.473 | OL | 0.12 | 0 | 408.021 | 22.095 | 16 |
| 3 | 216 | 9  | 13 | K5 | 6  | 32900594 | 1.478 | OL | 0.03 | 0 | 409.406 | 22.17  | 21 |
| 3 | 28  | 51 | 35 | I3 | 6  | 32901885 | 1.484 | OL | 0.07 | 0 | 411.068 | 22.26  | 28 |
| 3 | 158 | 10 | 13 | F3 | 4  | 32901090 | 1.492 | OL | 0.04 | 0 | 413.284 | 22.38  | 15 |
| 3 | 245 | 8  | 22 | I5 | 1  | 32900434 | 1.5   | OL | 0.17 | 0 | 415.5   | 22.5   | 30 |
| 3 | 166 | 10 | 42 | I5 | 3  | 32901053 | 1.516 | OL | 0.14 | 0 | 419.932 | 22.74  | 32 |
| 3 | 98  | 8  | 28 | G4 | 1  | 32901274 | 1.519 | OL | 0.08 | 0 | 420.763 | 22.785 | 18 |

| 3 | 296 | 10 | 34 | F4 | 5  | 32900190 | 1.53  | OL | 0.05 | 0 | 423.81  | 22.95  | 17 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 3 | 14  | 51 | 30 | G4 | 3  | 32901946 | 1.537 | OL | 0.07 | 0 | 425.749 | 23.055 | 25 |
| 3 | 121 | 11 | 36 | J2 | 1  | 32901161 | 1.541 | OL | 0    | 0 | 426.857 | 23.115 | 21 |
| 3 | 55  | 53 | 5  | J2 | 2  | 32901759 | 1.559 | OL | 0.02 | 0 | 431.843 | 23.385 | 19 |
| 3 | 74  | 53 | 6  | F3 | 5  | 32901533 | 1.57  | OL | 0.04 | 0 | 434.89  | 23.55  | 31 |
| 3 | 246 | 52 | 3  | J2 | 3  | 32900430 | 1.575 | OL | 0.17 | 0 | 436.275 | 23.625 | 22 |
| 3 | 70  | 8  | 32 | F3 | 8  | 32901586 | 1.59  | OL | 0.01 | 0 | 440.43  | 23.85  | 22 |
| 3 | 93  | 9  | 16 | A4 | 6  | 32901300 | 1.597 | OL | 0.18 | 0 | 442.369 | 23.955 | 16 |
| 3 | 323 | 11 | 14 | Н5 | 5  | 32900035 | 1.6   | OL | 0.09 | 0 | 443.2   | 24     | 22 |
| 3 | 15  | 51 | 32 | A4 | 8  | 32901945 | 1.614 | OL | 0.11 | 0 | 447.078 | 24.21  | 17 |
| 3 | 207 | 10 | 5  | F3 | 3  | 32900737 | 1.614 | OL | 0.1  | 0 | 447.078 | 24.21  | 19 |
| 3 | 316 | 9  | 23 | A2 | 10 | 32900065 | 1.616 | OL | 0.11 | 0 | 447.632 | 24.24  | 20 |
| 3 | 79  | 53 | 18 | Н5 | 7  | 32901483 | 1.623 | OL | 0.09 | 0 | 449.571 | 24.345 | 20 |
| 3 | 117 | 11 | 41 | E5 | 2  | 32901166 | 1.627 | OL | 0.17 | 0 | 450.679 | 24.405 | 32 |
| 3 | 27  | 51 | 44 | G2 | 4  | 32901888 | 1.648 | OL | 0.14 | 0 | 456.496 | 24.72  | 29 |
| 3 | 310 | 8  | 3  | E5 | 5  | 32900089 | 1.649 | OL | 0.19 | 0 | 456.773 | 24.735 | 15 |
| 3 | 163 | 10 | 3  | F1 | 3  | 32901080 | 1.667 | OL | 0.08 | 0 | 461.759 | 25.005 | 16 |
| 3 | 45  | 52 | 14 | H2 | 9  | 32901798 | 1.689 | OL | 0.05 | 0 | 467.853 | 25.335 | 21 |
| 3 | 34  | 51 | 18 | НЗ | 6  | 32901840 | 1.711 | OL | 0.01 | 0 | 473.947 | 25.665 | 20 |
| 3 | 326 | 11 | 28 | НЗ | 10 | 32900023 | 1.728 | OL | 0.17 | 0 | 478.656 | 25.92  | 20 |
| 3 | 239 | 8  | 29 | A3 | 7  | 32900484 | 1.789 | OL | 0.19 | 0 | 495.553 | 26.835 | 26 |
| 3 | 202 | 7  | 5  | A3 | 9  | 32900785 | 1.807 | OL | 0.09 | 0 | 500.539 | 27.105 | 30 |
| 3 | 136 | 11 | 7  | A5 | 5  | 32901132 | 1.816 | OL | 0.14 | 0 | 503.032 | 27.24  | 17 |
| 3 | 155 | 10 | 18 | A3 | 10 | 32901095 | 1.825 | OL | 0.04 | 0 | 505.525 | 27.375 | 22 |

Fuente: Alba Verónica Ramos Flores, 2019.

## 3.2.2.4. Mediciones Eléctricas Distrito 4

Se realizaron las mediciones en las redes telefónicas de 65 clientes.

 Tabla 3-5
 Mediciones eléctricas Distrito 4.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NÚMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 4     | 21              | 4      | 13  | A2   | 3   | 32901814 | 1.523                | OL               | 0.03              | 0                 | 421.871                  | 22.845             | 22       |
| 4     | 50              | 49     | 23  | A2   | 9   | 32901531 | 1.599                | OL               | 0.17              | 0                 | 442.923                  | 23.985             | 18       |
| 4     | 172             | 2      | 20  | A2   | 1   | 32900351 | 1.646                | OL               | 0.06              | 0                 | 455.942                  | 24.69              | 22       |
| 4     | 115             | 4      | 9   | E4   | 9   | 32900863 | 1.706                | OL               | 0.01              | 0                 | 472.562                  | 25.59              | 25       |
| 4     | 116             | 4      | 6   | E2   | 8   | 32900861 | 1.725                | OL               | 0.05              | 0                 | 477.825                  | 25.875             | 24       |
| 4     | 47              | 1      | 28  | E4   | 10  | 32901589 | 1.732                | OL               | 0.11              | 0                 | 479.764                  | 25.98              | 16       |
| 4     | 117             | 4      | 5   | E2   | 9   | 32900860 | 1.744                | OL               | 0.17              | 0                 | 483.088                  | 26.16              | 25       |
| 4     | 146             | 4      | 19  | E2   | 10  | 32900559 | 1.768                | OL               | 0.16              | 0                 | 489.736                  | 26.52              | 28       |
| 4     | 128             | 2      | 38  | G5   | 5   | 32900841 | 1.768                | OL               | 0.13              | 0                 | 489.736                  | 26.52              | 27       |
| 4     | 81              | 3      | 2   | E3   | 4   | 32901222 | 1.772                | OL               | 0.16              | 0                 | 490.844                  | 26.58              | 32       |
| 4     | 138             | 49     | 21  | E5   | 2   | 32900738 | 1.774                | OL               | 0.16              | 0                 | 491.398                  | 26.61              | 23       |
| 4     | 56              | 4      | 7   | F1   | 5   | 32901473 | 1.775                | OL               | 0                 | 0                 | 491.675                  | 26.625             | 21       |
| 4     | 54              | 3      | 50  | E1   | 7   | 32901499 | 1.784                | OL               | 0                 | 0                 | 494.168                  | 26.76              | 25       |
| 4     | 114             | 4      | 33  | E5   | 5   | 32900866 | 1.793                | OL               | 0.07              | 0                 | 496.661                  | 26.895             | 29       |
| 4     | 94              | 4      | 12  | E1   | 8   | 32900932 | 1.806                | OL               | 0.1               | 0                 | 500.262                  | 27.09              | 16       |
| 4     | 8               | 49     | 20  | E2   | 5   | 32902013 | 1.806                | OL               | 0.04              | 0                 | 500.262                  | 27.09              | 19       |
| 4     | 22              | 5      | 48  | E2   | 6   | 32901806 | 1.822                | OL               | 0.19              | 0                 | 504.694                  | 27.33              | 32       |
| 4     | 175             | 2      | 10  | Н5   | 2   | 32900323 | 1.826                | OL               | 0.05              | 0                 | 505.802                  | 27.39              | 26       |
| 4     | 107             | 5      | 4   | F2   | 10  | 32900883 | 1.839                | OL               | 0.08              | 0                 | 509.403                  | 27.585             | 31       |
| 4     | 77              | 5      | 24  | Н5   | 9   | 32901270 | 1.852                | OL               | 0.18              | 0                 | 513.004                  | 27.78              | 27       |

| 4 | 2   | 3  | 45 | НЗ | 8  | 32902038 | 1.875 | OL | 0    | 0 | 519.375 | 28.125 | 23 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 4 | 160 | 3  | 15 | F1 | 2  | 32900468 | 1.878 | OL | 0.05 | 0 | 520.206 | 28.17  | 21 |
| 4 | 15  | 4  | 38 | B4 | 2  | 32901913 | 1.88  | OL | 0.03 | 0 | 520.76  | 28.2   | 17 |
| 4 | 167 | 3  | 18 | В3 | 1  | 32900421 | 1.903 | OL | 0.16 | 0 | 527.131 | 28.545 | 29 |
| 4 | 120 | 4  | 1  | В3 | 2  | 32900857 | 1.922 | OL | 0.15 | 0 | 532.394 | 28.83  | 32 |
| 4 | 99  | 1  | 21 | B5 | 6  | 32900920 | 1.947 | OL | 0.17 | 0 | 539.319 | 29.205 | 31 |
| 4 | 65  | 3  | 22 | Н3 | 1  | 32901313 | 1.953 | OL | 0.04 | 0 | 540.981 | 29.295 | 24 |
| 4 | 13  | 4  | 24 | Н3 | 9  | 32901938 | 1.953 | OL | 0.08 | 0 | 540.981 | 29.295 | 19 |
| 4 | 190 | 49 | 9  | H2 | 4  | 32900216 | 1.956 | OL | 0.04 | 0 | 541.812 | 29.34  | 27 |
| 4 | 37  | 3  | 29 | Н3 | 2  | 32901617 | 1.971 | OL | 0.06 | 0 | 545.967 | 29.565 | 20 |
| 4 | 82  | 3  | 1  | H4 | 7  | 32901194 | 1.975 | OL | 0.05 | 0 | 547.075 | 29.625 | 25 |
| 4 | 153 | 49 | 34 | H2 | 6  | 32900511 | 1.98  | OL | 0    | 0 | 548.46  | 29.7   | 21 |
| 4 | 171 | 3  | 5  | F3 | 1  | 32900359 | 1.985 | OL | 0.08 | 0 | 549.845 | 29.775 | 28 |
| 4 | 55  | 4  | 30 | Н3 | 4  | 32901487 | 1.991 | OL | 0.01 | 0 | 551.507 | 29.865 | 24 |
| 4 | 35  | 1  | 9  | H4 | 8  | 32901634 | 1.999 | OL | 0.07 | 0 | 553.723 | 29.985 | 24 |
| 4 | 132 | 2  | 8  | F4 | 5  | 32900836 | 2.004 | OL | 0.19 | 0 | 555.108 | 30.06  | 26 |
| 4 | 199 | 49 | 6  | H4 | 10 | 32900096 | 2.017 | OL | 0.16 | 0 | 558.709 | 30.255 | 22 |
| 4 | 23  | 49 | 31 | G1 | 7  | 32901805 | 2.019 | OL | 0.05 | 0 | 559.263 | 30.285 | 17 |
| 4 | 41  | 2  | 35 | B5 | 9  | 32901601 | 2.025 | OL | 0.01 | 0 | 560.925 | 30.375 | 16 |
| 4 | 131 | 2  | 13 | F4 | 6  | 32900837 | 2.028 | OL | 0.11 | 0 | 561.756 | 30.42  | 27 |
| 4 | 29  | 1  | 42 | H4 | 3  | 32901765 | 2.035 | OL | 0.12 | 0 | 563.695 | 30.525 | 16 |
| 4 | 130 | 2  | 19 | F4 | 7  | 32900838 | 2.048 | OL | 0.08 | 0 | 567.296 | 30.72  | 16 |
| 4 | 28  | 2  | 25 | H4 | 4  | 32901766 | 2.055 | OL | 0.18 | 0 | 569.235 | 30.825 | 15 |
| 4 | 85  | 2  | 18 | H2 | 1  | 32901155 | 2.057 | OL | 0.07 | 0 | 569.789 | 30.855 | 23 |
| 4 | 30  | 1  | 39 | H4 | 6  | 32901764 | 2.076 | OL | 0.06 | 0 | 575.052 | 31.14  | 15 |
| 4 | 10  | 1  | 11 | G1 | 2  | 32901988 | 2.083 | OL | 0.02 | 0 | 576.991 | 31.245 | 15 |
| 4 | 161 | 3  | 11 | F4 | 10 | 32900457 | 2.086 | OL | 0.04 | 0 | 577.822 | 31.29  | 28 |
| 4 | 80  | 1  | 3  | G1 | 3  | 32901244 | 2.101 | OL | 0.07 | 0 | 581.977 | 31.515 | 18 |

| 4 | 145 | 3  | 43 | G1 | 4  | 32900566 | 2.117 | OL | 0    | 0 | 586.409 | 31.755 | 20 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 4 | 74  | 1  | 41 | G1 | 6  | 32901283 | 2.141 | OL | 0.1  | 0 | 593.057 | 32.115 | 29 |
| 4 | 78  | 49 | 40 | F5 | 1  | 32901248 | 2.146 | OL | 0.18 | 0 | 594.442 | 32.19  | 32 |
| 4 | 157 | 3  | 16 | B2 | 2  | 32900478 | 2.262 | OL | 0.14 | 0 | 626.574 | 33.93  | 18 |
| 4 | 196 | 1  | 12 | G4 | 1  | 32900157 | 2.278 | OL | 0.07 | 0 | 631.006 | 34.17  | 19 |
| 4 | 122 | 3  | 36 | G4 | 5  | 32900853 | 2.3   | OL | 0.19 | 0 | 637.1   | 34.5   | 18 |
| 4 | 124 | 3  | 32 | G4 | 6  | 32900851 | 2.317 | OL | 0.11 | 0 | 641.809 | 34.755 | 24 |
| 4 | 113 | 4  | 40 | B1 | 2  | 32900867 | 2.34  | OL | 0.03 | 0 | 648.18  | 35.1   | 20 |
| 4 | 204 | 4  | 44 | B1 | 10 | 32900012 | 2.34  | OL | 0.15 | 0 | 648.18  | 35.1   | 21 |
| 4 | 166 | 4  | 14 | B1 | 3  | 32900422 | 2.358 | OL | 0.07 | 0 | 653.166 | 35.37  | 29 |
| 4 | 125 | 3  | 25 | G2 | 5  | 32900849 | 2.376 | OL | 0.11 | 0 | 658.152 | 35.64  | 27 |
| 4 | 71  | 2  | 21 | B1 | 4  | 32901301 | 2.382 | OL | 0.12 | 0 | 659.814 | 35.73  | 19 |
| 4 | 33  | 49 | 17 | B1 | 7  | 32901736 | 2.4   | OL | 0.19 | 0 | 664.8   | 36     | 25 |
| 4 | 108 | 5  | 3  | D4 | 6  | 32900882 | 2.404 | OL | 0.17 | 0 | 665.908 | 36.06  | 18 |
| 4 | 169 | 4  | 22 | G2 | 2  | 32900402 | 2.412 | OL | 0.05 | 0 | 668.124 | 36.18  | 30 |
| 4 | 40  | 2  | 45 | A5 | 5  | 32901611 | 2.418 | OL | 0.11 | 0 | 669.786 | 36.27  | 15 |
| 4 | 52  | 4  | 25 | A5 | 7  | 32901524 | 2.437 | OL | 0.01 | 0 | 675.049 | 36.555 | 22 |

Fuente: Alba Verónica Ramos Flores, 2019.

# 3.2.2.5. Mediciones Eléctricas Distrito 5

Se realizaron las mediciones en las redes telefónicas de 67 clientes.

Tabla 3-6 Mediciones eléctricas Distrito 5.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NUMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 5     | 7               | 40     | 49  | F4   | 4   | 32900044 | 0.483                | OL               | 0.02              | 0                 | 133.791                  | 7.245              | 26       |
| 5     | 8               | 39     | 2   | G4   | 1   | 32900050 | 0.53                 | OL               | 0.11              | 0                 | 146.81                   | 7.95               | 20       |
| 5     | 29              | 37     | 49  | G4   | 5   | 32900220 | 0.572                | OL               | 0.03              | 0                 | 158.444                  | 8.58               | 26       |
| 5     | 152             | 40     | 42  | F4   | 9   | 32901394 | 0.589                | OL               | 0.18              | 0                 | 163.153                  | 8.835              | 18       |
| 5     | 125             | 38     | 12  | F3   | 1   | 32901059 | 0.594                | OL               | 0.11              | 0                 | 164.538                  | 8.91               | 16       |
| 5     | 43              | 37     | 45  | E3   | 10  | 32900336 | 0.6                  | OL               | 0.04              | 0                 | 166.2                    | 9                  | 19       |
| 5     | 18              | 38     | 22  | F4   | 2   | 32900146 | 0.605                | OL               | 0.16              | 0                 | 167.585                  | 9.075              | 27       |
| 5     | 131             | 39     | 4   | G4   | 3   | 32901149 | 0.608                | OL               | 0.08              | 0                 | 168.416                  | 9.12               | 17       |
| 5     | 134             | 38     | 47  | G3   | 4   | 32901185 | 0.612                | OL               | 0.13              | 0                 | 169.524                  | 9.18               | 15       |
| 5     | 48              | 37     | 46  | F3   | 8   | 32900382 | 0.615                | OL               | 0                 | 0                 | 170.355                  | 9.225              | 21       |
| 5     | 49              | 38     | 28  | F4   | 10  | 32900383 | 0.626                | OL               | 0.14              | 0                 | 173.402                  | 9.39               | 23       |
| 5     | 68              | 38     | 5   | G4   | 4   | 32900571 | 0.626                | OL               | 0.07              | 0                 | 173.402                  | 9.39               | 20       |
| 5     | 136             | 39     | 23  | Н5   | 6   | 32901195 | 0.63                 | OL               | 0.03              | 0                 | 174.51                   | 9.45               | 28       |
| 5     | 135             | 39     | 22  | G3   | 8   | 32901192 | 0.631                | OL               | 0.03              | 0                 | 174.787                  | 9.465              | 25       |
| 5     | 126             | 38     | 20  | F3   | 9   | 32901061 | 0.634                | OL               | 0.19              | 0                 | 175.618                  | 9.51               | 22       |
| 5     | 221             | 40     | 35  | H4   | 1   | 32902030 | 0.638                | OL               | 0.03              | 0                 | 176.726                  | 9.57               | 20       |
| 5     | 140             | 38     | 15  | Н5   | 7   | 32901243 | 0.647                | OL               | 0.11              | 0                 | 179.219                  | 9.705              | 18       |
| 5     | 44              | 37     | 44  | F1   | 5   | 32900338 | 0.649                | OL               | 0.03              | 0                 | 179.773                  | 9.735              | 18       |
| 5     | 35              | 39     | 15  | H4   | 2   | 32900271 | 0.656                | OL               | 0.06              | 0                 | 181.712                  | 9.84               | 19       |
| 5     | 138             | 38     | 21  | F3   | 10  | 32901212 | 0.658                | OL               | 0                 | 0                 | 182.266                  | 9.87               | 18       |

| 5 | 210 | 39 | 18 | H2 | 5  | 32901908 | 0.658 | OL | 0.18 | 0 | 182.266 | 9.87   | 25 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 5 | 128 | 39 | 25 | H5 | 8  | 32901107 | 0.663 | OL | 0.14 | 0 | 183.651 | 9.945  | 19 |
| 5 | 75  | 40 | 22 | H4 | 7  | 32900644 | 0.682 | OL | 0.14 | 0 | 188.914 | 10.23  | 17 |
| 5 | 40  | 37 | 15 | H5 | 10 | 32900309 | 0.686 | OL | 0.09 | 0 | 190.022 | 10.29  | 20 |
| 5 | 45  | 37 | 35 | E5 | 6  | 32900355 | 0.687 | OL | 0.17 | 0 | 190.299 | 10.305 | 17 |
| 5 | 111 | 39 | 1  | I3 | 3  | 32901033 | 0.694 | OL | 0.02 | 0 | 192.238 | 10.41  | 21 |
| 5 | 4   | 39 | 20 | H4 | 10 | 32900029 | 0.7   | OL | 0.14 | 0 | 193.9   | 10.5   | 26 |
| 5 | 51  | 37 | 36 | E5 | 7  | 32900399 | 0.704 | OL | 0.14 | 0 | 195.008 | 10.56  | 21 |
| 5 | 11  | 39 | 26 | НЗ | 1  | 32900066 | 0.709 | OL | 0.14 | 0 | 196.393 | 10.635 | 28 |
| 5 | 222 | 40 | 17 | E2 | 2  | 32902033 | 0.712 | OL | 0.04 | 0 | 197.224 | 10.68  | 21 |
| 5 | 217 | 38 | 39 | I3 | 6  | 32901984 | 0.715 | OL | 0.14 | 0 | 198.055 | 10.725 | 15 |
| 5 | 129 | 40 | 5  | G2 | 8  | 32901119 | 0.72  | OL | 0.11 | 0 | 199.44  | 10.8   | 17 |
| 5 | 26  | 37 | 19 | E3 | 5  | 32900209 | 0.722 | OL | 0.12 | 0 | 199.994 | 10.83  | 18 |
| 5 | 146 | 37 | 37 | E5 | 8  | 32901346 | 0.726 | OL | 0.01 | 0 | 201.102 | 10.89  | 15 |
| 5 | 10  | 39 | 28 | НЗ | 3  | 32900063 | 0.727 | OL | 0.14 | 0 | 201.379 | 10.905 | 15 |
| 5 | 54  | 37 | 2  | E2 | 3  | 32900456 | 0.728 | OL | 0    | 0 | 201.656 | 10.92  | 22 |
| 5 | 160 | 39 | 39 | H5 | 1  | 32901555 | 0.728 | OL | 0.18 | 0 | 201.656 | 10.92  | 24 |
| 5 | 115 | 39 | 9  | G5 | 4  | 32901038 | 0.736 | OL | 0.08 | 0 | 203.872 | 11.04  | 24 |
| 5 | 90  | 39 | 30 | НЗ | 5  | 32900712 | 0.743 | OL | 0.06 | 0 | 205.811 | 11.145 | 15 |
| 5 | 114 | 39 | 12 | G5 | 7  | 32901037 | 0.755 | OL | 0.14 | 0 | 209.135 | 11.325 | 20 |
| 5 | 24  | 37 | 41 | E1 | 2  | 32900199 | 0.758 | OL | 0.1  | 0 | 209.966 | 11.37  | 27 |
| 5 | 178 | 40 | 7  | НЗ | 9  | 32901665 | 0.767 | OL | 0.18 | 0 | 212.459 | 11.505 | 25 |
| 5 | 79  | 40 | 19 | H1 | 3  | 32900689 | 0.775 | OL | 0.18 | 0 | 214.675 | 11.625 | 21 |
| 5 | 209 | 41 | 7  | B4 | 8  | 32901870 | 0.776 | OL | 0.18 | 0 | 214.952 | 11.64  | 20 |
| 5 | 42  | 39 | 7  | G5 | 8  | 32900332 | 0.777 | OL | 0.15 | 0 | 215.229 | 11.655 | 29 |
| 5 | 20  | 40 | 26 | H2 | 1  | 32900164 | 0.78  | OL | 0.19 | 0 | 216.06  | 11.7   | 16 |
| 5 | 38  | 38 | 34 | G1 | 2  | 32900296 | 0.781 | OL | 0.06 | 0 | 216.337 | 11.715 | 26 |
| 5 | 31  | 37 | 31 | E5 | 2  | 32900230 | 0.785 | OL | 0.19 | 0 | 217.445 | 11.775 | 21 |

| 5 | 121 | 37 | 22 | E4 | 3  | 32901054 | 0.786 | OL | 0.02 | 0 | 217.722 | 11.79  | 16 |
|---|-----|----|----|----|----|----------|-------|----|------|---|---------|--------|----|
| 5 | 12  | 39 | 31 | D5 | 4  | 32900090 | 0.793 | OL | 0.01 | 0 | 219.661 | 11.895 | 26 |
| 5 | 156 | 41 | 32 | G5 | 9  | 32901497 | 0.794 | OL | 0.04 | 0 | 219.938 | 11.91  | 28 |
| 5 | 151 | 39 | 48 | H1 | 6  | 32901376 | 0.794 | OL | 0.17 | 0 | 219.938 | 11.91  | 20 |
| 5 | 84  | 38 | 10 | F2 | 9  | 32900697 | 0.798 | OL | 0.09 | 0 | 221.046 | 11.97  | 22 |
| 5 | 109 | 38 | 36 | G1 | 5  | 32901030 | 0.798 | OL | 0.16 | 0 | 221.046 | 11.97  | 21 |
| 5 | 172 | 40 | 15 | B1 | 10 | 32901607 | 0.805 | OL | 0.04 | 0 | 222.985 | 12.075 | 16 |
| 5 | 165 | 40 | 16 | В5 | 9  | 32901567 | 0.806 | OL | 0.1  | 0 | 223.262 | 12.09  | 24 |
| 5 | 197 | 41 | 30 | B2 | 2  | 32901770 | 0.808 | OL | 0    | 0 | 223.816 | 12.12  | 27 |
| 5 | 122 | 38 | 37 | E4 | 4  | 32901055 | 0.812 | OL | 0.19 | 0 | 224.924 | 12.18  | 19 |
| 5 | 158 | 37 | 25 | H1 | 7  | 32901514 | 0.818 | OL | 0.12 | 0 | 226.586 | 12.27  | 20 |
| 5 | 192 | 40 | 41 | В3 | 3  | 32901702 | 0.827 | OL | 0.15 | 0 | 229.079 | 12.405 | 20 |
| 5 | 169 | 40 | 8  | B5 | 10 | 32901579 | 0.828 | OL | 0    | 0 | 229.356 | 12.42  | 17 |
| 5 | 55  | 37 | 26 | E4 | 7  | 32900463 | 0.83  | OL | 0.08 | 0 | 229.91  | 12.45  | 20 |
| 5 | 148 | 38 | 42 | B2 | 5  | 32901350 | 0.832 | OL | 0.05 | 0 | 230.464 | 12.48  | 28 |
| 5 | 100 | 38 | 1  | H1 | 8  | 32900847 | 0.838 | OL | 0.16 | 0 | 232.126 | 12.57  | 23 |
| 5 | 13  | 39 | 32 | В3 | 10 | 32900092 | 0.845 | OL | 0.07 | 0 | 234.065 | 12.675 | 28 |
| 5 | 218 | 38 | 45 | C5 | 3  | 32901986 | 0.845 | OL | 0.11 | 0 | 234.065 | 12.675 | 18 |
| 5 | 214 | 41 | 9  | B4 | 9  | 32901971 | 0.854 | OL | 0.05 | 0 | 236.558 | 12.81  | 29 |

Fuente: Alba Verónica Ramos Flores, 2019.

# 3.2.2.6. Mediciones Eléctricas Distrito 6

Se realizaron las mediciones en las redes telefónicas de 68 clientes.

 Tabla 3-7 Mediciones eléctricas Distrito 6.

| ARMA. | ALEATORIO<br>ID | LISTON | PAR | CAJA | PAR | NÚMERO   | LONGITUD<br>LIN (Km) | AISLAMIENTO (MΩ) | VOLTAJE<br>AC (V) | VOLTAJE<br>DC (V) | RESISTENCIA<br>BUCLE (Ω) | ATENUACIÓN<br>(dB) | SNR (dB) |
|-------|-----------------|--------|-----|------|-----|----------|----------------------|------------------|-------------------|-------------------|--------------------------|--------------------|----------|
| 6     | 49              | 33     | 46  | A1   | 2   | 32901629 | 6.201                | 27               | 0.05              | 0                 | 1717.677                 | 93.015             | 13       |
| 6     | 125             | 34     | 27  | A1   | 4   | 32901436 | 6.218                | 23               | 0.01              | 0                 | 1722.386                 | 93.27              | 11       |
| 6     | 70              | 35     | 48  | A1   | 6   | 32901550 | 6.234                | 25               | 0.19              | 0                 | 1726.818                 | 93.51              | 9        |
| 6     | 69              | 36     | 1   | A3   | 3   | 32901551 | 5.953                | 22               | 0.1               | 0                 | 1648.981                 | 89.295             | 11       |
| 6     | 50              | 33     | 6   | A3   | 9   | 32901628 | 5.972                | 20               | 0                 | 0                 | 1654.244                 | 89.58              | 9        |
| 6     | 119             | 34     | 32  | A4   | 4   | 32901446 | 6.118                | 25               | 0.13              | 0                 | 1694.686                 | 91.77              | 9        |
| 6     | 47              | 35     | 22  | A5   | 9   | 32901634 | 5.68                 | 21               | 0.14              | 0                 | 1573.36                  | 85.2               | 11       |
| 6     | 20              | 35     | 34  | A5   | 10  | 32901768 | 5.698                | 23               | 0.17              | 0                 | 1578.346                 | 85.47              | 13       |
| 6     | 88              | 34     | 42  | B1   | 2   | 32901508 | 6.324                | 27               | 0.1               | 0                 | 1751.748                 | 94.86              | 10       |
| 6     | 135             | 34     | 16  | B1   | 8   | 32901414 | 6.342                | 21               | 0.18              | 0                 | 1756.734                 | 95.13              | 10       |
| 6     | 203             | 31     | 49  | B1   | 9   | 32900885 | 6.36                 | 25               | 0.02              | 0                 | 1761.72                  | 95.4               | 12       |
| 6     | 212             | 35     | 2   | B2   | 7   | 32900707 | 5.62                 | 23               | 0.13              | 0                 | 1556.74                  | 84.3               | 14       |
| 6     | 95              | 35     | 1   | В3   | 2   | 32901486 | 5.896                | 26               | 0.01              | 0                 | 1633.192                 | 88.44              | 14       |
| 6     | 102             | 35     | 4   | В3   | 5   | 32901476 | 5.919                | 23               | 0.14              | 0                 | 1639.563                 | 88.785             | 13       |
| 6     | 174             | 36     | 10  | B4   | 5   | 32901345 | 5.648                | 25               | 0.1               | 0                 | 1564.496                 | 84.72              | 11       |
| 6     | 52              | 33     | 27  | B5   | 1   | 32901626 | 5.504                | 27               | 0.18              | 0                 | 1524.608                 | 82.56              | 13       |
| 6     | 172             | 31     | 29  | В5   | 2   | 32901354 | 5.402                | 23               | 0.06              | 0                 | 1496.354                 | 81.03              | 9        |
| 6     | 137             | 34     | 4   | В5   | 4   | 32901409 | 5.42                 | 28               | 0.15              | 0                 | 1501.34                  | 81.3               | 12       |
| 6     | 224             | 31     | 32  | C1   | 2   | 32900171 | 5.448                | 20               | 0.18              | 0                 | 1509.096                 | 81.72              | 10       |
| 6     | 57              | 36     | 8   | C1   | 7   | 32901613 | 5.406                | 27               | 0.07              | 0                 | 1497.462                 | 81.09              | 14       |

| 6 | 99  | 34 | 34 | C2 | 3  | 32901479 | 5.145 | 24 | 0.11 | 0 | 1425.165 | 77.175 | 13 |
|---|-----|----|----|----|----|----------|-------|----|------|---|----------|--------|----|
| 6 | 160 | 34 | 17 | C3 | 2  | 32901374 | 6.085 | 24 | 0.19 | 0 | 1685.545 | 91.275 | 13 |
| 6 | 100 | 34 | 33 | C3 | 3  | 32901478 | 6.103 | 22 | 0.04 | 0 | 1690.531 | 91.545 | 10 |
| 6 | 159 | 33 | 32 | C4 | 1  | 32901375 | 6.061 | 23 | 0.11 | 0 | 1678.897 | 90.915 | 13 |
| 6 | 155 | 35 | 19 | C5 | 1  | 32901384 | 4.87  | 23 | 6.82 | 0 | 1348.99  | 73.05  | 13 |
| 6 | 45  | 35 | 38 | C5 | 10 | 32901637 | 4.771 | 22 | 0.03 | 0 | 1321.567 | 71.565 | 11 |
| 6 | 189 | 36 | 15 | D1 | 2  | 32901223 | 4.687 | 28 | 0.15 | 0 | 1298.299 | 70.305 | 14 |
| 6 | 149 | 33 | 35 | D1 | 5  | 32901395 | 4.711 | 26 | 0.1  | 0 | 1304.947 | 70.665 | 14 |
| 6 | 112 | 31 | 21 | D1 | 10 | 32901458 | 4.729 | 21 | 0.18 | 0 | 1309.933 | 70.935 | 9  |
| 6 | 118 | 34 | 15 | D2 | 8  | 32901447 | 4.359 | 23 | 0.07 | 0 | 1207.443 | 65.385 | 12 |
| 6 | 41  | 36 | 27 | D3 | 1  | 32901646 | 5.16  | 26 | 0.02 | 0 | 1429.32  | 77.4   | 11 |
| 6 | 40  | 36 | 37 | D3 | 7  | 32901648 | 5.237 | 25 | 0.17 | 0 | 1450.649 | 78.555 | 10 |
| 6 | 186 | 33 | 23 | E1 | 3  | 32901260 | 4.964 | 28 | 0    | 0 | 1375.028 | 74.46  | 12 |
| 6 | 44  | 33 | 3  | E2 | 7  | 32901639 | 4.735 | 22 | 0.13 | 0 | 1311.595 | 71.025 | 11 |
| 6 | 231 | 33 | 8  | E2 | 8  | 32900046 | 4.759 | 24 | 0.06 | 0 | 1318.243 | 71.385 | 11 |
| 6 | 142 | 34 | 5  | E3 | 2  | 32901404 | 4.728 | 25 | 0.12 | 0 | 1309.656 | 70.92  | 10 |
| 6 | 138 | 34 | 3  | E3 | 3  | 32901408 | 4.746 | 22 | 0.07 | 0 | 1314.642 | 71.19  | 10 |
| 6 | 134 | 31 | 34 | E4 | 6  | 32901415 | 4.136 | 24 | 0.01 | 0 | 1145.672 | 62.04  | 9  |
| 6 | 221 | 34 | 1  | E4 | 8  | 32900316 | 4.154 | 20 | 0.04 | 0 | 1150.658 | 62.31  | 11 |
| 6 | 184 | 31 | 1  | E5 | 2  | 32901275 | 3.943 | 21 | 0.04 | 0 | 1092.211 | 59.145 | 10 |
| 6 | 168 | 32 | 32 | E5 | 8  | 32901360 | 3.965 | 24 | 0.04 | 0 | 1098.305 | 59.475 | 13 |
| 6 | 218 | 31 | 33 | F1 | 4  | 32900536 | 4.715 | 21 | 0.12 | 0 | 1306.055 | 70.725 | 12 |
| 6 | 150 | 32 | 5  | F1 | 7  | 32901393 | 4.731 | 28 | 0.19 | 0 | 1310.487 | 70.965 | 14 |
| 6 | 151 | 36 | 31 | F3 | 9  | 32901389 | 4.175 | 27 | 0.17 | 0 | 1156.475 | 62.625 | 13 |
| 6 | 56  | 31 | 15 | F4 | 2  | 32901620 | 3.741 | 26 | 0.11 | 0 | 1036.257 | 56.115 | 13 |
| 6 | 165 | 32 | 37 | F5 | 2  | 32901367 | 6.168 | 26 | 0.16 | 0 | 1708.536 | 92.52  | 9  |
| 6 | 158 | 31 | 36 | F5 | 4  | 32901378 | 6.254 | 28 | 0.19 | 0 | 1732.358 | 93.81  | 12 |
| 6 | 156 | 31 | 47 | F5 | 10 | 32901381 | 6.272 | 25 | 0.05 | 0 | 1737.344 | 94.08  | 14 |

| 1       | İ                 | İ       | 1 1 | l  | 1  | 1        |       | Ī  | Ī    | Ī | Ī        | 1      | 1 1 |
|---------|-------------------|---------|-----|----|----|----------|-------|----|------|---|----------|--------|-----|
| 6       | 104               | 35      | 10  | G1 | 5  | 32901474 | 6.196 | 24 | 0.03 | 0 | 1716.292 | 92.94  | 9   |
| 6       | 90                | 35      | 7   | G2 | 4  | 32901495 | 5.81  | 20 | 0.05 | 0 | 1609.37  | 87.15  | 10  |
| 6       | 98                | 33      | 18  | G2 | 6  | 32901481 | 5.708 | 28 | 0.1  | 0 | 1581.116 | 85.62  | 10  |
| 6       | 43                | 35      | 6   | G2 | 10 | 32901640 | 5.726 | 23 | 0.07 | 0 | 1586.102 | 85.89  | 12  |
| 6       | 48                | 31      | 19  | G3 | 4  | 32901631 | 5.535 | 26 | 0.08 | 0 | 1533.195 | 83.025 | 14  |
| 6       | 59                | 34      | 8   | G3 | 5  | 32901590 | 5.553 | 22 | 0.08 | 0 | 1538.181 | 83.295 | 14  |
| 6       | 30                | 33      | 7   | G4 | 3  | 32901682 | 5.279 | 24 | 0.12 | 0 | 1462.283 | 79.185 | 10  |
| 6       | 38                | 36      | 14  | G5 | 6  | 32901650 | 4.812 | 24 | 0.14 | 0 | 1332.924 | 72.18  | 9   |
| 6       | 229               | 33      | 21  | H1 | 6  | 32900105 | 4.396 | 26 | 0.17 | 0 | 1217.692 | 65.94  | 14  |
| 6       | 24                | 33      | 49  | H1 | 7  | 32901723 | 4.28  | 22 | 0.01 | 0 | 1185.56  | 64.2   | 11  |
| 6       | 213               | 36      | 20  | НЗ | 1  | 32900675 | 4.384 | 20 | 0.16 | 0 | 1214.368 | 65.76  | 10  |
| 6       | 122               | 32      | 23  | НЗ | 5  | 32901443 | 4.402 | 24 | 0.01 | 0 | 1219.354 | 66.03  | 9   |
| 6       | 22                | 36      | 19  | H4 | 4  | 32901734 | 4.089 | 20 | 0.18 | 0 | 1132.653 | 61.335 | 12  |
| 6       | 130               | 32      | 17  | H4 | 9  | 32901422 | 4.113 | 23 | 0.19 | 0 | 1139.301 | 61.695 | 13  |
| 6       | 211               | 32      | 12  | Н5 | 2  | 32900769 | 3.81  | 28 | 0.12 | 0 | 1055.37  | 57.15  | 13  |
| 6       | 206               | 34      | 25  | Н5 | 4  | 32900831 | 3.828 | 24 | 0.04 | 0 | 1060.356 | 57.42  | 9   |
| 6       | 16                | 32      | 40  | Н5 | 6  | 32901843 | 3.848 | 23 | 0.07 | 0 | 1065.896 | 57.72  | 9   |
| 6       | 25                | 32      | 43  | Н5 | 8  | 32901722 | 3.869 | 21 | 0.14 | 0 | 1071.713 | 58.035 | 13  |
| 6       | 33                | 32      | 44  | Н5 | 9  | 32901670 | 3.768 | 26 | 0.1  | 0 | 1043.736 | 56.52  | 9   |
| 6       | 183               | 31      | 24  | I1 | 1  | 32901277 | 4.296 | 20 | 0.01 | 0 | 1189.992 | 64.44  | 11  |
| T 4 4 1 | ha Vanánica Damas | EI 2016 | `   |    |    |          |       |    |      |   |          |        |     |

Fuente: Alba Verónica Ramos Flores, 2019.

A los valores obtenidos se les asigna una valorización según la escala de Likert, que para el análisis posterior lo llamaremos nivel de aceptación en cada uno de los parámetros medidos, para realizar el estudios de los datos de mejor manera, tomando en cuenta los tres parámetros principales para evaluar el funcionamiento de las redes telefónicas, basándose en los valores establecidos por la Normativa vigente de la CNT EP., estos parámetros son; Atenuación, Resistencia de Bucle y SNR, considerando la valoración del 100% al valor óptimo de aceptación para un buen funcionamiento de las redes telefónicas. Por lo tanto se define categorías simétricas con cada uno de los parámetros analizados, teniendo así:

Tabla 3-8 Valoración Atenuación.

| Atenuación (dB) | Valor (% de aceptación ) |
|-----------------|--------------------------|
| 45 - 33.76      | 0% - 25%                 |
| 33.75 - 22.51   | 26 % - 50%               |
| 22.50 - 11.26   | 51% - 75 %               |
| 11.25 - 0.1     | 76% - 100%               |

Fuente: Alba Verónica Ramos Flores, 2019.

Tabla 3-9 Valoración Resistencia de Bucle

| Resistencia de Bucle (Ω) | Valor (% de aceptación ) |
|--------------------------|--------------------------|
| 50 - 262.5               | 100% - 75%               |
| 262.51 - 475             | 74% - 50%                |
| 475.1 - 687.5            | 49% - 25%                |
| 687.51 - 900             | 24% - 0%                 |

Fuente: Alba Verónica Ramos Flores, 2019.

Tabla 3-10 Valoración SNR.

| SNR (dB) | Valor(% de aceptación ) |  |  |  |  |
|----------|-------------------------|--|--|--|--|
| 12 - 19  | 0% - 33%                |  |  |  |  |
| 20 - 26  | 34% - 66%               |  |  |  |  |
| 27 - 33  | 67% - 100%              |  |  |  |  |

Fuente: Alba Verónica Ramos Flores, 2019.

Con las tablas 3-8, 3-9 y 3-10 se puede valorar los parámetros eléctricos de medición para obtener de manera más clara el sector donde la red necesita mejorar su calidad técnica para dotar de servicio eficiente y de esta manera realizar la implementación de la nueva Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, para mejorar los servicios de Telecomunicaciones.

Tabla 3-11 Valoración de los parámetros eléctricos Resistencia de Bucle, Atenuación y SNR

| ARM. | CAJA | PAR | NÚMERO   | LON<br>LIN<br>(Km) | RESIS<br>BCL (Ω) | ATEN (dB) | SNR (dB) | RESIS<br>BCL % | ATEN % | SNR<br>% |
|------|------|-----|----------|--------------------|------------------|-----------|----------|----------------|--------|----------|
| 1    | E5   | 3   | 32900288 | 0.229              | 63.433           | 3.435     | 16       | 92.54          | 92.36  | 19.05    |
| 1    | E5   | 5   | 32900161 | 0.251              | 69.527           | 3.765     | 15       | 91.82          | 91.63  | 14.29    |
| 1    | E4   | 4   | 32900648 | 0.255              | 70.635           | 3.825     | 17       | 91.69          | 91.49  | 23.81    |
| 1    | E5   | 7   | 32901955 | 0.268              | 74.236           | 4.02      | 31       | 91.27          | 91.06  | 90.48    |
| 1    | E5   | 10  | 32900345 | 0.284              | 78.668           | 4.26      | 31       | 90.74          | 90.52  | 90.48    |
| 1    | E1   | 7   | 32900631 | 0.29               | 80.33            | 4.35      | 17       | 90.55          | 90.32  | 23.81    |
| 1    | E2   | 8   | 32901534 | 0.328              | 90.856           | 4.92      | 26       | 89.31          | 89.06  | 66.67    |
| 1    | НЗ   | 8   | 32900552 | 0.348              | 96.396           | 5.22      | 15       | 88.66          | 88.39  | 14.29    |
| 1    | E3   | 2   | 32900397 | 0.366              | 101.382          | 5.49      | 31       | 88.07          | 87.79  | 90.48    |
| 1    | F3   | 1   | 32901824 | 0.367              | 101.659          | 5.505     | 18       | 88.04          | 87.76  | 28.57    |
| 1    | E3   | 8   | 32901728 | 0.392              | 108.584          | 5.88      | 17       | 87.23          | 86.92  | 23.81    |
| 1    | F3   | 8   | 32900436 | 0.446              | 123.542          | 6.69      | 19       | 85.47          | 85.12  | 33.33    |
| 1    | J2   | 1   | 32900530 | 0.502              | 139.054          | 7.53      | 28       | 83.64          | 83.25  | 76.19    |
| 1    | F4   | 2   | 32900238 | 0.565              | 156.505          | 8.475     | 26       | 81.59          | 81.15  | 66.67    |
| 1    | F4   | 7   | 32900376 | 0.583              | 161.491          | 8.745     | 27       | 81.00          | 80.55  | 71.43    |
| 1    | J2   | 3   | 32901496 | 0.586              | 162.322          | 8.79      | 30       | 80.90          | 80.45  | 85.71    |
| 1    | F4   | 9   | 32900394 | 0.601              | 166.477          | 9.015     | 15       | 80.41          | 79.95  | 14.29    |
| 1    | J2   | 4   | 32901810 | 0.604              | 167.308          | 9.06      | 29       | 80.32          | 79.85  | 80.95    |
| 1    | I3   | 1   | 32900103 | 0.609              | 168.693          | 9.135     | 19       | 80.15          | 79.68  | 33.33    |
| 1    | J1   | 3   | 32901943 | 0.616              | 170.632          | 9.24      | 28       | 79.93          | 79.45  | 76.19    |
| 1    | J1   | 10  | 32900839 | 0.639              | 177.003          | 9.585     | 30       | 79.18          | 78.68  | 85.71    |
| 1    | I1   | 7   | 32901927 | 0.646              | 178.942          | 9.69      | 21       | 78.95          | 78.45  | 42.86    |
| 1    | I4   | 8   | 32900669 | 0.661              | 183.097          | 9.915     | 18       | 78.46          | 77.95  | 28.57    |
| 1    | I1   | 9   | 32900539 | 0.672              | 186.144          | 10.08     | 25       | 78.10          | 77.58  | 61.90    |
| 1    | I5   | 9   | 32901884 | 0.708              | 196.116          | 10.62     | 16       | 76.93          | 76.38  | 19.05    |
| 1    | В3   | 4   | 32900339 | 0.715              | 198.055          | 10.725    | 18       | 76.70          | 76.15  | 28.57    |
| 1    | H1   | 1   | 32901804 | 0.737              | 204.149          | 11.055    | 17       | 75.98          | 75.41  | 23.81    |
| 1    | B4   | 7   | 32900529 | 0.749              | 207.473          | 11.235    | 29       | 75.59          | 75.01  | 80.95    |
| 1    | H1   | 2   | 32900574 | 0.756              | 209.412          | 11.34     | 16       | 75.36          | 74.78  | 19.05    |
| 1    | B5   | 8   | 32900575 | 0.767              | 212.459          | 11.505    | 18       | 75.00          | 74.41  | 28.57    |
| 1    | B4   | 10  | 32900972 | 0.771              | 213.567          | 11.565    | 27       | 74.87          | 74.28  | 71.43    |
| 1    | H1   | 5   | 32901332 | 0.78               | 216.06           | 11.7      | 27       | 74.58          | 73.98  | 71.43    |
| 1    | A1   | 1   | 32902000 | 0.787              | 217.999          | 11.805    | 23       | 74.35          | 73.74  | 52.38    |
| 1    | A2   | 6   | 32900448 | 0.803              | 222.431          | 12.045    | 15       | 73.83          | 73.21  | 14.29    |
| 1    | A2   | 7   | 32900188 | 0.822              | 227.694          | 12.33     | 17       | 73.21          | 72.58  | 23.81    |
| 1    | L3   | 4   | 32900952 | 0.825              | 228.525          | 12.375    | 26       | 73.11          | 72.48  | 66.67    |
| 1    | B5   | 1   | 32900516 | 0.828              | 229.356          | 12.42     | 19       | 73.02          | 72.38  | 33.33    |
| 1    | A2   | 10  | 32901898 | 0.844              | 233.788          | 12.66     | 28       | 72.50          | 71.84  | 76.19    |
| 1    | L3   | 5   | 32901762 | 0.844              | 233.788          | 12.66     | 15       | 72.50          | 71.84  | 14.29    |
| 1    | D1   | 7   | 32900081 | 0.847              | 234.619          | 12.705    | 25       | 72.40          | 71.74  | 61.90    |
| 1    | N1   | 5   | 32901871 | 0.857              | 237.389          | 12.855    | 28       | 72.07          | 71.41  | 76.19    |

| 1 | N3 | 2  | 32900992 | 0.86  | 238.22  | 12.9   | 27 | 71.97 | 71.31 | 71.43 |
|---|----|----|----------|-------|---------|--------|----|-------|-------|-------|
| 1 | B5 | 7  | 32900386 | 0.864 | 239.328 | 12.96  | 27 | 71.84 | 71.17 | 71.43 |
| 1 | L1 | 2  | 32901198 | 0.864 | 239.328 | 12.96  | 22 | 71.84 | 71.17 | 47.62 |
| 1 | N4 | 10 | 32900208 | 0.868 | 240.436 | 13.02  | 18 | 71.71 | 71.04 | 28.57 |
| 1 | A5 | 8  | 32900609 | 0.869 | 240.713 | 13.035 | 32 | 71.68 | 71.01 | 95.24 |
| 1 | N3 | 4  | 32901386 | 0.884 | 244.868 | 13.26  | 23 | 71.19 | 70.51 | 52.38 |
| 1 | D5 | 7  | 32900535 | 0.885 | 245.145 | 13.275 | 25 | 71.16 | 70.47 | 61.90 |
| 1 | A4 | 5  | 32900608 | 0.896 | 248.192 | 13.44  | 20 | 70.80 | 70.11 | 38.10 |
| 1 | B2 | 3  | 32900613 | 0.898 | 248.746 | 13.47  | 25 | 70.74 | 70.04 | 61.90 |
| 1 | O2 | 1  | 32901890 | 0.908 | 251.516 | 13.62  | 29 | 70.41 | 69.71 | 80.95 |
| 1 | B1 | 10 | 32901093 | 0.912 | 252.624 | 13.68  | 25 | 70.28 | 69.57 | 61.90 |
| 1 | A4 | 6  | 32901685 | 0.913 | 252.901 | 13.695 | 16 | 70.25 | 69.54 | 19.05 |
| 1 | B2 | 7  | 32901976 | 0.916 | 253.732 | 13.74  | 21 | 70.15 | 69.44 | 42.86 |
| 1 | C1 | 7  | 32900223 | 0.926 | 256.502 | 13.89  | 26 | 69.82 | 69.11 | 66.67 |
| 1 | B2 | 10 | 32901265 | 0.942 | 260.934 | 14.13  | 32 | 69.30 | 68.57 | 95.24 |
| 1 | N5 | 2  | 32901660 | 0.946 | 262.042 | 14.19  | 21 | 69.17 | 68.44 | 42.86 |
| 1 | A3 | 8  | 32900603 | 0.957 | 265.089 | 14.355 | 28 | 68.81 | 68.07 | 76.19 |
| 1 | A5 | 3  | 32900265 | 0.967 | 267.859 | 14.505 | 25 | 68.49 | 67.74 | 61.90 |
| 1 | C5 | 7  | 32900561 | 0.97  | 268.69  | 14.55  | 19 | 68.39 | 67.64 | 33.33 |
| 1 | N5 | 6  | 32901329 | 0.97  | 268.69  | 14.55  | 32 | 68.39 | 67.64 | 95.24 |
| 1 | C3 | 4  | 32900320 | 0.975 | 270.075 | 14.625 | 21 | 68.23 | 67.47 | 42.86 |
| 1 | A5 | 5  | 32900024 | 0.99  | 274.23  | 14.85  | 25 | 67.74 | 66.97 | 61.90 |
| 1 | O5 | 2  | 32901704 | 0.991 | 274.507 | 14.865 | 16 | 67.71 | 66.94 | 19.05 |
| 1 | C3 | 8  | 32900639 | 0.993 | 275.061 | 14.895 | 22 | 67.64 | 66.87 | 47.62 |
| 1 | P3 | 9  | 32900994 | 1.012 | 280.324 | 15.18  | 21 | 67.02 | 66.24 | 42.86 |
| 1 | C4 | 2  | 32900266 | 1.046 | 289.742 | 15.69  | 30 | 65.91 | 65.10 | 85.71 |
| 1 | C5 | 9  | 32900011 | 1.048 | 290.296 | 15.72  | 19 | 65.85 | 65.04 | 33.33 |
| 1 | A3 | 5  | 32901498 | 1.058 | 293.066 | 15.87  | 17 | 65.52 | 64.70 | 23.81 |
| 1 | C5 | 10 | 32900538 | 1.066 | 295.282 | 15.99  | 22 | 65.26 | 64.44 | 47.62 |
| 1 | P2 | 1  | 32901170 | 1.076 | 298.052 | 16.14  | 17 | 64.94 | 64.10 | 23.81 |
| 1 | P3 | 4  | 32900251 | 1.109 | 307.193 | 16.635 | 28 | 63.86 | 63.00 | 76.19 |
| 1 | P3 | 8  | 32901783 | 1.128 | 312.456 | 16.92  | 15 | 63.24 | 62.37 | 14.29 |
| 1 | K4 | 8  | 32901757 | 1.26  | 349.02  | 18.9   | 16 | 58.94 | 57.96 | 19.05 |
| 1 | G3 | 4  | 32900958 | 1.528 | 423.256 | 22.92  | 21 | 50.21 | 49.02 | 42.86 |
| 1 | G5 | 9  | 32902004 | 1.531 | 424.087 | 22.965 | 32 | 50.11 | 48.92 | 95.24 |
| 1 | M5 | 7  | 32901536 | 1.646 | 455.942 | 24.69  | 19 | 46.36 | 45.08 | 33.33 |
| 1 | M1 | 1  | 32901675 | 1.663 | 460.651 | 24.945 | 32 | 45.81 | 44.52 | 95.24 |
| 1 | G2 | 5  | 32900953 | 1.667 | 461.759 | 25.005 | 25 | 45.68 | 44.38 | 61.90 |
| 1 | M2 | 2  | 32901706 | 1.668 | 462.036 | 25.02  | 30 | 45.64 | 44.35 | 85.71 |
| 2 | D5 | 1  | 32900149 | 0.199 | 55.123  | 2.985  | 32 | 93.51 | 93.36 | 95.24 |
| 2 | C5 | 4  | 32900897 | 0.212 | 58.724  | 3.18   | 29 | 93.09 | 92.93 | 80.95 |
| 2 | C5 | 7  | 32900197 | 0.235 | 65.095  | 3.525  | 28 | 92.34 | 92.16 | 76.19 |
| 2 | C5 | 9  | 32900210 | 0.254 | 70.358  | 3.81   | 31 | 91.72 | 91.53 | 90.48 |
| 2 | C5 | 1  | 32900722 | 0.259 | 71.743  | 3.885  | 23 | 91.56 | 91.36 | 52.38 |
| 2 | D5 | 5  | 32901048 | 0.275 | 76.175  | 4.125  | 21 | 91.04 | 90.83 | 42.86 |
| 2 | C5 | 2  | 32900014 | 0.276 | 76.452  | 4.14   | 24 | 91.01 | 90.79 | 57.14 |

| 2 | Н5 | 3  | 32900687 | 0.283 | 78.391  | 4.245  | 25 | 90.78 | 90.56 | 61.90 |
|---|----|----|----------|-------|---------|--------|----|-------|-------|-------|
| 2 | D5 | 6  | 32900731 | 0.298 | 82.546  | 4.47   | 15 | 90.29 | 90.06 | 14.29 |
| 2 | Н5 | 8  | 32900008 | 0.307 | 85.039  | 4.605  | 23 | 90.00 | 89.76 | 52.38 |
| 2 | D5 | 9  | 32901658 | 0.317 | 87.809  | 4.755  | 29 | 89.67 | 89.42 | 80.95 |
| 2 | D4 | 3  | 32900118 | 0.323 | 89.471  | 4.845  | 31 | 89.47 | 89.22 | 90.48 |
| 2 | Н5 | 10 | 32900129 | 0.325 | 90.025  | 4.875  | 23 | 89.41 | 89.16 | 52.38 |
| 2 | D3 | 1  | 32900022 | 0.334 | 92.518  | 5.01   | 29 | 89.12 | 88.86 | 80.95 |
| 2 | D4 | 5  | 32900446 | 0.342 | 94.734  | 5.13   | 27 | 88.85 | 88.59 | 71.43 |
| 2 | C1 | 3  | 32900193 | 0.344 | 95.288  | 5.16   | 31 | 88.79 | 88.52 | 90.48 |
| 2 | H4 | 10 | 32901468 | 0.348 | 96.396  | 5.22   | 21 | 88.66 | 88.39 | 42.86 |
| 2 | C2 | 2  | 32900068 | 0.358 | 99.166  | 5.37   | 26 | 88.33 | 88.06 | 66.67 |
| 2 | D3 | 2  | 32900194 | 0.36  | 99.72   | 5.4    | 25 | 88.27 | 87.99 | 61.90 |
| 2 | D4 | 8  | 32900207 | 0.364 | 100.828 | 5.46   | 25 | 88.14 | 87.86 | 61.90 |
| 2 | C1 | 7  | 32900453 | 0.37  | 102.49  | 5.55   | 22 | 87.94 | 87.66 | 47.62 |
| 2 | C1 | 8  | 32900467 | 0.388 | 107.476 | 5.82   | 30 | 87.36 | 87.06 | 85.71 |
| 2 | В3 | 2  | 32901041 | 0.41  | 113.57  | 6.15   | 23 | 86.64 | 86.32 | 52.38 |
| 2 | H4 | 2  | 32900904 | 0.411 | 113.847 | 6.165  | 32 | 86.61 | 86.29 | 95.24 |
| 2 | В3 | 6  | 32900555 | 0.428 | 118.556 | 6.42   | 15 | 86.05 | 85.72 | 14.29 |
| 2 | H4 | 4  | 32900133 | 0.429 | 118.833 | 6.435  | 16 | 86.02 | 85.69 | 19.05 |
| 2 | D1 | 2  | 32900616 | 0.433 | 119.941 | 6.495  | 30 | 85.89 | 85.55 | 85.71 |
| 2 | D2 | 2  | 32900003 | 0.437 | 121.049 | 6.555  | 20 | 85.76 | 85.42 | 38.10 |
| 2 | H4 | 8  | 32900929 | 0.447 | 123.819 | 6.705  | 18 | 85.43 | 85.09 | 28.57 |
| 2 | D1 | 9  | 32900041 | 0.453 | 125.481 | 6.795  | 24 | 85.24 | 84.89 | 57.14 |
| 2 | B1 | 5  | 32900377 | 0.517 | 143.209 | 7.755  | 20 | 83.15 | 82.75 | 38.10 |
| 2 | H1 | 3  | 32900117 | 0.532 | 147.364 | 7.98   | 30 | 82.66 | 82.25 | 85.71 |
| 2 | A5 | 7  | 32900783 | 0.588 | 162.876 | 8.82   | 24 | 80.84 | 80.38 | 57.14 |
| 2 | E5 | 6  | 32901026 | 0.634 | 175.618 | 9.51   | 26 | 79.34 | 78.85 | 66.67 |
| 2 | J3 | 4  | 32900834 | 0.654 | 181.158 | 9.81   | 18 | 78.69 | 78.18 | 28.57 |
| 2 | G3 | 5  | 32901623 | 0.661 | 183.097 | 9.915  | 26 | 78.46 | 77.95 | 66.67 |
| 2 | F2 | 1  | 32900798 | 0.668 | 185.036 | 10.02  | 29 | 78.23 | 77.71 | 80.95 |
| 2 | J3 | 9  | 32901996 | 0.673 | 186.421 | 10.095 | 19 | 78.07 | 77.55 | 33.33 |
| 2 | A3 | 2  | 32901568 | 0.68  | 188.36  | 10.2   | 19 | 77.84 | 77.31 | 33.33 |
| 2 | F2 | 3  | 32900515 | 0.686 | 190.022 | 10.29  | 20 | 77.64 | 77.11 | 38.10 |
| 2 | A3 | 7  | 32901068 | 0.696 | 192.792 | 10.44  | 25 | 77.32 | 76.78 | 61.90 |
| 2 | F2 | 9  | 32900826 | 0.705 | 195.285 | 10.575 | 24 | 77.03 | 76.48 | 57.14 |
| 2 | G1 | 9  | 32900772 | 0.736 | 203.872 | 11.04  | 32 | 76.02 | 75.44 | 95.24 |
| 2 | I1 | 5  | 32900986 | 0.747 | 206.919 | 11.205 | 25 | 75.66 | 75.08 | 61.90 |
|   | J3 | 2  | 32900165 | 0.751 | 208.027 | 11.265 | 24 | 75.53 | 74.94 | 57.14 |
| 2 | G2 | 2  | 32900876 | 0.752 | 208.304 | 11.28  | 29 | 75.49 | 74.91 | 80.95 |
|   | I4 | 2  | 32901005 | 0.76  | 210.52  | 11.4   | 18 | 75.23 | 74.64 | 28.57 |
| 2 | F1 | 7  | 32901974 | 0.764 | 211.628 | 11.46  | 32 | 75.10 | 74.51 | 95.24 |
|   | I1 | 9  | 32900989 | 0.769 | 213.013 | 11.535 | 16 | 74.94 | 74.34 | 19.05 |
| 2 | G5 | 8  | 32900587 | 0.777 | 215.229 | 11.655 | 19 | 74.68 | 74.08 | 33.33 |
|   | J4 | 1  | 32900686 | 0.777 | 215.229 | 11.655 | 28 | 74.68 | 74.08 | 76.19 |
|   | F1 | 8  | 32901106 | 0.782 | 216.614 | 11.73  | 18 | 74.52 | 73.91 | 28.57 |
| 2 | A1 | 2  | 32900013 | 0.786 | 217.722 | 11.79  | 31 | 74.39 | 73.78 | 90.48 |

| 2 | J4 | 4  | 32901025 | 0.795 | 220.215 | 11.925 | 19 | 74.09 | 73.48 | 33.33 |
|---|----|----|----------|-------|---------|--------|----|-------|-------|-------|
| 2 | A1 | 4  | 32900488 | 0.804 | 222.708 | 12.06  | 15 | 73.80 | 73.18 | 14.29 |
| 2 | F1 | 5  | 32900304 | 0.806 | 223.262 | 12.09  | 26 | 73.73 | 73.11 | 66.67 |
| 2 | G4 | 2  | 32900454 | 0.807 | 223.539 | 12.105 | 32 | 73.70 | 73.08 | 95.24 |
| 2 | A2 | 9  | 32900777 | 0.812 | 224.924 | 12.18  | 25 | 73.54 | 72.91 | 61.90 |
| 2 | J5 | 7  | 32900087 | 0.82  | 227.14  | 12.3   | 29 | 73.28 | 72.64 | 80.95 |
| 2 | I1 | 1  | 32900307 | 0.824 | 228.248 | 12.36  | 31 | 73.15 | 72.51 | 90.48 |
| 2 | I3 | 2  | 32900219 | 0.826 | 228.802 | 12.39  | 16 | 73.08 | 72.44 | 19.05 |
| 2 | A1 | 10 | 32900811 | 0.83  | 229.91  | 12.45  | 24 | 72.95 | 72.31 | 57.14 |
| 2 | G1 | 7  | 32901064 | 0.839 | 232.403 | 12.585 | 32 | 72.66 | 72.01 | 95.24 |
| 2 | I3 | 3  | 32901787 | 0.842 | 233.234 | 12.63  | 22 | 72.56 | 71.91 | 47.62 |
| 2 | I4 | 6  | 32900565 | 0.844 | 233.788 | 12.66  | 21 | 72.50 | 71.84 | 42.86 |
| 2 | I1 | 2  | 32901434 | 0.85  | 235.45  | 12.75  | 24 | 72.30 | 71.64 | 57.14 |
|   | I4 | 7  | 32900586 | 0.862 | 238.774 | 12.93  | 30 | 71.91 | 71.24 | 85.71 |
| 2 | J1 | 3  | 32900572 | 0.862 | 238.774 | 12.93  | 17 | 71.91 | 71.24 | 23.81 |
| 2 | I3 | 4  | 32900996 | 0.865 | 239.605 | 12.975 | 32 | 71.81 | 71.14 | 95.24 |
| 2 | E1 | 5  | 32901581 | 0.866 | 239.882 | 12.99  | 17 | 71.78 | 71.11 | 23.81 |
| 2 | J1 | 5  | 32902006 | 0.879 | 243.483 | 13.185 | 19 | 71.35 | 70.67 | 33.33 |
| 2 | I4 | 8  | 32900875 | 0.88  | 243.76  | 13.2   | 17 | 71.32 | 70.64 | 23.81 |
| 2 | G5 | 3  | 32900391 | 0.899 | 249.023 | 13.485 | 21 | 70.70 | 70.01 | 42.86 |
| 3 | C3 | 7  | 32900107 | 1.022 | 283.094 | 15.33  | 29 | 66.69 | 65.90 | 80.95 |
| 3 | C3 | 9  | 32901263 | 1.045 | 289.465 | 15.675 | 15 | 65.95 | 65.14 | 14.29 |
| 3 | C4 | 9  | 32900073 | 1.05  | 290.85  | 15.75  | 23 | 65.78 | 64.97 | 52.38 |
| 3 | C2 | 9  | 32900059 | 1.061 | 293.897 | 15.915 | 24 | 65.42 | 64.60 | 57.14 |
| 3 | D2 | 9  | 32900545 | 1.072 | 296.944 | 16.08  | 26 | 65.07 | 64.23 | 66.67 |
| 3 | C3 | 1  | 32901187 | 1.089 | 301.653 | 16.335 | 15 | 64.51 | 63.67 | 14.29 |
| 3 | C3 | 4  | 32901889 | 1.126 | 311.902 | 16.89  | 28 | 63.31 | 62.43 | 76.19 |
| 3 | D5 | 4  | 32901587 | 1.127 | 312.179 | 16.905 | 16 | 63.27 | 62.40 | 19.05 |
| 3 | D4 | 7  | 32900390 | 1.149 | 318.273 | 17.235 | 18 | 62.56 | 61.67 | 28.57 |
| 3 | J1 | 8  | 32900695 | 1.15  | 318.55  | 17.25  | 26 | 62.52 | 61.63 | 66.67 |
| 3 | C1 | 9  | 32901416 | 1.152 | 319.104 | 17.28  | 27 | 62.46 | 61.57 | 71.43 |
| 3 | D4 | 8  | 32900455 | 1.165 | 322.705 | 17.475 | 15 | 62.03 | 61.13 | 14.29 |
| 3 | D2 | 2  | 32901809 | 1.174 | 325.198 | 17.61  | 29 | 61.74 | 60.83 | 80.95 |
| 3 | В3 | 4  | 32901289 | 1.193 | 330.461 | 17.895 | 17 | 61.12 | 60.20 | 23.81 |
| 3 | D2 | 8  | 32900322 | 1.194 | 330.738 | 17.91  | 24 | 61.09 | 60.16 | 57.14 |
| 3 | D4 | 4  | 32901769 | 1.211 | 335.447 | 18.165 | 17 | 60.54 | 59.60 | 23.81 |
| 3 | J1 | 4  | 32901779 | 1.214 | 336.278 | 18.21  | 23 | 60.44 | 59.50 | 52.38 |
| 3 | D3 | 4  | 32900317 | 1.222 | 338.494 | 18.33  | 24 | 60.18 | 59.23 | 57.14 |
| 3 | J1 | 5  | 32901189 | 1.232 | 341.264 | 18.48  | 24 | 59.85 | 58.90 | 57.14 |
| 3 | J4 | 5  | 32901726 | 1.284 | 355.668 | 19.26  | 32 | 58.16 | 57.16 | 95.24 |
| 3 | B5 | 3  | 32900823 | 1.299 | 359.823 | 19.485 | 27 | 57.67 | 56.66 | 71.43 |
| 3 | В3 | 2  | 32900163 | 1.31  | 362.87  | 19.65  | 15 | 57.31 | 56.29 | 14.29 |
| 3 | K1 | 3  | 32901744 | 1.318 | 365.086 | 19.77  | 23 | 57.05 | 56.03 | 52.38 |
| 3 | B4 | 3  | 32902062 | 1.329 | 368.133 | 19.935 | 19 | 56.69 | 55.66 | 33.33 |
| 3 | K1 | 6  | 32902005 | 1.344 | 372.288 | 20.16  | 20 | 56.20 | 55.16 | 38.10 |
| 3 | B4 | 7  | 32900496 | 1.353 | 374.781 | 20.295 | 31 | 55.91 | 54.86 | 90.48 |

| 3 | I1 | 3  | 32901961 | 1.353 | 374.781 | 20.295          | 28 | 55.91 | 54.86 | 76.19 |
|---|----|----|----------|-------|---------|-----------------|----|-------|-------|-------|
| 3 | I3 | 7  | 32901987 | 1.362 | 377.274 | 20.43           | 18 | 55.61 | 54.56 | 28.57 |
| 3 | K1 | 8  | 32901100 | 1.362 | 377.274 | 20.43           | 30 | 55.61 | 54.56 | 85.71 |
| 3 | B4 | 9  | 32901937 | 1.371 | 379.767 | 20.565          | 18 | 55.32 | 54.26 | 28.57 |
| 3 | I1 | 6  | 32901142 | 1.377 | 381.429 | 20.655          | 31 | 55.13 | 54.06 | 90.48 |
| 3 | I4 | 2  | 32901792 | 1.391 | 385.307 | 20.865          | 27 | 54.67 | 53.59 | 71.43 |
| 3 | B5 | 2  | 32901493 | 1.393 | 385.861 | 20.895          | 26 | 54.60 | 53.53 | 66.67 |
| 3 | A1 | 3  | 32900031 | 1.413 | 391.401 | 21.195          | 31 | 53.95 | 52.86 | 90.48 |
| 3 | I4 | 10 | 32901789 | 1.413 | 391.401 | 21.195          | 16 | 53.95 | 52.86 | 19.05 |
| 3 | I5 | 5  | 32900729 | 1.419 | 393.063 | 21.285          | 27 | 53.76 | 52.66 | 71.43 |
| 3 | K1 | 2  | 32901741 | 1.42  | 393.34  | 21.3            | 22 | 53.72 | 52.62 | 47.62 |
| 3 | I2 | 6  | 32900925 | 1.43  | 396.11  | 21.45           | 17 | 53.40 | 52.29 | 23.81 |
| 3 | A1 | 5  | 32901574 | 1.434 | 397.218 | 21.51           | 16 | 53.40 | 52.16 | 19.05 |
| 3 | I5 | 9  | 32901374 | 1.438 | 398.326 | 21.57           | 28 | 53.14 | 52.10 | 76.19 |
| 3 | I2 | 9  | 32901823 | 1.438 | 401.096 | 21.72           | 15 | 52.81 | 51.69 | 14.29 |
| 3 | I5 | 10 | 32900109 | 1.448 | 404.974 | 21.72           | 27 | 52.36 | 51.09 | 71.43 |
| 3 | B1 | 7  | 32900907 | 1.464 | 404.974 | 21.96           |    | 52.29 | 51.16 | 28.57 |
| 3 |    | 2  |          |       |         |                 | 18 |       |       |       |
| 3 | A1 | 1  | 32901165 | 1.473 | 408.021 | 22.095<br>22.17 | 16 | 52.00 | 50.86 | 19.05 |
|   | K5 | 6  | 32900594 | 1.478 | 409.406 |                 | 21 | 51.83 | 50.69 | 42.86 |
|   | I3 | 6  | 32901885 | 1.484 | 411.068 | 22.26           | 28 | 51.64 | 50.49 | 76.19 |
| 3 | F3 | 4  | 32901090 | 1.492 | 413.284 | 22.38           | 15 | 51.38 | 50.22 | 14.29 |
| - | I5 | 1  | 32900434 | 1.5   | 415.5   | 22.5            | 30 | 51.12 | 49.96 | 85.71 |
| 3 | I5 | 3  | 32901053 | 1.516 | 419.932 | 22.74           | 32 | 50.60 | 49.42 | 95.24 |
| 3 | G4 | 1  | 32901274 | 1.519 | 420.763 | 22.785          | 18 | 50.50 | 49.32 | 28.57 |
| 3 | F4 | 5  | 32900190 | 1.53  | 423.81  | 22.95           | 17 | 50.14 | 48.95 | 23.81 |
| 3 | G4 | 3  | 32901946 | 1.537 | 425.749 | 23.055          | 25 | 49.91 | 48.72 | 61.90 |
| 3 | J2 | 1  | 32901161 | 1.541 | 426.857 | 23.115          | 21 | 49.78 | 48.59 | 42.86 |
|   | J2 | 2  | 32901759 | 1.559 | 431.843 | 23.385          | 19 | 49.19 | 47.99 | 33.33 |
| 3 | F3 | 5  | 32901533 | 1.57  | 434.89  | 23.55           | 31 | 48.84 | 47.62 | 90.48 |
|   |    | 3  | 32900430 | 1.575 | 436.275 | 23.625          | 22 | 48.67 | 47.45 | 47.62 |
|   | F3 | 8  | 32901586 | 1.59  | 440.43  | 23.85           | 22 | 48.18 | 46.95 | 47.62 |
|   | A4 | 6  | 32901300 | 1.597 | 442.369 | 23.955          | 16 | 47.96 | 46.72 | 19.05 |
|   |    | 5  | 32900035 | 1.6   | 443.2   | 24              | 22 | 47.86 | 46.62 | 47.62 |
|   | A4 | 8  | 32901945 | 1.614 | 447.078 | 24.21           | 17 | 47.40 | 46.15 | 23.81 |
|   | F3 | 3  | 32900737 | 1.614 | 447.078 | 24.21           | 19 | 47.40 | 46.15 | 33.33 |
|   | A2 | 10 | 32900065 | 1.616 | 447.632 | 24.24           | 20 | 47.34 | 46.09 | 38.10 |
|   | H5 | 7  | 32901483 | 1.623 | 449.571 | 24.345          | 20 | 47.11 | 45.85 | 38.10 |
| - | E5 | 2  | 32901166 | 1.627 | 450.679 | 24.405          | 32 | 46.98 | 45.72 | 95.24 |
|   | G2 | 4  | 32901888 | 1.648 | 456.496 | 24.72           | 29 | 46.29 | 45.02 | 80.95 |
|   | E5 | 5  | 32900089 | 1.649 | 456.773 | 24.735          | 15 | 46.26 | 44.98 | 14.29 |
|   | F1 | 3  | 32901080 | 1.667 | 461.759 | 25.005          | 16 | 45.68 | 44.38 | 19.05 |
|   | H2 | 9  | 32901798 | 1.689 | 467.853 | 25.335          | 21 | 44.96 | 43.65 | 42.86 |
|   | Н3 | 6  | 32901840 | 1.711 | 473.947 | 25.665          | 20 | 44.24 | 42.92 | 38.10 |
| - | Н3 | 10 | 32900023 | 1.728 | 478.656 | 25.92           | 20 | 43.69 | 42.35 | 38.10 |
| 3 | A3 | 7  | 32900484 | 1.789 | 495.553 | 26.835          | 26 | 41.70 | 40.31 | 66.67 |
| 3 | A3 | 9  | 32900785 | 1.807 | 500.539 | 27.105          | 30 | 41.11 | 39.71 | 85.71 |

| 3 | A5 | 5  | 32901132 | 1.816 | 503.032 | 27.24  | 17 | 40.82 | 39.41 | 23.81 |
|---|----|----|----------|-------|---------|--------|----|-------|-------|-------|
| 3 | A3 | 10 | 32901095 | 1.825 | 505.525 | 27.375 | 22 | 40.53 | 39.11 | 47.62 |
| 4 | A2 | 3  | 32901814 | 1.523 | 421.871 | 22.845 | 22 | 50.37 | 49.19 | 47.62 |
| 4 | A2 | 9  | 32901531 | 1.599 | 442.923 | 23.985 | 18 | 47.89 | 46.65 | 28.57 |
| 4 | A2 | 1  | 32900351 | 1.646 | 455.942 | 24.69  | 22 | 46.36 | 45.08 | 47.62 |
| 4 | E4 | 9  | 32900863 | 1.706 | 472.562 | 25.59  | 25 | 44.40 | 43.08 | 61.90 |
| 4 | E2 | 8  | 32900861 | 1.725 | 477.825 | 25.875 | 24 | 43.79 | 42.45 | 57.14 |
| 4 | E4 | 10 | 32901589 | 1.732 | 479.764 | 25.98  | 16 | 43.56 | 42.22 | 19.05 |
| 4 | E2 | 9  | 32900860 | 1.744 | 483.088 | 26.16  | 25 | 43.17 | 41.81 | 61.90 |
| 4 | E2 | 10 | 32900559 | 1.768 | 489.736 | 26.52  | 28 | 42.38 | 41.01 | 76.19 |
| 4 | G5 | 5  | 32900841 | 1.768 | 489.736 | 26.52  | 27 | 42.38 | 41.01 | 71.43 |
| 4 | E3 | 4  | 32901222 | 1.772 | 490.844 | 26.58  | 32 | 42.25 | 40.88 | 95.24 |
| 4 | E5 | 2  | 32900738 | 1.774 | 491.398 | 26.61  | 23 | 42.19 | 40.81 | 52.38 |
| 4 | F1 | 5  | 32901473 | 1.775 | 491.675 | 26.625 | 21 | 42.16 | 40.78 | 42.86 |
| 4 | E1 | 7  | 32901499 | 1.784 | 494.168 | 26.76  | 25 | 41.86 | 40.48 | 61.90 |
| 4 | E5 | 5  | 32900866 | 1.793 | 496.661 | 26.895 | 29 | 41.57 | 40.18 | 80.95 |
| 4 | E1 | 8  | 32900932 | 1.806 | 500.262 | 27.09  | 16 | 41.15 | 39.75 | 19.05 |
| 4 | E2 | 5  | 32902013 | 1.806 | 500.262 | 27.09  | 19 | 41.15 | 39.75 | 33.33 |
| 4 | E2 | 6  | 32901806 | 1.822 | 504.694 | 27.33  | 32 | 40.62 | 39.21 | 95.24 |
| 4 | H5 | 2  | 32900323 | 1.826 | 505.802 | 27.39  | 26 | 40.49 | 39.08 | 66.67 |
| 4 | F2 | 10 | 32900883 | 1.839 | 509.403 | 27.585 | 31 | 40.07 | 38.65 | 90.48 |
| 4 | H5 | 9  | 32901270 | 1.852 | 513.004 | 27.78  | 27 | 39.65 | 38.21 | 71.43 |
| 4 | Н3 | 8  | 32902038 | 1.875 | 519.375 | 28.125 | 23 | 38.90 | 37.44 | 52.38 |
| 4 | F1 | 2  | 32900468 | 1.878 | 520.206 | 28.17  | 21 | 38.80 | 37.34 | 42.86 |
| 4 | B4 | 2  | 32901913 | 1.88  | 520.76  | 28.2   | 17 | 38.73 | 37.28 | 23.81 |
| 4 | В3 | 1  | 32900421 | 1.903 | 527.131 | 28.545 | 29 | 37.98 | 36.51 | 80.95 |
| 4 | В3 | 2  | 32900857 | 1.922 | 532.394 | 28.83  | 32 | 37.37 | 35.88 | 95.24 |
| 4 | B5 | 6  | 32900920 | 1.947 | 539.319 | 29.205 | 31 | 36.55 | 35.04 | 90.48 |
| 4 | Н3 | 1  | 32901313 | 1.953 | 540.981 | 29.295 | 24 | 36.36 | 34.84 | 57.14 |
| 4 | Н3 | 9  | 32901938 | 1.953 | 540.981 | 29.295 | 19 | 36.36 | 34.84 | 33.33 |
| 4 | H2 | 4  | 32900216 | 1.956 | 541.812 | 29.34  | 27 | 36.26 | 34.74 | 71.43 |
| 4 | Н3 | 2  | 32901617 | 1.971 | 545.967 | 29.565 | 20 | 35.77 | 34.24 | 38.10 |
| 4 | H4 | 7  | 32901194 | 1.975 | 547.075 | 29.625 | 25 | 35.64 | 34.11 | 61.90 |
|   | H2 | 6  | 32900511 | 1.98  | 548.46  | 29.7   | 21 | 35.48 | 33.94 | 42.86 |
|   | F3 | 1  | 32900359 | 1.985 | 549.845 | 29.775 | 28 | 35.31 | 33.77 | 76.19 |
|   | Н3 | 4  | 32901487 | 1.991 | 551.507 | 29.865 | 24 | 35.12 | 33.57 | 57.14 |
|   | H4 | 8  | 32901634 | 1.999 | 553.723 | 29.985 | 24 | 34.86 | 33.31 | 57.14 |
|   | F4 | 5  | 32900836 | 2.004 | 555.108 | 30.06  | 26 | 34.69 | 33.14 | 66.67 |
|   | H4 | 10 | 32900096 | 2.017 | 558.709 | 30.255 | 22 | 34.27 | 32.71 | 47.62 |
| 4 | G1 | 7  | 32901805 | 2.019 | 559.263 | 30.285 | 17 | 34.20 | 32.64 | 23.81 |
|   | B5 | 9  | 32901601 | 2.025 | 560.925 | 30.375 | 16 | 34.01 | 32.44 | 19.05 |
|   | F4 | 6  | 32900837 | 2.028 | 561.756 | 30.42  | 27 | 33.91 | 32.34 | 71.43 |
|   | H4 | 3  | 32901765 | 2.035 | 563.695 | 30.525 | 16 | 33.68 | 32.11 | 19.05 |
|   | F4 | 7  | 32900838 | 2.048 | 567.296 | 30.72  | 16 | 33.26 | 31.67 | 19.05 |
|   | H4 | 4  | 32901766 | 2.055 | 569.235 | 30.825 | 15 | 33.03 | 31.44 | 14.29 |
| 4 | H2 | 1  | 32901155 | 2.057 | 569.789 | 30.855 | 23 | 32.97 | 31.37 | 52.38 |

| 4 | H4 | 6   | 32901764             | 2.076 | 575.052 | 31.14  | 15 | 32.35 | 30.74 | 14.29 |
|---|----|-----|----------------------|-------|---------|--------|----|-------|-------|-------|
| 4 | G1 | 2   | 32901988             | 2.083 | 576.991 | 31.245 | 15 | 32.12 | 30.50 | 14.29 |
|   | F4 | 10  | 32900457             | 2.086 | 577.822 | 31.29  | 28 | 32.02 | 30.40 | 76.19 |
| 4 | G1 | 3   | 32901244             | 2.101 | 581.977 | 31.515 | 18 | 31.53 | 29.90 | 28.57 |
| 4 | G1 | 4   | 32900566             | 2.117 | 586.409 | 31.755 | 20 | 31.01 | 29.37 | 38.10 |
| 4 | G1 | 6   | 32901283             | 2.141 | 593.057 | 32.115 | 29 | 30.23 | 28.57 | 80.95 |
| 4 | F5 | 1   | 32901248             | 2.146 | 594.442 | 32.19  | 32 | 30.07 | 28.40 | 95.24 |
| 4 | B2 | 2   | 32900478             | 2.262 | 626.574 | 33.93  | 18 | 26.29 | 24.53 | 28.57 |
| 4 | G4 | 1   | 32900173             | 2.278 | 631.006 | 34.17  | 19 | 25.76 | 24.00 | 33.33 |
| 4 | G4 | 5   | 32900157             | 2.3   | 637.1   | 34.5   | 18 | 25.05 | 23.27 | 28.57 |
| 4 | G4 | 6   | 32900853             | 2.317 | 641.809 | 34.755 | 24 | 24.49 | 22.70 | 57.14 |
| 4 | B1 | 2   | 32900857             | 2.34  | 648.18  | 35.1   | 20 | 23.74 | 21.93 | 38.10 |
| 4 | B1 | 10  | 32900012             | 2.34  | 648.18  | 35.1   | 21 | 23.74 | 21.93 | 42.86 |
| 4 | B1 | 3   | 32900012             | 2.358 | 653.166 | 35.37  | 29 | 23.16 | 21.33 | 80.95 |
| 4 | G2 | 5   | 32900422             | 2.336 | 658.152 | 35.64  | 27 | 22.57 | 20.73 | 71.43 |
| 4 | B1 | 4   | 32900849             | 2.370 | 659.814 | 35.73  | 19 | 22.37 | 20.73 | 33.33 |
| 4 | B1 | 7   | 32901301             | 2.362 | 664.8   | 36     |    | 21.79 | 19.93 | 61.90 |
|   |    |     |                      | 2.404 |         |        | 25 |       |       |       |
| 4 | D4 | 6 2 | 32900882<br>32900402 |       | 665.908 | 36.06  | 18 | 21.66 | 19.80 | 28.57 |
| 4 | G2 | 5   |                      | 2.412 | 668.124 | 36.18  | 30 | 21.40 | 19.53 | 85.71 |
| 4 | A5 | 1   | 32901611             | 2.418 | 669.786 | 36.27  | 15 | 21.20 | 19.33 | 14.29 |
| 5 | A5 | 7   | 32901524             | 2.437 | 675.049 | 36.555 | 22 | 20.58 | 18.69 | 47.62 |
| - | F4 | 4   | 32900044             | 0.483 | 133.791 | 7.245  | 26 | 84.26 | 83.89 | 66.67 |
| 5 | G4 | 1   | 32900050             | 0.53  | 146.81  | 7.95   | 20 | 82.73 | 82.32 | 38.10 |
| 5 | G4 | 5   | 32900220             | 0.572 | 158.444 | 8.58   | 26 | 81.36 | 80.92 | 66.67 |
| 5 | F4 | 9   | 32901394             | 0.589 | 163.153 | 8.835  | 18 | 80.81 | 80.35 | 28.57 |
| 5 | F3 | 1   | 32901059             | 0.594 | 164.538 | 8.91   | 16 | 80.64 | 80.18 | 19.05 |
| 5 | E3 | 10  | 32900336             | 0.6   | 166.2   | 9      | 19 | 80.45 | 79.98 | 33.33 |
| 5 | F4 | 2   | 32900146             | 0.605 | 167.585 | 9.075  | 27 | 80.28 | 79.82 | 71.43 |
| 5 | G4 | 3   | 32901149             | 0.608 | 168.416 | 9.12   | 17 | 80.19 | 79.72 | 23.81 |
|   | G3 | 4   | 32901185             | 0.612 | 169.524 | 9.18   | 15 | 80.06 | 79.58 | 14.29 |
|   | F3 | 8   | 32900382             | 0.615 | 170.355 | 9.225  | 21 | 79.96 | 79.48 | 42.86 |
|   | F4 | 10  | 32900383             | 0.626 | 173.402 | 9.39   | 23 | 79.60 | 79.11 | 52.38 |
|   | G4 | 4   | 32900571             | 0.626 | 173.402 | 9.39   | 20 | 79.60 | 79.11 | 38.10 |
|   | H5 | 6   | 32901195             | 0.63  | 174.51  | 9.45   | 28 | 79.47 | 78.98 | 76.19 |
| 5 | G3 | 8   | 32901192             | 0.631 | 174.787 | 9.465  | 25 | 79.44 | 78.95 | 61.90 |
|   | F3 | 9   | 32901061             | 0.634 | 175.618 | 9.51   | 22 | 79.34 | 78.85 | 47.62 |
|   | H4 | 1   | 32902030             | 0.638 | 176.726 | 9.57   | 20 | 79.21 | 78.71 | 38.10 |
|   | H5 | 7   | 32901243             | 0.647 | 179.219 | 9.705  | 18 | 78.92 | 78.41 | 28.57 |
|   | F1 | 5   | 32900338             | 0.649 | 179.773 | 9.735  | 18 | 78.85 | 78.35 | 28.57 |
|   | H4 | 2   | 32900271             | 0.656 | 181.712 | 9.84   | 19 | 78.62 | 78.11 | 33.33 |
|   | F3 | 10  | 32901212             | 0.658 | 182.266 | 9.87   | 18 | 78.56 | 78.05 | 28.57 |
|   | H2 | 5   | 32901908             | 0.658 | 182.266 | 9.87   | 25 | 78.56 | 78.05 | 61.90 |
|   | H5 | 8   | 32901107             | 0.663 | 183.651 | 9.945  | 19 | 78.39 | 77.88 | 33.33 |
|   | H4 | 7   | 32900644             | 0.682 | 188.914 | 10.23  | 17 | 77.77 | 77.25 | 23.81 |
|   | H5 | 10  | 32900309             | 0.686 | 190.022 | 10.29  | 20 | 77.64 | 77.11 | 38.10 |
| 5 | E5 | 6   | 32900355             | 0.687 | 190.299 | 10.305 | 17 | 77.61 | 77.08 | 23.81 |

| 5        | I3 | 3  | 32901033 | 0.694 | 192.238  | 10.41  | 21 | 77.38 | 76.85 | 42.86  |
|----------|----|----|----------|-------|----------|--------|----|-------|-------|--------|
| 5        | H4 | 10 | 32900029 | 0.7   | 193.9    | 10.5   | 26 | 77.19 | 76.65 | 66.67  |
|          | E5 | 7  | 32900329 | 0.704 | 195.008  | 10.56  | 21 | 77.06 | 76.51 | 42.86  |
| 5        | H3 | 1  | 32900066 | 0.709 | 196.393  | 10.635 | 28 | 76.89 | 76.35 | 76.19  |
| 5        | E2 | 2  | 32902033 | 0.712 | 197.224  | 10.68  | 21 | 76.80 | 76.25 | 42.86  |
| 5        | I3 | 6  | 32901984 | 0.712 | 198.055  | 10.725 | 15 | 76.70 | 76.15 | 14.29  |
| 5        | G2 | 8  | 32901984 | 0.713 | 199.44   | 10.723 | 17 | 76.70 | 75.98 | 23.81  |
| 5        | E3 | 5  | 32900209 | 0.722 | 199.994  | 10.83  | 18 | 76.47 | 75.91 | 28.57  |
| 5        | E5 | 8  | 32900209 | 0.726 | 201.102  | 10.89  | 15 | 76.34 | 75.78 | 14.29  |
| 5        | H3 | 3  | 32900063 | 0.727 | 201.379  | 10.905 | 15 | 76.31 | 75.75 | 14.29  |
| 5        | E2 | 3  | 32900456 | 0.727 | 201.656  | 10.903 | 22 | 76.28 | 75.71 | 47.62  |
| 5        | H5 | 1  | 32900436 |       |          | 10.92  |    | 76.28 | 75.71 |        |
| 5        |    |    |          | 0.728 | 201.656  |        | 24 |       |       | 57.14  |
|          | G5 | 5  | 32901038 | 0.736 | 203.872  | 11.04  | 24 | 76.02 | 75.44 | 57.14  |
| 5        | H3 |    | 32900712 | 0.743 | 205.811  | 11.145 | 15 | 75.79 | 75.21 | 14.29  |
| <b>—</b> | G5 | 7  | 32901037 | 0.755 | 209.135  | 11.325 | 20 | 75.40 | 74.81 | 38.10  |
| 5        | E1 | 2  | 32900199 | 0.758 | 209.966  | 11.37  | 27 | 75.30 | 74.71 | 71.43  |
| 5        | H3 | 9  | 32901665 | 0.767 | 212.459  | 11.505 | 25 | 75.00 | 74.41 | 61.90  |
| 5        | H1 | 3  | 32900689 | 0.775 | 214.675  | 11.625 | 21 | 74.74 | 74.14 | 42.86  |
| 5        | B4 | 8  | 32901870 | 0.776 | 214.952  | 11.64  | 20 | 74.71 | 74.11 | 38.10  |
| 5        | G5 | 8  | 32900332 | 0.777 | 215.229  | 11.655 | 29 | 74.68 | 74.08 | 80.95  |
| 5        | H2 | 1  | 32900164 | 0.78  | 216.06   | 11.7   | 16 | 74.58 | 73.98 | 19.05  |
| 5        | G1 | 2  | 32900296 | 0.781 | 216.337  | 11.715 | 26 | 74.55 | 73.94 | 66.67  |
| 5        | E5 | 2  | 32900230 | 0.785 | 217.445  | 11.775 | 21 | 74.42 | 73.81 | 42.86  |
| 5        | E4 | 3  | 32901054 | 0.786 | 217.722  | 11.79  | 16 | 74.39 | 73.78 | 19.05  |
| 5        | D5 | 4  | 32900090 | 0.793 | 219.661  | 11.895 | 26 | 74.16 | 73.54 | 66.67  |
| 5        | G5 | 9  | 32901497 | 0.794 | 219.938  | 11.91  | 28 | 74.12 | 73.51 | 76.19  |
| 5        | H1 | 6  | 32901376 | 0.794 | 219.938  | 11.91  | 20 | 74.12 | 73.51 | 38.10  |
|          | F2 | 9  | 32900697 | 0.798 | 221.046  | 11.97  | 22 | 73.99 | 73.38 | 47.62  |
| 5        | G1 | 5  | 32901030 | 0.798 | 221.046  | 11.97  | 21 | 73.99 | 73.38 | 42.86  |
|          | B1 | 10 | 32901607 | 0.805 | 222.985  | 12.075 | 16 | 73.77 | 73.14 | 19.05  |
| <b>—</b> | B5 | 9  | 32901567 | 0.806 | 223.262  | 12.09  | 24 | 73.73 | 73.11 | 57.14  |
| <b>—</b> | B2 | 2  | 32901770 | 0.808 | 223.816  | 12.12  | 27 | 73.67 | 73.04 | 71.43  |
|          | E4 | 4  | 32901055 | 0.812 | 224.924  | 12.18  | 19 | 73.54 | 72.91 | 33.33  |
| <b>—</b> | H1 | 7  | 32901514 | 0.818 | 226.586  | 12.27  | 20 | 73.34 | 72.71 | 38.10  |
|          | В3 | 3  | 32901702 | 0.827 | 229.079  | 12.405 | 20 | 73.05 | 72.41 | 38.10  |
|          | B5 | 10 | 32901579 | 0.828 | 229.356  | 12.42  | 17 | 73.02 | 72.38 | 23.81  |
| 5        | E4 | 7  | 32900463 | 0.83  | 229.91   | 12.45  | 20 | 72.95 | 72.31 | 38.10  |
| <b>—</b> | B2 | 5  | 32901350 | 0.832 | 230.464  | 12.48  | 28 | 72.89 | 72.24 | 76.19  |
| <b>—</b> | H1 | 8  | 32900847 | 0.838 | 232.126  | 12.57  | 23 | 72.69 | 72.04 | 52.38  |
| 5        | В3 | 10 | 32900092 | 0.845 | 234.065  | 12.675 | 28 | 72.46 | 71.81 | 76.19  |
| <b>—</b> | C5 | 3  | 32901986 | 0.845 | 234.065  | 12.675 | 18 | 72.46 | 71.81 | 28.57  |
| 5        | B4 | 9  | 32901971 | 0.854 | 236.558  | 12.81  | 29 | 72.17 | 71.51 | 80.95  |
| 6        | A1 | 2  | 32901629 | 6.201 | 1717.677 | 93.015 | 13 | 0.00  | 0.00  | 4.76   |
| 6        | A1 | 4  | 32901436 | 6.218 | 1722.386 | 93.27  | 11 | 0.00  | 0.00  | -4.76  |
| 6        | A1 | 6  | 32901550 | 6.234 | 1726.818 | 93.51  | 9  | 0.00  | 0.00  | -14.29 |
| 6        | A3 | 3  | 32901551 | 5.953 | 1648.981 | 89.295 | 11 | 0.00  | 0.00  | -4.76  |

| 6 | A3 | 9  | 32901628 | 5.972 | 1654.244 | 89.58  | 9  | 0.00 | 0.00 | -14.29 |
|---|----|----|----------|-------|----------|--------|----|------|------|--------|
| 6 | A4 | 4  | 32901446 | 6.118 | 1694.686 | 91.77  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | A5 | 9  | 32901634 | 5.68  | 1573.36  | 85.2   | 11 | 0.00 | 0.00 | -4.76  |
| 6 | A5 | 10 | 32901768 | 5.698 | 1578.346 | 85.47  | 13 | 0.00 | 0.00 | 4.76   |
| 6 | B1 | 2  | 32901508 | 6.324 | 1751.748 | 94.86  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | B1 | 8  | 32901414 | 6.342 | 1756.734 | 95.13  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | B1 | 9  | 32900885 | 6.36  | 1761.72  | 95.4   | 12 | 0.00 | 0.00 | 0.00   |
| 6 | B2 | 7  | 32900707 | 5.62  | 1556.74  | 84.3   | 14 | 0.00 | 0.00 | 9.52   |
| 6 | B3 | 2  | 32901486 | 5.896 | 1633.192 | 88.44  | 14 | 0.00 | 0.00 | 9.52   |
| 6 | B3 | 5  | 32901476 | 5.919 | 1639.563 | 88.785 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | B4 | 5  | 32901345 | 5.648 | 1564.496 | 84.72  | 11 | 0.00 | 0.00 | -4.76  |
| 6 | B5 | 1  | 32901626 | 5.504 | 1524.608 | 82.56  | 13 | 0.00 | 0.00 | 4.76   |
| 6 | B5 | 2  | 32901324 | 5.402 | 1496.354 | 81.03  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | B5 | 4  | 32901331 | 5.42  | 1501.34  | 81.3   | 12 | 0.00 | 0.00 | 0.00   |
| 6 | C1 | 2  | 32900171 | 5.448 | 1509.096 | 81.72  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | C1 | 7  | 32901613 | 5.406 | 1497.462 | 81.09  | 14 | 0.00 | 0.00 | 9.52   |
| 6 | C2 | 3  | 32901479 | 5.145 | 1425.165 | 77.175 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | C3 | 2  | 32901479 | 6.085 | 1685.545 | 91.275 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | C3 | 3  | 32901371 | 6.103 | 1690.531 | 91.545 | 10 | 0.00 | 0.00 | -9.52  |
| 6 | C4 | 1  | 32901375 | 6.061 | 1678.897 | 90.915 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | C5 | 1  | 32901384 | 4.87  | 1348.99  | 73.05  | 13 | 0.00 | 0.00 | 4.76   |
| 6 | C5 | 10 | 32901637 | 4.771 | 1321.567 | 71.565 | 11 | 0.00 | 0.00 | -4.76  |
| 6 | D1 | 2  | 32901223 | 4.687 | 1298.299 | 70.305 | 14 | 0.00 | 0.00 | 9.52   |
| 6 | D1 | 5  | 32901395 | 4.711 | 1304.947 | 70.665 | 14 | 0.00 | 0.00 | 9.52   |
| 6 | D1 | 10 | 32901458 | 4.729 | 1309.933 | 70.935 | 9  | 0.00 | 0.00 | -14.29 |
| 6 | D2 | 8  | 32901447 | 4.359 | 1207.443 | 65.385 | 12 | 0.00 | 0.00 | 0.00   |
| 6 | D3 | 1  | 32901646 | 5.16  | 1429.32  | 77.4   | 11 | 0.00 | 0.00 | -4.76  |
| 6 | D3 | 7  | 32901648 | 5.237 | 1450.649 | 78.555 | 10 | 0.00 | 0.00 | -9.52  |
| 6 | E1 | 3  | 32901260 | 4.964 | 1375.028 | 74.46  | 12 | 0.00 | 0.00 | 0.00   |
| 6 | E2 | 7  | 32901639 | 4.735 | 1311.595 | 71.025 | 11 | 0.00 | 0.00 | -4.76  |
| 6 | E2 | 8  | 32900046 | 4.759 | 1318.243 | 71.385 | 11 | 0.00 | 0.00 | -4.76  |
| 6 | E3 | 2  | 32901404 | 4.728 | 1309.656 | 70.92  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | E3 | 3  | 32901408 | 4.746 | 1314.642 | 71.19  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | E4 | 6  | 32901415 | 4.136 | 1145.672 | 62.04  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | E4 | 8  | 32900316 | 4.154 | 1150.658 | 62.31  | 11 | 0.00 | 0.00 | -4.76  |
| 6 | E5 | 2  | 32901275 | 3.943 | 1092.211 | 59.145 | 10 | 0.00 | 0.00 | -9.52  |
| 6 | E5 | 8  | 32901360 | 3.965 | 1098.305 | 59.475 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | F1 | 4  | 32900536 | 4.715 | 1306.055 | 70.725 | 12 | 0.00 | 0.00 | 0.00   |
| 6 | F1 | 7  | 32901393 | 4.731 | 1310.487 | 70.965 | 14 | 0.00 | 0.00 | 9.52   |
| 6 | F3 | 9  | 32901389 | 4.175 | 1156.475 | 62.625 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | F4 | 2  | 32901620 | 3.741 | 1036.257 | 56.115 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | F5 | 2  | 32901367 | 6.168 | 1708.536 | 92.52  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | F5 | 4  | 32901378 | 6.254 | 1732.358 | 93.81  | 12 | 0.00 | 0.00 | 0.00   |
| 6 | F5 | 10 | 32901381 | 6.272 | 1737.344 | 94.08  | 14 | 0.00 | 0.00 | 9.52   |
| 6 | G1 | 5  | 32901474 | 6.196 | 1716.292 | 92.94  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | G2 | 4  | 32901495 | 5.81  | 1609.37  | 87.15  | 10 | 0.00 | 0.00 | -9.52  |

| 1 |    |    |          |       |          |        |    |      |      |        |
|---|----|----|----------|-------|----------|--------|----|------|------|--------|
| 6 | G2 | 6  | 32901481 | 5.708 | 1581.116 | 85.62  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | G2 | 10 | 32901640 | 5.726 | 1586.102 | 85.89  | 12 | 0.00 | 0.00 | 0.00   |
| 6 | G3 | 4  | 32901631 | 5.535 | 1533.195 | 83.025 | 14 | 0.00 | 0.00 | 9.52   |
| 6 | G3 | 5  | 32901590 | 5.553 | 1538.181 | 83.295 | 14 | 0.00 | 0.00 | 9.52   |
| 6 | G4 | 3  | 32901682 | 5.279 | 1462.283 | 79.185 | 10 | 0.00 | 0.00 | -9.52  |
| 6 | G5 | 6  | 32901650 | 4.812 | 1332.924 | 72.18  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | H1 | 6  | 32900105 | 4.396 | 1217.692 | 65.94  | 14 | 0.00 | 0.00 | 9.52   |
| 6 | H1 | 7  | 32901723 | 4.28  | 1185.56  | 64.2   | 11 | 0.00 | 0.00 | -4.76  |
| 6 | Н3 | 1  | 32900675 | 4.384 | 1214.368 | 65.76  | 10 | 0.00 | 0.00 | -9.52  |
| 6 | Н3 | 5  | 32901443 | 4.402 | 1219.354 | 66.03  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | H4 | 4  | 32901734 | 4.089 | 1132.653 | 61.335 | 12 | 0.00 | 0.00 | 0.00   |
| 6 | H4 | 9  | 32901422 | 4.113 | 1139.301 | 61.695 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | H5 | 2  | 32900769 | 3.81  | 1055.37  | 57.15  | 13 | 0.00 | 0.00 | 4.76   |
| 6 | H5 | 4  | 32900831 | 3.828 | 1060.356 | 57.42  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | H5 | 6  | 32901843 | 3.848 | 1065.896 | 57.72  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | H5 | 8  | 32901722 | 3.869 | 1071.713 | 58.035 | 13 | 0.00 | 0.00 | 4.76   |
| 6 | H5 | 9  | 32901670 | 3.768 | 1043.736 | 56.52  | 9  | 0.00 | 0.00 | -14.29 |
| 6 | I1 | 1  | 32901277 | 4.296 | 1189.992 | 64.44  | 11 | 0.00 | 0.00 | -4.76  |

Fuente: Alba Verónica Ramos Flores, 2019.

#### 3.2.3. Análisis de los datos.

Tomando en consideración las tablas 3-8, 3-9 y 3-10 se puede determinar:

- En el distrito 1 la Resistencia de Bucle llega al 92.54 %, la Atenuación 92.36% y el SNR 95.45% y llegando a valores mínimos en 45.64%, 44.35% y 14.29 % respectivamente, considerándose un sector donde la red de telefonía se encuentra en buen funcionamiento cumpliendo con lo estipulado con los protocolos de buen funcionamiento de redes telefónicas de la CNT EP.
- En el distrito 2 la Resistencia de Bucle llega al 93.51 %, la Atenuación 93.36% y el SNR 95.45% y llegando a valores mínimos en 69.37%, 68.64% y 14.29 % respectivamente, considerándose un sector donde la red de telefonía se encuentra en buen funcionamiento cumpliendo con lo estipulado con los protocolos de buen funcionamiento de redes telefónicas de la CNT EP.
- En el distrito 3 la Resistencia de Bucle llega al 66.69 %, la Atenuación 65.90% y el SNR 95.24% y llegando a valores mínimos en 33.94%, 32.37% y 14.29 % respectivamente, siendo la distancia más lejana 2.27 Km debido a que la atenuación y la resistencia de bucle depende de la distancia, considerándose un sector donde la red de telefonía se encuentra en buen funcionamiento cumpliendo con lo estipulado con los protocolos de buen funcionamiento de redes telefónicas de la CNT EP.

- En el distrito 4 la Resistencia de Bucle llega al 50.37 %, la Atenuación 49.19% y el SNR 95.24% y llegando a valores mínimos en 6.70%, 4.48% y 14.29 % respectivamente, siendo la distancia más lejana 2.86 Km debido a que la atenuación y la resistencia de bucle depende de la distancia, considerándose un sector donde la red de telefonía se encuentra en buen funcionamiento cumpliendo con lo estipulado con los protocolos de buen funcionamiento de redes telefónicas de la CNT EP.
- En el distrito 5 la Resistencia de Bucle llega al 84.26 %, la Atenuación 83.89% y el SNR 80.95% y llegando a valores mínimos en 35.83%, 34.31% y 14.29 % respectivamente, considerándose un sector donde la red de telefonía se encuentra en buen funcionamiento cumpliendo con lo estipulado con los protocolos de buen funcionamiento de redes telefónicas de la CNT EP.
- En el distrito 6 la Resistencia de Bucle y la Atenuación se encuentran fuera de los parámetros normales y los SNR son demasiados bajos con un valor de 9.52%, debido a que en este sector las distancia máxima de la red telefónica es de 6.36 Km y la mínima de 3.74 Km, considerándose un sector donde la red de telefonía se encuentra con valores deficientes para el buen funcionamiento, en el cual se evidencie mayor limitación al acceso a los servicios de telefonía fija e internet.

### 3.2.4. Selección del distrito Crítico.

En base a la análisis realizado en el ítem anterior es de vital necesidad la implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/ FTTX, en el sector que comprende el distrito 6, el cual comprende los barrios; San Gregorio, San Francisco, El Rosario, Los Elenes, Langos Panamericana, La Inmaculada y Langos Chico. La migración de los clientes a la Red de Acceso de Fibra Óptica utilizando Tecnología VDSL/ FTTX permitirá reducir la distancia, la atenuación y resistencia de Bucle de Abonado, mejorando la velocidad del servicio de internet y ofreciendo de una alta capacidad de carga o descarga a los usuarios de la red.

Para poder verificar los resultados en el desarrollo del presente trabajo, luego de identificar el distrito en el cual es factible la implementación de la Red de Acceso de Fibra Óptica utilizando Tecnología VDSL/FTTX, se procedió a realizar mediciones en toda la red del distrito 6 y como resultado tenemos las tablas 3-15 y 3-16.

Las regletas de red Primaria Armario 6 tienen un bucle promedio de  $970\Omega$  lo que impide poder brindar servicios de Internet y datos en la zona de influencia de dicho distrito.

**Tabla 3-12** Mediciones de Resistencia de Bucle Red Primaria Distrito 6.

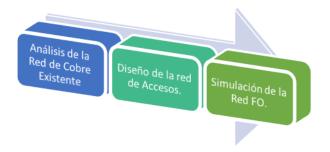
| REGLETA | RESISTENCIA DE<br>BUCLE(Ω) |
|---------|----------------------------|
| 31      | 973                        |
| 32      | 970                        |
| 33      | 968                        |
| 34      | 969                        |
| 35      | 967                        |
| 36      | 970                        |

Fuente: Alba Verónica Ramos Flores, 2019.

Tabla 3-13 Mediciones de Resistencia se Bucle Red Secundaria Distrito 6.

| CAJA | Res.  | CAJA | Res.  | CAJA | Res.  | CAJA | Res.  | CAJA | RES.  |
|------|-------|------|-------|------|-------|------|-------|------|-------|
| A1   | 1855Ω | A2   | 1820Ω | A3   | 1770Ω | A4   | 1804Ω | A5   | 1711Ω |
| B1   | 1791Ω | B2   | 1738Ω | В3   | 1733Ω | B4   | 1684Ω | B5   | 1637Ω |
| C1   | 1634Ω | C2   | 1556Ω | C3   | 1571Ω | C4   | 1548Ω | C5   | 1456Ω |
| D1   | 1425Ω | D2   | 1316Ω | D3   | 1615Ω | D4   | 1515Ω | D5   | 1463Ω |
| E1   | 1343Ω | E2   | 1290Ω | E3   | 1277Ω | E4   | 1121Ω | E5   | 1056Ω |
| F1   | 1269Ω | F2   | 1208Ω | F3   | 1122Ω | F4   | 991Ω  | F5   | 974Ω  |
| G1   | 1682Ω | G2   | 1440Ω | G3   | 1376Ω | G4   | 1273Ω | G5   | 1175Ω |
| H1   | 1402Ω | H2   | 1370Ω | Н3   | 1186Ω | H4   | 1116Ω | H5   | 1022Ω |
| I1   | 1143Ω |      |       |      |       |      |       |      |       |

Fuente: Alba Verónica Ramos Flores, 2019.


La resistencia de bucle en cada una de las cajas está tomada como referencia en cada una de las cajas del distrito desde la central telefónica. El bucle promedio de la red en la actualidad es de  $1414\Omega$ .

# 3.3. Diseño de la Red de Acceso de Fibra Óptica utilizando Tecnología VDSL/FTTX

Mediante el análisis realizado y la identificación del sector donde es necesario la implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX. En el presente capítulo de este trabajo investigativo se orienta en tres fases debidamente detalladas y analizadas, siempre con el propósito de cumplir con el objetivo principal, el cual es mejorar el servicio en redes telefónicas, las cuatro fases planteadas son:

- Análisis de la Red de Cobre Existente
- Diseño de la red de Accesos.
- Simulación de la Red de Fibra.

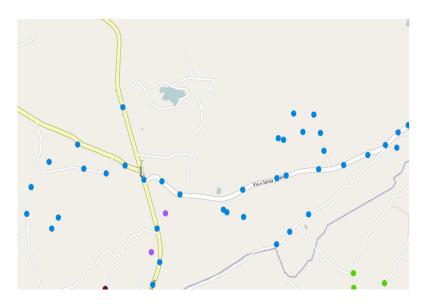
En la figura (Figura 3-2) se indica de forma general las fases utilizadas en el presente proyecto.



**Figura 3-2** Detalle las fases del trabajo **Fuente:** Alba Verónica Ramos Flores, 2019

#### 3.3.1. Análisis de la Red de Cobre Existente

El distrito 6 de la Central Telefónica de Guano se encuentra ubicado en Langos Panamericana y Vía a Riobamba a 3.526 Km de la central y su cobertura comprende los barrios; San Gregorio, San Francisco, El Rosario, Los Elenes, Langos Panamericana, La Inmaculada y Langos Chico, proveyendo de servicio de telefonía fija e internet a 232 usuarios, cuya ubicación geográfica se muestra en la figura 3-3.




**Figura 3-3** Cobertura de Red del Distrito 6. **Fuente:** Google Earth

El distrito 6 se encuentra distribuido de la siguiente manera:

- Red Primaria: 300 pares (Regletas 31 a la 36)
- Red Secundaria: 450 pares (Series A,B,C,D,E,F,G,H,I)

La Red Secundaria se encuentra en perfecto funcionamiento, se ha recopilado los datos de distancias tanto de la caja de dispersión más lejana, así como la distancia de la central hasta el armario de distribución. Estos datos nos ayudarán al dimensionamiento de los nuevos equipos y enlaces necesarios para la implementación del servicio propuesto. En la figura 3-4 se detalla la cobertura de la red secundaria del distrito 6.



**Figura 3-4** Cobertura Red Secundaria Distrito 6. **Fuente:** Plataforma GIS CNT EP

El objetivo es utilizar la mayor parte de la infraestructura instalada, mediante la tecnología de acceso VDSL, la cual puede mantener la red secundaria de cobre existente, realizando un estudio de cobertura de la red se encontró que la mejor ubicación del equipo de plataforma exterior es en el sector del Cisne 1 Km vía Los Elenes como muestra la figura 14-4, el cual tendrá una cobertura a los barrios San Gregorio, San Francisco, El Rosario, Los Elenes, Langos Panamericana, La Inmaculada y Langos Chico



**Figura 3-5** Ubicación Equipo de Plataforma Exterior. **Fuente:** Alba Verónica Ramos Flores, 2019.



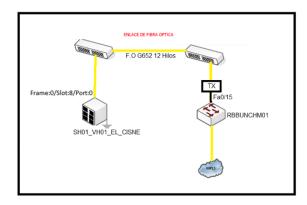
**Figura 3-6** Equipo de Plataforma Ext. y Armario Reflejo. **Fuente:** Alba Verónica Ramos Flores, 2019.

#### 3.3.2. Diseño de la red de Accesos.

Para Diseño e Implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, se realizara bajo el criterio de la Normativa de Diseño de Planta Externa con Plataformas de Acceso Exterior para Despliegue de Red con Tecnología VDSL/FTTC, por consiguiente uno de los elementos fundamentales en el diseño es la fibra óptica. Para realizar el diseño se debe precisar primero algunas cualidades que se mencionan a continuación:

- Tipo de fibra óptica a utilizar: monomodo aérea G-652D de 144 y 12 hilos.
- Tipo de tendido de fibra óptica (aérea y subterránea).
- Equipos de telecomunicaciones y elementos que conforman la red de acceso.

La elección de cada uno de los puntos citados anteriormente se define en base a criterios técnicos y de costo-beneficio.


# 3.3.2.1. Ruta de la Red de Acceso con Fibra Óptica

En la figura 16-4 se muestra un breve diagrama de la red de fibra óptica. La Red de Accesos con fibra óptica se proveerá del servicio desde el nodo AMG UNACH, en la figura 17-4 se puede observar el diagramas de transmisión, con fibra óptica G652D de 144 hilos el enlace se despliega por la vía a Guano 2.5 Km hasta llega al desvió de Santa Teresita sector La Capilla, en la cual se ubica empalme y de ahí continua el despliegue de la fibra óptica G6652D 12 hilos 900 m., hasta llegar a la ubicación del equipo de plataforma exterior llamado VDSL EL CISNE.

Mediante cable multípar de cobre se realiza la conexión con el armario reflejo el cual proveerá el servicio a todo el sector.



**Figura 3-7** Red de Fibra Óptica. **Fuente:** Alba Verónica Ramos Flores, 2019.



**Figura 3-8** Diagrama de Transmisión Red de Fibra Óptica. **Fuente:** Alba Verónica Ramos Flores, 2019.

En la figura 3-9 se muestra el despliegue de red secundaria del sector



**Figura 3-9** Red Secundaria sector El Cisne. **Fuente:** Alba Verónica Ramos Flores, 2019.

Para análisis de los datos en lo posterior la nueva Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, se mantendrá con los datos creados en el sistema Open Flexis de CNT EP., de la siguiente manera:

Tabla 3-14 Datos de la nueva Red telefónica

|                | RED DE BAJA              | RED DE ALTA              | OBSEVACIÓN  |
|----------------|--------------------------|--------------------------|-------------|
| Central        | GUANO                    | VDSL EL CISNE SIP        | CAMBIA      |
| Distrito       | D6                       | D1                       | CAMBIA      |
| Red Primaria   | Regletas 31 a la 36      | Regletas 101 a la 105    | CAMBIA      |
| Red Secundaria | Series A,B,C,D,E,F,G,H,I | Series A,B,C,D,E,F,G,H,I | SE MANTIENE |
| Numeración     | Serie numérica 32900000  | Serie numérica 32221000  | CAMBIA      |
|                | y 3290100                |                          |             |

Fuente: Alba Verónica Ramos Flores, 2019.

# 3.3.2.2. Equipos de Telecomunicaciones y Elementos que conforman esta Red de Acceso.

La red de acceso cuenta con elementos y equipos detallados a continuación:

- Fibra Óptica.
- Par trenzado de cobre.
- DSLAM VDSL2.
- ODF.
- Conectores de fibra óptica.
- Patch Cord de fibra óptica y UTP.
- Racks.
- UPS.
- MODEM VDSL (usuario)

# 3.3.2.3. Presupuesto Red de Accesos de Fibra Óptica utilizando Tecnología VDSL/FTTX

En la tabla 27-4 se muestra el presupuesto utilizado en la construcción de la Fibra Óptica utilizando Tecnología VDSL/FTTX.

 Tabla 3-15
 Presupuesto de Red de Accesos.

| ENLACE DE FIBRA NODO                                                                                                | UNA  | CH - VD | SL E | EL CISN | E  |           |
|---------------------------------------------------------------------------------------------------------------------|------|---------|------|---------|----|-----------|
| UNIDAD DE PLANTA                                                                                                    | UN   | CANT    |      | . UNI   |    | TOTAL     |
| SUMINISTRO Y EJECUCIÓN DE EMPALME<br>AÉREO POR FUSION 12 FIBRAS ÓPTICAS                                             | U    | 1.00    | \$   | 322.04  | \$ | 322.04    |
| SUMINISTRO Y EJECUCIÓN DE HERRAJE<br>FAROL PARA CABLE DE FIBRA OPTICA                                               | U    | 2.00    | \$   | 46.99   | \$ | 93.98     |
| SUMINISTRO Y EJECUCIÓN DE HERRAJE TIPO<br>A PARA CABLE DE FIBRA OPTICA ADSS                                         | U    | 10.00   | \$   | 9.99    | \$ | 99.90     |
| SUMINISTRO Y EJECUCIÓN DE HERRAJE TIPO<br>B PARA CABLE FIBRA OPTICA FIGURA 8                                        | U    | 9.00    | \$   | 8.05    | \$ | 72.45     |
| IDENTIFICADOR ACRÍLICO DE FIBRA ÓPTICA<br>CANALIZADO 8x4 CM                                                         | U    | 5.00    | \$   | 5.10    | \$ | 25.50     |
| IDENTIFICADOR ACRÍLICO DE FIBRA OPTICA<br>AEREO 12X6 CM                                                             | U    | 20.00   | \$   | 6.10    | \$ | 122.00    |
| INSTALACION ACOPLADOR FC/PC                                                                                         | U    | 1.00    | \$   | 5.75    | \$ | 5.75      |
| INSTALACION ACOPLADOR SC                                                                                            | U    | 1.00    | \$   | 5.75    | \$ | 5.75      |
| INSTALACION ACOPLADOR ST                                                                                            | U    | 2.00    | \$   | 5.75    | \$ | 11.50     |
| SUMINISTRO E INSTALACIÓN DE MANGUERA<br>CORRUGADA DE 1"                                                             | m    | 60.00   | \$   | 2.53    | \$ | 151.80    |
| INSTALACION ODF 6 PUERTOS G.655                                                                                     | U    | 1.00    | \$   | 313.69  | \$ | 313.69    |
| INSTALACION ODF 12 PUERTOS G.655                                                                                    | U    | 1.00    | \$   | 384.93  | \$ | 384.93    |
| INSTALACION PORTA RESERVAS FIBRA<br>OPTICA POZO                                                                     | U    | 1.00    | \$   | 23.64   | \$ | 23.64     |
| PRUEBA BIDIRECCIONAL DE TRANSMISIÓN<br>FIBRA ÓPTICA (POR PUNTA. POR FIBRA. EN 1<br>VENTANA) + TRAZA REFLECTOMETRICA | PTO  | 30.00   | \$   | 15.72   | \$ | 471.60    |
| SUMINISTRO E INSTALACIÓN DE PATCH CORD<br>DUPLEX                                                                    | m    | 1.00    | \$   | 27.43   | \$ | 27.43     |
| SUMINISTRO E INSTALACIÓN DE PATCH CORD<br>DUPLEX                                                                    | m    | 3.00    | \$   | 27.49   | \$ | 82.47     |
| SUMINISTRO E INSTALACION DE<br>PREFORMADO PARA VANOS DE 200 m PARA<br>FIBRA ADSS                                    | U    | 44.00   | \$   | 63.33   | \$ | 2,786.52  |
| SUMINISTRO Y EJECUCIÓN DE EMPALME<br>SUBTERRÁNEO POR FUSIÓN 12 FIBRAS<br>ÓPTICAS                                    | U    | 1.00    | \$   | 323.24  | \$ | 323.24    |
| TENDIDO DE CABLE AÉREO 12 FIBRAS<br>ÓPTICAS MONOMODO ADSS G.652 (VANOS 80<br>m)                                     | m    | 1000.00 | \$   | 1.94    | \$ | 1,940.00  |
| TENDIDO DE CABLE AÉREO 144 FIBRAS<br>ÓPTICAS MONOMODO ADSS G.652 (VANOS 80<br>m)                                    | m    | 2500.00 | \$   | 4.78    | \$ | 11,950.00 |
| SUBIDA A POSTE PARA FIBRA ÓPTICA                                                                                    | U    | 3.00    | \$   | 55.71   | \$ | 167.13    |
| RED PR                                                                                                              | IMAR | ΙΑ      |      |         |    |           |
| CATASTROS                                                                                                           | u    | 1.00    | \$   | 4.01    | \$ | 4.01      |
| SUMINISTRO Y TENDIDO DE CABLE<br>CANALIZADO 0.4 mm 100 PARES                                                        | m    | 40.80   | \$   | 6.68    | \$ | 272.54    |
| SUMINISTRO Y TENDIDO DE CABLE<br>CANALIZADO 0.4 mm 50 PARES                                                         | m    | 10.20   | \$   | 3.57    | \$ | 36.41     |
| NUMERACIÓN DE CABLE 100 PARES                                                                                       | u    | 4.20    | \$   | 16.89   | \$ | 70.94     |
| SUMINISTRO E INSTALACIÓN DE REGLETA DE<br>ARMARIO PRIMARIA DE 100 PARES                                             | u    | 4.00    | \$   | 143.55  | \$ | 574.20    |
| SUMINISTRO E INSTALACIÓN DE REGLETA DE<br>ARMARIO PRIMARIA DE 50 PARES                                              | u    | 1.00    | \$   | 91.65   | \$ | 91.65     |
| PRUEBAS DE TRANSMISIÓN 100 PARES                                                                                    | u    | 4.20    | \$   | 45.36   | \$ | 190.51    |
| INSTALACIÓN DE REGLETA DE DISTRIBUIDOR<br>DE 100 PARES (SOLO MO)                                                    | u    | 4.00    | \$   | 15.23   | \$ | 60.92     |

|                                        |      | TOTAL | \$              | 53,2 | 281.21    |
|----------------------------------------|------|-------|-----------------|------|-----------|
| REGLETA DE ARMARIO 100 PARES           | U    | 5.00  | \$<br>122.40    | \$   | 612.00    |
| PRUEBAS DE TRANSMISIÓN 100 PARES       | U    | 1.50  | \$<br>41.11     | \$   | 61.67     |
| PLANOS DE OBRA                         | m²   | 0.50  | \$<br>36.17     | \$   | 18.09     |
| NUMERACIÓN DE CABLE 100 PARES          | U    | 1.50  | \$<br>15.03     | \$   | 22.55     |
| HERRAJE DE POZO                        | U    | 2.00  | \$<br>80.28     | \$   | 160.56    |
| CRUZADA EN DISTRIBUIDOR                | U    | 27.00 | \$<br>4.29      | \$   | 115.83    |
| CATASTROS                              | НОЈА | 3.00  | \$<br>3.61      | \$   | 10.83     |
| CABLE CANALIZADO 0,4MM 150 PARES       | m    | 15.00 | \$<br>10.03     | \$   | 150.45    |
| EQUIPO HUAWEI MSAN SMARTAX MA5603      | U    | 1.00  | \$<br>28,000.00 | \$   | 28,000.00 |
| ARMARIO POLIÉSTER 150 PARES 1200 PARES | U    | 1.00  | \$<br>1,045.74  | \$   | 1,045.74  |

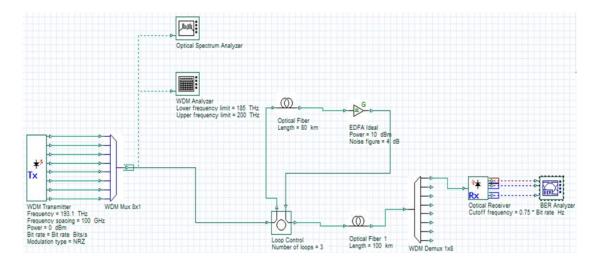
Fuente: Alba Verónica Ramos Flores, 2019.

#### 3.3.2.4. Costo Beneficio

El costo—beneficio que obtendrá la CNT EP., está dado por el costo mensual que solventaran los usuarios que van a utilizar la red implementada. Al valor total pagado por los clientes se deberá restar el consto de mantenimiento y calcularse el tiempo en que se recuperará la inversión, como detalla la tabla 3-19.

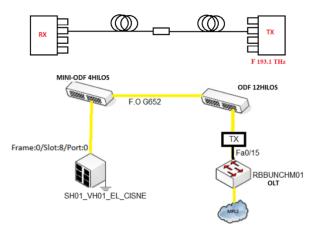
Tabla 3-16 Costo Beneficio de la Red de Accesos.

| Número   | Precio  | Ingreso    | Costo de      | Costo Total de | Recuperación de |
|----------|---------|------------|---------------|----------------|-----------------|
| de       | Mensual | Total      | Mantenimiento | la Red de      | la              |
| Clientes |         |            |               | Acceso         | Inversión       |
| 323      | \$27.36 | \$8,837.28 | 0             | \$ 53.281.21   | 6.02            |


Fuente: Alba Verónica Ramos Flores, 2019

La CNT EP., recuperará la inversión de esta red en aproximadamente 6 meses, el costo de mantenimiento es igual a \$0.00 debido a que la red es nueva.

#### 3.4. SIMULACIÓN DE LA RED DE FIBRA.


#### 3.4.1. Esquema de la Red

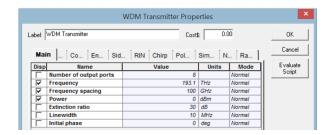
Para este diseño de la Red de Accesos con fibra óptica utilizamos el simulador OptiSystem que nos permite visualizar los parámetros que se dan en un enlace real con fibra óptica. Para este diseño utilizaremos el ejemplo que se muestra en la figura 18-4, que es un sistema WDM (Multiplexación por División de Onda). En la figura 19-4 nuestra una analogía entre un sistema WDM con la Red de Accesos.



**Figura 3-10.** Circuito de un sistema WDM.

Fuente: OptiSystem




**Figura 3-11** Analogía de un sistema WDM con la Red de Accesos **Fuente:** Alba Verónica Ramos Flores, 2019

# 3.4.1.1. Configuración del Transmisor (WDM)

El transmisor WDM se configura con los siguientes valores:

- Puertos de salida 8.
- Frecuencia de 193.1 THz.
- Espaciamiento de frecuencia de 100 GHz.
- Radio extensión 10 dB.
- Ancho de banda 10 Mhz.

Los valores pueden ser variables, se puede variar las unidades, la figura 3-12 muestra la ventana de propiedades del Transmisor.



**Figura 3-12** Propiedades del trasmisor WDM.

Fuente: OptiSystem

En la misma ventana en la opción Codig se configura el tipo de modulación NRZ, como se observa en la figura 3-13.

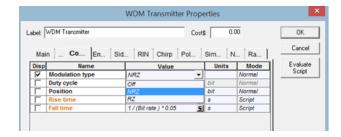



Figura 3-13 Ventana de tipo de Modulación.

Fuente: OptiSystem

## 3.4.1.2. Configuración Multiplexor de WDM de 8 a 1

Se incluye un Multiplexor de WDM de 8 a 1 en el cual se configura los parámetros que se detalla en la figura 3-14:

- Ancho de banda 10GHz.
- Perdida de inserción 0dB.
- Bajo (nivel de ruido) 10dB.
- Tipo de filtro Bessel.
- Orden del filtro 2.

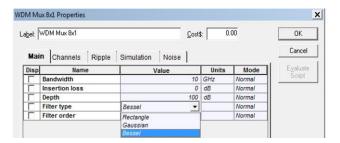



Figura 3-14 Propiedades del Multiplexor.

Fuente: OptiSystem

## 3.4.1.3. Analizador de Espectro Óptico

La aplicación cuenta con un analizador de espectro óptico que nos proporciona la señal transmitida a través del transmisor y el multiplexor. Los parámetros de este elemento son: el exponente de la señal, unidades de longitud de onda (m, Hz), unidades de amplitud (dBm, W), resolución de ancho de banda; se puede visualizar en el eje X, Y; las pestañas de poder de ruido, parametrizado y muestra. Esto se puede apreciar en la figura 3-15.

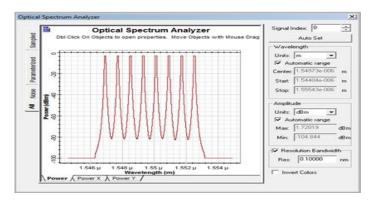
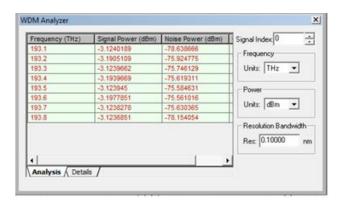




Figura 3-15 Analizador de espectro óptico.

Fuente: OptiSystem

El analizador WDM es el encargado de dar un análisis de las características de rango de frecuencia (THz), poder de la señal (dBm), poder de ruido (dBm), se puede varias las unidades de frecuencia, poder y resolución de ancho de banda. En la pestaña de detalles se visualiza valores min/max, total, radio min/max, frecuencia al mínimo y máximo (THz). Esto se puede visualizar en la figura 3-16 y 3-17.



**Figura 3-16** Analizador de WDM.

Fuente: OptiSystem.

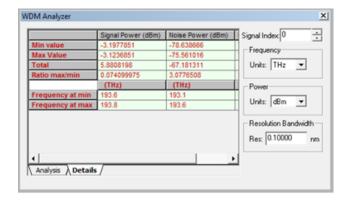
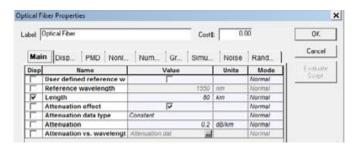




Figura 3-17 Analizador de WDM.

Fuente: OptiSystem.

# 3.4.1.4. Configuración de Cable de la Fibra Óptica

Esta permite colocar la longitud de cable que está empleando en el enlace, este puede variar dependiendo la necesidad del enlace. Como se muestra en la figura 3-18.



**Figura 3-18** Propiedades dimensiones de fibra óptica. **Fuente:** OptiSystem.

## 3.4.1.5. Configuración EDFA (Amplificador de fibra dopada con erbio)

En este elemento se puede configurar los valores de la saturación, la figura de ruido, la polarización del filtro, ruido, y números randómicos para este enlace. Las propiedades del EDFA se muestran en las figuras 3-19,3-20 y 3-21.

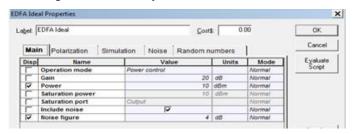



Figura 3-19 Propiedades EDFA.

Fuente: OptiSystem.

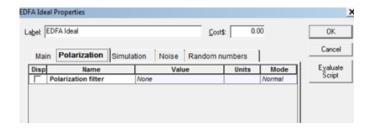



Figura 3-20 Polarización del filtro.

Fuente: OptiSystem.

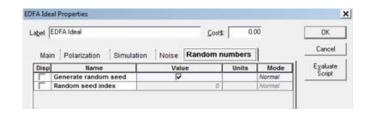



Figura 3-21 Generador Randómico de Origen.

Fuente: OptiSystem

#### 3.4.1.6. Configuración del de demultiplexor de 1 a 8

El demultiplexor de 1 a 8 se encarga de dar las 8 señales que se tiene a la entrada del enlace, en esta elemento se puede cambiar los parámetros de ancho de banda, pérdida de inserción, bajo (nivel de ruido), tipo de filtro (rectangular, gausiano, bessel) y el orden del filtro. Esto se puede visualizar en la figura 3-22.

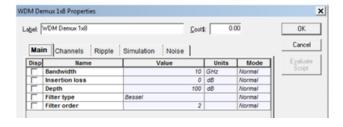
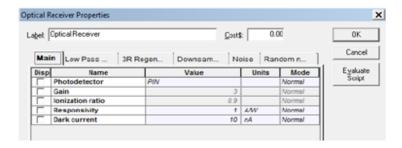



Figura 3-22 Ventana de propiedades del Multiplexor.

Fuente: OptiSystem


### 3.4.1.7. Configuración Receptor WDM

En la simulación del enlace se cuenta con un receptor para la señal de salida, este receptor tiene las características:

- Fotodetector.
- Ganancia.
- Radio Ionización.

- Respuesta.
- Corriente oscura.

Además cuenta con un filtro pasa bajos, regenerador de señal, muestreado de bajada, ruido y número randómico de origen, como se muestra en la figura 3-23, 3-24 y 3-25.



**Figura 3-23** Ventana de propiedades del receptor WDM. **Fuente:** OptiSystem

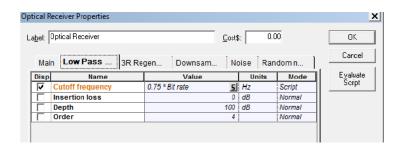



Figura 3-24 Ventana Filtros pasa bajos.

Fuente: OptiSystem

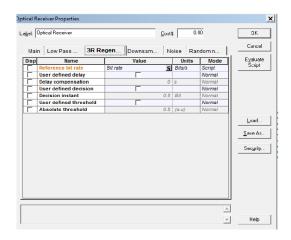



Figura 3-25 Ventana Características del regenerador.

Fuente: OptiSystem

# 3.4.1.8. Analizador BER (Tasa de error de bit)

Este analizador permite visualizar: el factor de calidad, BER mínimo, nivel de umbral, ancho de banda y BER Pattern (diseño) y se puede observar la forma de la onda que tenemos a la salida del enlace, esto se visualiza en las figuras 3-26, 3-27, 3-28 y 3-29.

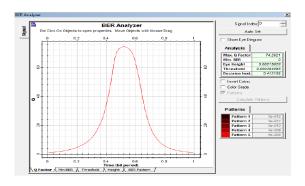



Figura 3-26 Señal de factor de calidad.

Fuente: OptiSystem

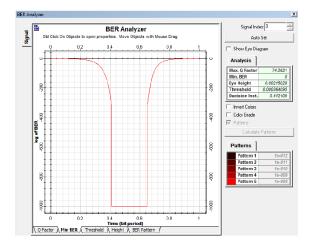



Figura 3-27 Señal de BER mínimo.

Fuente: OptiSystem

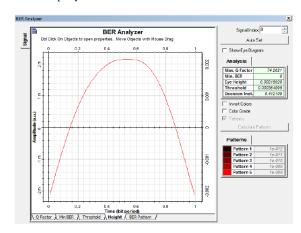



Figura 3-28 Señal ancho de banda.

Fuente: OptiSystem

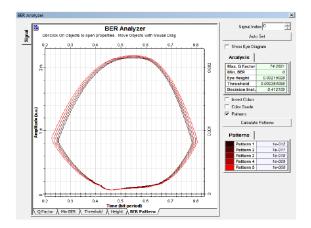



Figura 3-29 Señal de modalidad BER.

Fuente: OptiSystem

Estas señales obtenidas al final del enlace tienen valores aproximados que se pueden tener en la fibra óptica instalada en la Red de Accesos.

### 3.5. IMPLEMENTACIÓN DE LA RED DE ACCESOS.

Finalmente se procede con la implementación de la Red de Accesos utilizando Tecnología VDSL/FTTX.

- Tendido de Cable de Fibra Óptica de la Red de Accesos.
- Construcción de las bases de Equipo de Acceso de Plataforma Exterior y Armario Reflejo.
- Instalación del Equipo de Acceso de Plataforma Exterior y Armario Reflejo.
- Configuración del Equipo de Acceso de Plataforma Exterior.
- Pruebas del Enlace de Transmisión.
- Pruebas Continuidad en POST-LINE.
- Migración de los clientes.
- Comprobación de servicio equipo del cliente.
- El Anexo B Pruebas de Medición de Fibra Óptica.
- El Anexo C Fotografías de la Implementación.
- El Anexo E Configuración del Equipo Acceso de Plataforma Exterior.
- El Anexo F Configuración Equipo del Cliente.

## CAPÍTULO IV

#### 4. RESULTADOS Y DISCUSION

#### 4.1. Pruebas y Análisis de Resultados

### 4.2. Mediciones Eléctricas

Luego del diseño e implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/ FTTX y con la red ya operativa para verificar el mejoramiento del servicio en el sector del Cisne, tomando en cuenta los parámetros admitidos por la CNT EP para el buen funcionamiento de las redes telefónicas de Cobre/VDSL como se detalla en la tabla 4-1 y las resistencias de bucle para un buen funcionamiento del servicio de internet en la tabla 4-2.

Tabla 4-1 Parámetros de Mediciones en Redes Telefónicas.

| PARAMETRO                    | VALORES ADMITIDOS           |
|------------------------------|-----------------------------|
| AISLAMIENTO (MΩ)             | $a-b \ge 30$ (Open Line OL) |
| VOLTAJE AC (V)               | 0 a 2                       |
| VOLTAJE DC (V)               | 0 a 2                       |
| RESISTENCIA BUCLE $(\Omega)$ | 50 a 900                    |
| ATENUACION (dB)              | 0 a 45                      |
| SNR (dB)                     | Desde 12 hasta 33           |

Fuente: (CNT EP, 2012)

Tabla 4-2 Resistencias de Bucle servicio de Internet.

| VELOCIDAD | RESISTENCIA BUCLE (Ω) | DISTANCIA (Km) |
|-----------|-----------------------|----------------|
| 1 Mbps    | Desde 711 a 850       | 3.080          |
| 2 Mbps    | Desde 591 a 710       | 2.570          |
| 3 Mbps    | Desde 506 a 590       | 2.140          |
| 4 Mbps    | Desde 384 a 505       | 1.825          |
| 5 Mbps    | Desde 155 a 383       | 1.340          |
| 10 Mbps   | Desde 50 a 154        | 0.555          |

Fuente: (CNT EP, 2012)

Se efectuaron nuevamente las mediciones de los parámetros eléctricos de la red, en las mismas redes telefónicas que se midieron antes de la implementación y se obtuvieron los siguientes resultados:

Tabla 4-3 Mediciones de Resistencia se Bucle, Atenuación y SNR.

|      |     |          | DAT                 | TOS DE      | BAJA           |                |                  |           |             |        |     |      |     | DA       | TOS DE A            | ALTA        |                |                |                     |           |          |
|------|-----|----------|---------------------|-------------|----------------|----------------|------------------|-----------|-------------|--------|-----|------|-----|----------|---------------------|-------------|----------------|----------------|---------------------|-----------|----------|
| CAJA | PAR | NÚMERO   | LONG<br>LIN<br>(Km) | AIS<br>(ΜΩ) | V<br>AC<br>(V) | V<br>DC<br>(V) | RESIS<br>BCL (Ω) | ATEN (dB) | SNR<br>(dB) | LISTON | PAR | CAJA | PAR | NÚMERO   | LONG<br>LIN<br>(Km) | AIS<br>(ΜΩ) | V<br>AC<br>(V) | V<br>DC<br>(V) | RESIS<br>BCL<br>(Ω) | ATEN (dB) | SNR (dB) |
| A1   | 2   | 32901629 | 6.201               | 27          | 0.05           | 0              | 1717.677         | 93.015    | 13          | 103    | 16  | A1   | 2   | 32221104 | 1.926               | OL          | 0.00           | 0.00           | 533.502             | 28.89     | 28       |
| A1   | 4   | 32901436 | 6.218               | 23          | 0.01           | 0              | 1722.386         | 93.27     | 11          | 102    | 15  | A1   | 4   | 32221035 | 1.943               | OL          | 0.00           | 0.00           | 538.211             | 29.145    | 26       |
| A1   | 6   | 32901550 | 6.234               | 25          | 0.19           | 0              | 1726.818         | 93.51     | 9           | 102    | 13  | A1   | 6   | 32221034 | 1.959               | OL          | 0.00           | 0.00           | 542.643             | 29.385    | 20       |
| A3   | 3   | 32901551 | 5.953               | 22          | 0.1            | 0              | 1648.981         | 89.295    | 11          | 101    | 2   | A3   | 3   | 32221152 | 1.908               | OL          | 0.00           | 0.00           | 528.516             | 28.62     | 30       |
| A3   | 9   | 32901628 | 5.972               | 20          | 0              | 0              | 1654.244         | 89.58     | 9           | 101    | 9   | A3   | 9   | 32221149 | 1.927               | OL          | 0.00           | 0.00           | 533.779             | 28.905    | 25       |
| A4   | 4   | 32901446 | 6.118               | 25          | 0.13           | 0              | 1694.686         | 91.77     | 9           | 101    | 46  | A4   | 4   | 32221148 | 2.174               | OL          | 0.00           | 0.00           | 602.198             | 32.61     | 31       |
| A5   | 9   | 32901634 | 5.68                | 21          | 0.14           | 0              | 1573.36          | 85.2      | 11          | 101    | 7   | A5   | 9   | 32221212 | 1.655               | OL          | 0.00           | 0.00           | 458.435             | 24.825    | 23       |
| A5   | 10  | 32901768 | 5.698               | 23          | 0.17           | 0              | 1578.346         | 85.47     | 13          | 101    | 27  | A5   | 10  | 32221196 | 1.673               | OL          | 0.00           | 0.00           | 463.421             | 25.095    | 23       |
| B1   | 2   | 32901508 | 6.324               | 27          | 0.1            | 0              | 1751.748         | 94.86     | 10          | 101    | 13  | B1   | 2   | 32221187 | 1.997               | OL          | 0.00           | 0.00           | 553.169             | 29.955    | 17       |
| B1   | 8   | 32901414 | 6.342               | 21          | 0.18           | 0              | 1756.734         | 95.13     | 10          | 101    | 16  | B1   | 8   | 32221164 | 2.015               | OL          | 0.00           | 0.00           | 558.155             | 30.225    | 30       |
| B1   | 9   | 32900885 | 6.36                | 25          | 0.02           | 0              | 1761.72          | 95.4      | 12          | 102    | 50  | B1   | 9   | 32221074 | 2.033               | OL          | 0.00           | 0.00           | 563.141             | 30.495    | 19       |
| B2   | 7   | 32900707 | 5.62                | 23          | 0.13           | 0              | 1556.74          | 84.3      | 14          | 101    | 17  | B2   | 7   | 32221009 | 1.51                | OL          | 0.00           | 0.00           | 418.27              | 22.65     | 32       |
| В3   | 2   | 32901486 | 5.896               | 26          | 0.01           | 0              | 1633.192         | 88.44     | 14          | 102    | 60  | В3   | 2   | 32221029 | 1.772               | OL          | 0.00           | 0.00           | 490.844             | 26.58     | 19       |
| В3   | 5   | 32901476 | 5.919               | 23          | 0.14           | 0              | 1639.563         | 88.785    | 13          | 102    | 7   | В3   | 5   | 32221019 | 1.795               | OL          | 0.00           | 0.00           | 497.215             | 26.925    | 19       |
| B4   | 5   | 32901345 | 5.648               | 25          | 0.1            | 0              | 1564.496         | 84.72     | 11          | 101    | 25  | B4   | 5   | 32221247 | 1.433               | OL          | 0.00           | 0.00           | 396.941             | 21.495    | 20       |
| B5   | 1   | 32901626 | 5.504               | 27          | 0.18           | 0              | 1524.608         | 82.56     | 13          | 101    | 24  | B5   | 1   | 32221255 | 1.291               | OL          | 0.00           | 0.00           | 357.607             | 19.365    | 19       |
| B5   | 2   | 32901354 | 5.402               | 23          | 0.06           | 0              | 1496.354         | 81.03     | 9           | 102    | 9   | B5   | 2   | 32221020 | 1.189               | OL          | 0.00           | 0.00           | 329.353             | 17.835    | 21       |
| B5   | 4   | 32901409 | 5.42                | 28          | 0.15           | 0              | 1501.34          | 81.3      | 12          | 102    | 10  | B5   | 4   | 32221199 | 1.207               | OL          | 0.00           | 0.00           | 334.339             | 18.105    | 27       |
| C1   | 2   | 32900171 | 5.448               | 20          | 0.18           | 0              | 1509.096         | 81.72     | 10          | 102    | 19  | C1   | 2   | 32221103 | 1.239               | OL          | 0.00           | 0.00           | 343.203             | 18.585    | 27       |
| C1   | 7   | 32901613 | 5.406               | 27          | 0.07           | 0              | 1497.462         | 81.09     | 14          | 101    | 47  | C1   | 7   | 32221201 | 1.197               | OL          | 0.00           | 0.00           | 331.569             | 17.955    | 23       |
| C2   | 3   | 32901479 | 5.145               | 24          | 0.11           | 0              | 1425.165         | 77.175    | 13          | 102    | 12  | C2   | 3   | 32221064 | 0.926               | OL          | 0.00           | 0.00           | 256.502             | 13.89     | 22       |
| C3   | 2   | 32901374 | 6.085               | 24          | 0.19           | 0              | 1685.545         | 91.275    | 13          | 101    | 33  | C3   | 2   | 32221244 | 0.924               | OL          | 0.00           | 0.00           | 255.948             | 13.86     | 31       |
| C3   | 3   | 32901478 | 6.103               | 22          | 0.04           | 0              | 1690.531         | 91.545    | 10          | 103    | 10  | C3   | 3   | 32221109 | 0.942               | OL          | 0.00           | 0.00           | 260.934             | 14.13     | 25       |

| C4 | 1  | 32901375 | 6.061 | 23 | 0.11 | 0 | 1678.897 | 90.915 | 13 | 103 | 32 | C4 | 1  | 32221028 | 0.969 | OL | 0.00 | 0.00 | 268.413 | 14.535 | 32 |
|----|----|----------|-------|----|------|---|----------|--------|----|-----|----|----|----|----------|-------|----|------|------|---------|--------|----|
| C5 | 1  | 32901384 | 4.87  | 23 | 6.82 | 0 | 1348.99  | 73.05  | 13 | 101 | 35 | C5 | 1  | 32221176 | 0.649 | OL | 0.00 | 0.00 | 179.773 | 9.735  | 24 |
| C5 | 10 | 32901637 | 4.771 | 22 | 0.03 | 0 | 1321.567 | 71.565 | 11 | 101 | 38 | C5 | 10 | 32221217 | 0.55  | OL | 0.00 | 0.00 | 152.35  | 8.25   | 20 |
| D1 | 2  | 32901223 | 4.687 | 28 | 0.15 | 0 | 1298.299 | 70.305 | 14 | 101 | 51 | D1 | 2  | 32221113 | 0.864 | OL | 0.00 | 0.00 | 239.328 | 12.96  | 31 |
| D1 | 5  | 32901395 | 4.711 | 26 | 0.1  | 0 | 1304.947 | 70.665 | 14 | 103 | 27 | D1 | 5  | 32221238 | 0.888 | OL | 0.00 | 0.00 | 245.976 | 13.32  | 19 |
| D1 | 10 | 32901458 | 4.729 | 21 | 0.18 | 0 | 1309.933 | 70.935 | 9  | 103 | 22 | D1 | 10 | 32221130 | 0.906 | OL | 0.00 | 0.00 | 250.962 | 13.59  | 20 |
| D2 | 8  | 32901447 | 4.359 | 23 | 0.07 | 0 | 1207.443 | 65.385 | 12 | 101 | 53 | D2 | 8  | 32221147 | 0.924 | OL | 0.00 | 0.00 | 255.948 | 13.86  | 17 |
| D3 | 1  | 32901646 | 5.16  | 26 | 0.02 | 0 | 1429.32  | 77.4   | 11 | 103 | 15 | D3 | 1  | 32221114 | 1.369 | OL | 0.00 | 0.00 | 379.213 | 20.535 | 27 |
| D3 | 7  | 32901648 | 5.237 | 25 | 0.17 | 0 | 1450.649 | 78.555 | 10 | 102 | 16 | D3 | 7  | 32221045 | 1.446 | OL | 0.00 | 0.00 | 400.542 | 21.69  | 24 |
| E1 | 3  | 32901260 | 4.964 | 28 | 0    | 0 | 1375.028 | 74.46  | 12 | 101 | 57 | E1 | 3  | 32221177 | 0.587 | OL | 0.00 | 0.00 | 162.599 | 8.805  | 22 |
| E2 | 7  | 32901639 | 4.735 | 22 | 0.13 | 0 | 1311.595 | 71.025 | 11 | 101 | 62 | E2 | 7  | 32221168 | 0.359 | OL | 0.00 | 0.00 | 99.443  | 5.385  | 25 |
| E2 | 8  | 32900046 | 4.759 | 24 | 0.06 | 0 | 1318.243 | 71.385 | 11 | 101 | 59 | E2 | 8  | 32221134 | 0.383 | OL | 0.00 | 0.00 | 106.091 | 5.745  | 26 |
| E3 | 2  | 32901404 | 4.728 | 25 | 0.12 | 0 | 1309.656 | 70.92  | 10 | 101 | 60 | E3 | 2  | 32221145 | 0.268 | OL | 0.00 | 0.00 | 74.236  | 4.02   | 24 |
| E3 | 3  | 32901408 | 4.746 | 22 | 0.07 | 0 | 1314.642 | 71.19  | 10 | 101 | 63 | E3 | 3  | 32221178 | 0.286 | OL | 0.00 | 0.00 | 79.222  | 4.29   | 30 |
| E4 | 6  | 32901415 | 4.136 | 24 | 0.01 | 0 | 1145.672 | 62.04  | 9  | 103 | 43 | E4 | 6  | 32221175 | 0.394 | OL | 0.00 | 0.00 | 109.138 | 5.91   | 27 |
| E4 | 8  | 32900316 | 4.154 | 20 | 0.04 | 0 | 1150.658 | 62.31  | 11 | 103 | 44 | E4 | 8  | 32221096 | 0.412 | OL | 0.00 | 0.00 | 114.124 | 6.18   | 30 |
| E5 | 2  | 32901275 | 3.943 | 21 | 0.04 | 0 | 1092.211 | 59.145 | 10 | 102 | 40 | E5 | 2  | 32221194 | 0.647 | OL | 0.00 | 0.00 | 179.219 | 9.705  | 21 |
| E5 | 8  | 32901360 | 3.965 | 24 | 0.04 | 0 | 1098.305 | 59.475 | 13 | 103 | 11 | E5 | 8  | 32221032 | 0.669 | OL | 0.00 | 0.00 | 185.313 | 10.035 | 18 |
| F1 | 4  | 32900536 | 4.715 | 21 | 0.12 | 0 | 1306.055 | 70.725 | 12 | 102 | 32 | F1 | 4  | 32221245 | 1.965 | OL | 0.00 | 0.00 | 544.305 | 29.475 | 21 |
| F1 | 7  | 32901393 | 4.731 | 28 | 0.19 | 0 | 1310.487 | 70.965 | 14 | 102 | 4  | F1 | 7  | 32221141 | 1.981 | OL | 0.00 | 0.00 | 548.737 | 29.715 | 22 |
| F3 | 9  | 32901389 | 4.175 | 27 | 0.17 | 0 | 1156.475 | 62.625 | 13 | 102 | 26 | F3 | 9  | 32221036 | 1.425 | OL | 0.00 | 0.00 | 394.725 | 21.375 | 32 |
| F4 | 2  | 32901620 | 3.741 | 26 | 0.11 | 0 | 1036.257 | 56.115 | 13 | 102 | 27 | F4 | 2  | 32221065 | 0.991 | OL | 0.00 | 0.00 | 274.507 | 14.865 | 27 |
| F5 | 2  | 32901367 | 6.168 | 26 | 0.16 | 0 | 1708.536 | 92.52  | 9  | 102 | 59 | F5 | 2  | 32221128 | 2.818 | OL | 0.00 | 0.00 | 780.586 | 42.27  | 32 |
| F5 | 4  | 32901378 | 6.254 | 28 | 0.19 | 0 | 1732.358 | 93.81  | 12 | 102 | 62 | F5 | 4  | 32221099 | 2.904 | OL | 0.00 | 0.00 | 804.408 | 43.56  | 26 |
| F5 | 10 | 32901381 | 6.272 | 25 | 0.05 | 0 | 1737.344 | 94.08  | 14 | 103 | 20 | F5 | 10 | 32221037 | 2.922 | OL | 0.00 | 0.00 | 809.394 | 43.83  | 24 |
| G1 | 5  | 32901474 | 6.196 | 24 | 0.03 | 0 | 1716.292 | 92.94  | 9  | 103 | 56 | G1 | 5  | 32221159 | 2.846 | OL | 0.00 | 0.00 | 788.342 | 42.69  | 28 |
| G2 | 4  | 32901495 | 5.81  | 20 | 0.05 | 0 | 1609.37  | 87.15  | 10 | 104 | 6  | G2 | 4  | 32221204 | 2.66  | OL | 0.00 | 0.00 | 736.82  | 39.9   | 32 |
| G2 | 6  | 32901481 | 5.708 | 28 | 0.1  | 0 | 1581.116 | 85.62  | 10 | 103 | 50 | G2 | 6  | 32221048 | 2.558 | OL | 0.00 | 0.00 | 708.566 | 38.37  | 29 |

| 76 OL<br>35 OL<br>03 OL<br>29 OL        | 0.00<br>0.00<br>0.00                                                    | 0.00                                                                                                                     | 713.552<br>660.645                                                                                                                                                                              | 38.64<br>35.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03 OL                                   |                                                                         |                                                                                                                          | 660.645                                                                                                                                                                                         | 35.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | 0.00                                                                    | 0.00                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 29 OL                                   |                                                                         | 0.00                                                                                                                     | 665.631                                                                                                                                                                                         | 36.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                       | 0.00                                                                    | 0.00                                                                                                                     | 589.733                                                                                                                                                                                         | 31.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 460.374                                                                                                                                                                                         | 24.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 OL                                    | 0.00                                                                    | 0.00                                                                                                                     | 455.942                                                                                                                                                                                         | 24.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 OL                                    | 0.00                                                                    | 0.00                                                                                                                     | 423.81                                                                                                                                                                                          | 22.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 452.618                                                                                                                                                                                         | 24.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 457.604                                                                                                                                                                                         | 24.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 89 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 370.903                                                                                                                                                                                         | 20.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 377.551                                                                                                                                                                                         | 20.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 293.62                                                                                                                                                                                          | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 78 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 298.606                                                                                                                                                                                         | 16.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 08 OL                                   | 0.00                                                                    | 0.00                                                                                                                     | 304.146                                                                                                                                                                                         | 16.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9 OL                                    | 0.00                                                                    | 0.00                                                                                                                     | 309.963                                                                                                                                                                                         | 16.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 OL                                    | 0.00                                                                    | 0.00                                                                                                                     | 281.986                                                                                                                                                                                         | 15.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 OL                                    | 0.00                                                                    | 0.00                                                                                                                     | 428.242                                                                                                                                                                                         | 23.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 62 OL 46 OL 53 OL 34 OL 52 OL 39 OL 63 OL 63 OL 78 OL 98 OL 19 OL 18 OL | 62 OL 0.00 46 OL 0.00 53 OL 0.00 34 OL 0.00 52 OL 0.00 39 OL 0.00 63 OL 0.00 63 OL 0.00 78 OL 0.00 98 OL 0.00 19 OL 0.00 | 62 OL 0.00 0.00 46 OL 0.00 0.00 53 OL 0.00 0.00 54 OL 0.00 0.00 55 OL 0.00 0.00 55 OL 0.00 0.00 63 OL 0.00 0.00 63 OL 0.00 0.00 64 OL 0.00 0.00 78 OL 0.00 0.00 98 OL 0.00 0.00 19 OL 0.00 0.00 | 62         OL         0.00         0.00         460.374           46         OL         0.00         0.00         455.942           53         OL         0.00         0.00         423.81           34         OL         0.00         0.00         452.618           52         OL         0.00         0.00         370.903           63         OL         0.00         0.00         377.551           06         OL         0.00         0.00         293.62           78         OL         0.00         0.00         304.146           19         OL         0.00         0.00         309.963           18         OL         0.00         0.00         281.986 | 62         OL         0.00         0.00         460.374         24.93           46         OL         0.00         0.00         455.942         24.69           53         OL         0.00         0.00         423.81         22.95           34         OL         0.00         0.00         452.618         24.51           52         OL         0.00         0.00         370.903         20.085           63         OL         0.00         0.00         377.551         20.445           06         OL         0.00         0.00         293.62         15.9           78         OL         0.00         0.00         304.146         16.47           19         OL         0.00         0.00         309.963         16.785           18         OL         0.00         0.00         281.986         15.27 |

Fuente: Alba Verónica Ramos Flores, 2019

Tabla 4-4 Valoración Atenuación; Valoración Resistencia de Bucle; Valoración SNR.

| Atenuación (dB) | Valor (% de aceptación ) | Resistencia de Bucle (Ω) | Valor (% de aceptación ) | SNR (dB) | Valor(% de aceptación ) |
|-----------------|--------------------------|--------------------------|--------------------------|----------|-------------------------|
| 45 - 33.76      | 0% - 25%                 | 50 - 262.5               | 100% - 75%               | 12 - 19  | 0% - 33%                |
| 33.75 - 22.51   | 26 % - 50%               | 262.51 - 475             | 74% - 50%                | 20 - 26  | 34% - 66%               |
| 22.50 - 11.26   | 51% - 75 %               | 475.1 - 687.5            | 49% - 25%                | 27 - 33  | 67% - 100%              |
| 11.25 - 0.1     | 76% - 100%               | 687.51 - 900             | 24% - 0%                 |          |                         |

Fuente: Alba Verónica Ramos Flores, 2019

Tomando en cuenta la tabla 4-4, se puede valorar los parámetros eléctricos de medición de la nueva red para obtener de manera más clara el porcentaje de mejoramiento de los mismos.

Tabla 4-5 Comparación de la valoración de los parámetros eléctricos de la Red.

|      |     | DAT      | OS DE BA            | JA                 |        |          |      |     | DAT      | OS DE AL            | ΓA               |        |          |
|------|-----|----------|---------------------|--------------------|--------|----------|------|-----|----------|---------------------|------------------|--------|----------|
| CAJA | PAR | NÚMERO   | LONG<br>LIN<br>(Km) | RESIS<br>BCLE<br>% | ATEN % | SNR<br>% | CAJA | PAR | NÚMERO   | LONG<br>LIN<br>(Km) | RESI<br>BCL<br>% | ATEN % | SNR<br>% |
| E3   | 2   | 32901404 | 4.728               | 0.00               | 0.00   | 0.00     | E3   | 2   | 32221145 | 0.268               | 91.27            | 91.06  | 57.14    |
| E3   | 3   | 32901408 | 4.746               | 0.00               | 0.00   | 0.00     | E3   | 3   | 32221178 | 0.286               | 90.68            | 90.46  | 85.71    |
| E2   | 7   | 32901639 | 4.735               | 0.00               | 0.00   | 0.00     | E2   | 7   | 32221168 | 0.359               | 88.30            | 88.02  | 61.90    |
| E2   | 8   | 32900046 | 4.759               | 0.00               | 0.00   | 0.00     | E2   | 8   | 32221134 | 0.383               | 87.52            | 87.22  | 66.67    |
| E4   | 6   | 32901415 | 4.136               | 0.00               | 0.00   | -4.76    | E4   | 6   | 32221175 | 0.394               | 87.16            | 86.85  | 71.43    |
| E4   | 8   | 32900316 | 4.154               | 0.00               | 0.00   | -4.76    | E4   | 8   | 32221096 | 0.412               | 86.57            | 86.25  | 85.71    |
| C5   | 10  | 32901637 | 4.771               | 0.00               | 0.00   | 4.76     | C5   | 10  | 32221217 | 0.55                | 82.08            | 81.65  | 38.10    |
| E1   | 3   | 32901260 | 4.964               | 0.00               | 0.00   | 0.00     | E1   | 3   | 32221177 | 0.587               | 80.87            | 80.42  | 47.62    |
| E5   | 2   | 32901275 | 3.943               | 0.00               | 0.00   | -4.76    | E5   | 2   | 32221194 | 0.647               | 78.92            | 78.41  | 42.86    |
| C5   | 1   | 32901384 | 4.87                | 0.00               | 0.00   | 4.76     | C5   | 1   | 32221176 | 0.649               | 78.85            | 78.35  | 57.14    |
| E5   | 8   | 32901360 | 3.965               | 0.00               | 0.00   | -4.76    | E5   | 8   | 32221032 | 0.669               | 78.20            | 77.68  | 28.57    |
| D1   | 2   | 32901223 | 4.687               | 0.00               | 0.00   | 4.76     | D1   | 2   | 32221113 | 0.864               | 71.84            | 71.17  | 90.48    |
| D1   | 5   | 32901395 | 4.711               | 0.00               | 0.00   | 4.76     | D1   | 5   | 32221238 | 0.888               | 71.06            | 70.37  | 33.33    |
| D1   | 10  | 32901458 | 4.729               | 0.00               | 0.00   | 4.76     | D1   | 10  | 32221130 | 0.906               | 70.48            | 69.77  | 38.10    |
| С3   | 2   | 32901374 | 6.085               | 0.00               | 0.00   | 4.76     | С3   | 2   | 32221244 | 0.924               | 69.89            | 69.17  | 90.48    |
| D2   | 8   | 32901447 | 4.359               | 0.00               | 0.00   | 4.76     | D2   | 8   | 32221147 | 0.924               | 69.89            | 69.17  | 23.81    |
| C2   | 3   | 32901479 | 5.145               | 0.00               | 0.00   | 4.76     | C2   | 3   | 32221064 | 0.926               | 69.82            | 69.11  | 47.62    |
| C3   | 3   | 32901478 | 6.103               | 0.00               | 0.00   | 4.76     | C3   | 3   | 32221109 | 0.942               | 69.30            | 68.57  | 61.90    |
| C4   | 1   | 32901375 | 6.061               | 0.00               | 0.00   | 4.76     | C4   | 1   | 32221028 | 0.969               | 68.42            | 67.67  | 95.24    |

| F4 | 2  | 32901620 | 3.741 | 0.00 | 0.00 | -4.76  | F4 | 2  | 32221065 | 0.991 | 67.71 | 66.94 | 71.43 |
|----|----|----------|-------|------|------|--------|----|----|----------|-------|-------|-------|-------|
| H5 | 9  | 32901670 | 3.768 | 0.00 | 0.00 | -14.29 | Н5 | 9  | 32221118 | 1.018 | 66.83 | 66.04 | 85.71 |
| H5 | 2  | 32900769 | 3.81  | 0.00 | 0.00 | -14.29 | H5 | 2  | 32221062 | 1.06  | 65.46 | 64.64 | 61.90 |
| H5 | 4  | 32900831 | 3.828 | 0.00 | 0.00 | -14.29 | H5 | 4  | 32221031 | 1.078 | 64.87 | 64.03 | 80.95 |
| H5 | 6  | 32901843 | 3.848 | 0.00 | 0.00 | -14.29 | H5 | 6  | 32221053 | 1.098 | 64.22 | 63.37 | 61.90 |
| H5 | 8  | 32901722 | 3.869 | 0.00 | 0.00 | -14.29 | H5 | 8  | 32221063 | 1.119 | 63.53 | 62.67 | 23.81 |
| B5 | 2  | 32901354 | 5.402 | 0.00 | 0.00 | 4.76   | B5 | 2  | 32221020 | 1.189 | 61.25 | 60.33 | 42.86 |
| C1 | 7  | 32901613 | 5.406 | 0.00 | 0.00 | 4.76   | C1 | 7  | 32221201 | 1.197 | 60.99 | 60.06 | 52.38 |
| B5 | 4  | 32901409 | 5.42  | 0.00 | 0.00 | 4.76   | B5 | 4  | 32221199 | 1.207 | 60.67 | 59.73 | 71.43 |
| C1 | 2  | 32900171 | 5.448 | 0.00 | 0.00 | 4.76   | C1 | 2  | 32221103 | 1.239 | 59.62 | 58.66 | 71.43 |
| В5 | 1  | 32901626 | 5.504 | 0.00 | 0.00 | 4.76   | B5 | 1  | 32221255 | 1.291 | 57.93 | 56.93 | 33.33 |
| H4 | 4  | 32901734 | 4.089 | 0.00 | 0.00 | -14.29 | H4 | 4  | 32221154 | 1.339 | 56.36 | 55.33 | 85.71 |
| H4 | 9  | 32901422 | 4.113 | 0.00 | 0.00 | -14.29 | H4 | 9  | 32221092 | 1.363 | 55.58 | 54.53 | 95.24 |
| D3 | 1  | 32901646 | 5.16  | 0.00 | 0.00 | 4.76   | D3 | 1  | 32221114 | 1.369 | 55.39 | 54.33 | 71.43 |
| F3 | 9  | 32901389 | 4.175 | 0.00 | 0.00 | -4.76  | F3 | 9  | 32221036 | 1.425 | 53.56 | 52.46 | 95.24 |
| B4 | 5  | 32901345 | 5.648 | 0.00 | 0.00 | 4.76   | B4 | 5  | 32221247 | 1.433 | 53.30 | 52.19 | 38.10 |
| D3 | 7  | 32901648 | 5.237 | 0.00 | 0.00 | 0.00   | D3 | 7  | 32221045 | 1.446 | 52.88 | 51.76 | 57.14 |
| B2 | 7  | 32900707 | 5.62  | 0.00 | 0.00 | 9.52   | B2 | 7  | 32221009 | 1.51  | 50.79 | 49.62 | 95.24 |
| H1 | 7  | 32901723 | 4.28  | 0.00 | 0.00 | -9.52  | H1 | 7  | 32221033 | 1.53  | 50.14 | 48.95 | 80.95 |
| I1 | 1  | 32901277 | 4.296 | 0.00 | 0.00 | -14.29 | I1 | 1  | 32221038 | 1.546 | 49.62 | 48.42 | 28.57 |
| Н3 | 1  | 32900675 | 4.384 | 0.00 | 0.00 | -14.29 | Н3 | 1  | 32221080 | 1.634 | 46.75 | 45.48 | 80.95 |
| H1 | 6  | 32900105 | 4.396 | 0.00 | 0.00 | -9.52  | H1 | 6  | 32221232 | 1.646 | 46.36 | 45.08 | 95.24 |
| Н3 | 5  | 32901443 | 4.402 | 0.00 | 0.00 | -14.29 | Н3 | 5  | 32221042 | 1.652 | 46.16 | 44.88 | 85.71 |
| A5 | 9  | 32901634 | 5.68  | 0.00 | 0.00 | 9.52   | A5 | 9  | 32221212 | 1.655 | 46.07 | 44.78 | 52.38 |
| G5 | 6  | 32901650 | 4.812 | 0.00 | 0.00 | -9.52  | G5 | 6  | 32221043 | 1.662 | 45.84 | 44.55 | 38.10 |
| A5 | 10 | 32901768 | 5.698 | 0.00 | 0.00 | 9.52   | A5 | 10 | 32221196 | 1.673 | 45.48 | 44.18 | 52.38 |
| В3 | 2  | 32901486 | 5.896 | 0.00 | 0.00 | 4.76   | В3 | 2  | 32221029 | 1.772 | 42.25 | 40.88 | 33.33 |
| В3 | 5  | 32901476 | 5.919 | 0.00 | 0.00 | 4.76   | В3 | 5  | 32221019 | 1.795 | 41.50 | 40.11 | 33.33 |

| A3 | 3  | 32901551 | 5.953 | 0.00 | 0.00 | 9.52  | A3 | 3  | 32221152 | 1.908 | 37.82 | 36.34 | 85.71 |
|----|----|----------|-------|------|------|-------|----|----|----------|-------|-------|-------|-------|
| A1 | 2  | 32901629 | 6.201 | 0.00 | 0.00 | 9.52  | A1 | 2  | 32221104 | 1.926 | 37.24 | 35.74 | 76.19 |
| A3 | 9  | 32901628 | 5.972 | 0.00 | 0.00 | 9.52  | A3 | 9  | 32221149 | 1.927 | 37.20 | 35.71 | 61.90 |
| A1 | 4  | 32901436 | 6.218 | 0.00 | 0.00 | 9.52  | A1 | 4  | 32221035 | 1.943 | 36.68 | 35.18 | 66.67 |
| A1 | 6  | 32901550 | 6.234 | 0.00 | 0.00 | 9.52  | A1 | 6  | 32221034 | 1.959 | 36.16 | 34.64 | 38.10 |
| F1 | 4  | 32900536 | 4.715 | 0.00 | 0.00 | -4.76 | F1 | 4  | 32221245 | 1.965 | 35.96 | 34.44 | 42.86 |
| F1 | 7  | 32901393 | 4.731 | 0.00 | 0.00 | -4.76 | F1 | 7  | 32221141 | 1.981 | 35.44 | 33.91 | 47.62 |
| B1 | 2  | 32901508 | 6.324 | 0.00 | 0.00 | 9.52  | B1 | 2  | 32221187 | 1.997 | 34.92 | 33.37 | 23.81 |
| B1 | 8  | 32901414 | 6.342 | 0.00 | 0.00 | 9.52  | B1 | 8  | 32221164 | 2.015 | 34.33 | 32.77 | 85.71 |
| B1 | 9  | 32900885 | 6.36  | 0.00 | 0.00 | 9.52  | B1 | 9  | 32221074 | 2.033 | 33.75 | 32.17 | 33.33 |
| G4 | 3  | 32901682 | 5.279 | 0.00 | 0.00 | -9.52 | G4 | 3  | 32221161 | 2.129 | 30.62 | 28.97 | 33.33 |
| A4 | 4  | 32901446 | 6.118 | 0.00 | 0.00 | 9.52  | A4 | 4  | 32221148 | 2.174 | 29.15 | 27.47 | 90.48 |
| G3 | 4  | 32901631 | 5.535 | 0.00 | 0.00 | -9.52 | G3 | 4  | 32221202 | 2.385 | 22.28 | 20.43 | 85.71 |
| G3 | 5  | 32901590 | 5.553 | 0.00 | 0.00 | -9.52 | G3 | 5  | 32221072 | 2.403 | 21.69 | 19.83 | 23.81 |
| G2 | 6  | 32901481 | 5.708 | 0.00 | 0.00 | -9.52 | G2 | 6  | 32221048 | 2.558 | 16.64 | 14.66 | 80.95 |
| G2 | 10 | 32901640 | 5.726 | 0.00 | 0.00 | -9.52 | G2 | 10 | 32221051 | 2.576 | 16.05 | 14.06 | 61.90 |
| G2 | 4  | 32901495 | 5.81  | 0.00 | 0.00 | -9.52 | G2 | 4  | 32221204 | 2.66  | 13.32 | 11.25 | 95.24 |
| F5 | 2  | 32901367 | 6.168 | 0.00 | 0.00 | -9.52 | F5 | 2  | 32221128 | 2.818 | 8.17  | 5.98  | 95.24 |
| G1 | 5  | 32901474 | 6.196 | 0.00 | 0.00 | -9.52 | G1 | 5  | 32221159 | 2.846 | 7.25  | 5.05  | 76.19 |
| F5 | 4  | 32901378 | 6.254 | 0.00 | 0.00 | -9.52 | F5 | 4  | 32221099 | 2.904 | 5.36  | 3.11  | 66.67 |
| F5 | 10 | 32901381 | 6.272 | 0.00 | 0.00 | -9.52 | F5 | 10 | 32221037 | 2.922 | 4.78  | 2.51  | 57.14 |

Fuente: Alba Verónica Ramos Flores, 2019

#### 4.3. Análisis de Resultados

Luego del diseño e implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, a partir de los datos obtenidos de las mediciones eléctricas realizadas como muestra la tabla 4-5, donde se puede visualizar que la red implementada cumple con los parámetros óptimos para el correcto funcionamiento del servicio de voz y datos en el sector, se analizado los resultados de los tres principales parámetros que depende el buen funcionamiento de la red telefónica en las redes de 68 clientes los mismos de la muestra inicial, que para el análisis de los resultados lo tomaremos como el 100% de la población, tomado en cuenta la tablas 4-4 de valoraciones asignadas, con respecto a lo antes expuesto podemos expresar:

- Se puede observar claramente con respecto a la Resistencia de Bucle que la nueva red ha mejorado notablemente. El valor máximo de aceptación de la red, alcanzado con respecto a este parámetro es de 91.27% a una distancia de 0.268 Km y el valor mínimo 4.78% a una distancia de 2.922 Km, en lugares donde, con la red antigua, se encontraba en valores por debajo de los parámetros para el funcionamiento básico de la red. Cabe recalcar que la resistencia de Bucle depende de la distancia, con estos valores y considerando la tabla 1-5, el cliente puede acceder a servicio de internet de hasta 10 Mbps.
- Teniendo en cuenta Normativa de Diseño y Construcción de Planta Externa de la CNT EP. el valor máximo admitido con respecto a la atenuación en una red telefónica es de 45dB y considerando que a menor atenuación mayor calidad del servicio puede brindar la red, se observar que el valor máximo de aceptación en la nueva red es del 91.03% a una distancia de 0.268 Km garantizando el funcionamiento óptimo de la red.
- Los SNR antes de la implementación de la nueva red tenían un valor promedio de 12dB, siendo este valor el mínimo para el funcionamiento de una red. En la actualidad se encuentran en un valor promedio de 25dB, demostrando que la red ha mejorado de manera notoria con un valor máximo de aceptación del 95.29% lo cual garantiza el funcionamiento óptimo de los servicio de voz y datos.

Con lo antes expuesto se evidencia mediante las mediciones eléctricas de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/ FTTC implementada, cumple con todos los requerimientos solicitados por la CNT EP., asegurando el funcionamiento óptimo del servicio de voz y datos que provee la empresa en el sector del Cisne cumpliendo con el objetivo

principal propuesto al inicio de este trabajo que es mejorar la calidad del servicio de los clientes actuales, así como también asegurando la dotación de un servicio eficiente a futuros clientes.

#### 4.4. Discusión

Después de realizar el trabajo de investigación en relación a los estudios anteriormente desarrollados sobre temas afines a la propuesta que respaldan la investigación, podemos concluir lo siguiente:

- Tesis de titulación: "Red de acceso con Fibra Óptica mediante Tecnología FTTX para optimizar espacios y servicios en la Corporación nacional de Telecomunicaciones EP. (Empresa Pública)". (Oviedo, 2011), concluye que "Debido al avance de las telecomunicaciones a nivel mundial y nacional han surgido nuevas tecnologías capaces de proveer a los usuarios nuevos y mejores servicios, siendo las redes FTTX una buena alternativa para acceder a aplicaciones que requieren banda ancha utilizando el cableado de cobre existente, esto gracias a VDSL que también es de última generación."
  - El adjetivo principal de las redes que utilizan tecnología VDSL es reutilizar las redes de cobre existentes con la finalidad de mejorar los servicios en las redes telefónicas, de tal manera que con implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/ FTTC se ha podido comprobar la mejora de los servicios en un promedio del 92.5% con respecto a los parámetros de funcionamiento de las redes telefónicas.
- Tesis de titulación: "Estudio para la implementación de armarios inteligentes en la red telefónica de la Corporación Nacional de Telecomunicaciones E.P. del cantón Azogues para brindar servicio triple play" (Sigüencia & Villacreses, 2011). Este estudio analiza los aspectos técnicos para la instalación de los armarios inteligentes en puntos estratégicos en los diferentes sectores del cantón Azogues, evidenciando la factibilidad de implantación de la tecnología VDSL/FTTX.

Mediante la implementación de la Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/ FTTC se ha evidenciado que se puede dotar de tecnología de última generación a los usuarios, sin necesidad que los costos de la red sean elevados, reutilizando la red de cobre existente y proporcionando calidades optimas de funcionamiento en la red implementada, siendo este el valor agregado del presente trabajo de investigación.

• Tesis de titulación: "Despliegue de las técnicas VDSL2. Evaluación preliminar" (Valarezo, 2013). En este estudio analiza la tecnología VDSL su arquitectura física y lógica, esquemas de las diferentes Redes que pueden trabajar con esta tecnología. Las redes FTTC utilizan la tecnología VDSL como mejor opción para la realizar la implementación de redes de accesos, para mejorar la calidad de servicios en redes de cobre existentes, esta tecnología se acopla fácilmente a todos los tipos de redes de la familia FTTX.

Los trabajos antes mencionados son puramente teóricos los cuales sirvieron de base para la realización de este trabajo de investigación. Se tomó como referencia la Normativa de Diseño y Construcción de Planta Externa vigente en la Corporación Nacional de Telecomunicaciones, la cual detalla los valores máximos y mínimos del conjunto de parámetros eléctricos para el funcionamiento de las redes telefónicas. Para un mejor análisis de los resultados, se ha considerado el nivel de aceptación en las redes medidas antes y después de la implementación, la tabla 8-5 visualiza el porcentaje de aceptación de los parámetros eléctricos medidos, se pudo comprobar que existe una diferencia significativa entre las medidas de los parámetros eléctricos antes y después de la implementación de la red, asegurando un buen funcionamiento de la red telefónica implementada y cumpliendo con la Normativa de Diseño y Construcción de Planta Externa vigente en la Corporación Nacional de Telecomunicaciones.

Tabla 4-6 Valores niveles de aceptación.

| PARÁMETRO  | TECNOLOGÍA | % NIVEL DE     |
|------------|------------|----------------|
| ELÉCTRICO  |            | ACEPTACIÓN     |
| ATENUACION | COBRE      | FUERA DE RANGO |
|            | VDSL       | 91.03          |
| RES_BUCLE  | COBRE      | FUERA DE RANGO |
|            | VDSL       | 91.27          |
| SNR        | COBRE      | 4,76           |
|            | VDSL       | 95.26          |

Fuente: Alba Verónica Ramos Flores, 2019.

### 4.5. Comprobación de la Hipótesis

#### 4.5.1. Hipótesis General

El Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano, optimizara los recursos de la red existente para la mejora de servicios a los usuarios.

### 4.5.2. Demostración de la hipótesis

Para comprobar la hipótesis se utilizaron los datos obtenidos en las mediciones eléctricas de los tres principales parámetros que depende el buen funcionamiento de la red telefónica en las redes de 68 clientes los mismos de la muestra inicial y mediante el programa SPSS se analiza los datos para poder aceptar o rechazar la hipótesis planteada.

Para comprobar el tipo de muestra obtenida en el presente trabajo de investigación se utilizó la prueba de Kolmogorov-Smirnov el cual permite comprobar la normalidad del conjunto de datos medidos, este método se utiliza para muestras grandes es decir n > 50.

### 4.5.2.1. Prueba Kolmogorov-Smirnov

La tabla 4-7, se muestra el resultado de la prueba Kolmogorov-Smirnov que se empleó para verificar los datos, donde el valor de la columna Sig, determina si existe normalidad o no.

Se establece el nivel de significancia  $\alpha = 0.05$ .

Si el valor: Sig.  $> \alpha$  existe normalidad o

Sig.  $< \alpha$  no existe normalidad.

De acuerdo a los parámetros mencionados en la tabla 5-6 se observa que el nivel crítico (Sig.) con todos los parámetros medidos es mayor a cero coma cero cinco (0,05), por ende se establece que todos los datos tienen una distribución normal.

**Tabla 4-7** Prueba de normalidad de datos con Kolmogorov-Smirnov de las muestras medidas

|            | REDES | Kolmogorov-Smirnov |    |      |
|------------|-------|--------------------|----|------|
|            |       | Estadístico        | gl | Sig. |
| ATENUACIÓN | COBRE | ,097               | 68 | ,182 |
|            | VDSL  | ,058               | 68 | ,200 |
| RES_BUCLE  | COBRE | ,097               | 68 | ,182 |
|            | VDSL  | ,058               | 68 | ,200 |
| SNR        | COBRE | ,170               | 68 | ,096 |
|            | VDSL  | ,118               | 68 | ,070 |

Fuente: Alba Verónica Ramos Flores, 2019.

Debido a la distribución normal, se ha utilizado la prueba "t" para muestras relacionadas con la finalidad de comprobar la hipótesis general, definiendo la hipótesis una nula y una hipótesis alternativa:

**H**<sub>0</sub>= El Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano, no optimizara los recursos de la red existente para la mejora de servicios a los usuarios.

**H**<sub>1</sub>= El Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano, optimizara los recursos de la red existente para la mejora de servicios a los usuarios.

#### 4.5.2.2. Prueba "T" Para Muestras Relacionadas

La tabla 4-8, muestra el resumen de la prueba "t" para muestras relacionadas mediante SPSS de las muestras de las pruebas eléctricas de los tres principales parámetros que depende el buen funcionamiento de la red telefónica, en donde el valor de la columna de sig., permitirá determinar si se acepta o no la hipótesis alternativa.

Tabla 4-8 Resultados de la prueba "T" en SPSS

|                     | Media       | t      | gl | Sig. |
|---------------------|-------------|--------|----|------|
| ATEN_CU - ATEN_VDSL | 1014,887855 | 44,331 | 68 | ,000 |
| RB_CU - RB_VDSL     | 54,957826   | 44,331 | 68 | ,000 |
| SNR_CU - SNR_VDSL   | 13,681159   | 21,735 | 68 | ,000 |

Fuente: Alba Verónica Ramos Flores, 2019.

Se realizó el análisis estadístico mediante la comprobación del valor de la columna de significancia.

Donde:

Si el valor Sig. > 0.05 Se acepta la  $H_0$ 

Si el valor Sig. < 0.05 Se acepta la  $H_1$ 

**Entonces:** 

Como 0,000<0,05 se cumple la hipótesis alternativa H<sub>1</sub>

 $H_1$ = El Diseño e Implementación de una Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/FTTX, de la Corporación Nacional de Telecomunicaciones Empresa Pública en Guano, optimizara los recursos de la red existente para la mejora de servicios a los usuarios.

#### **CONCLUSIONES**

Del presente trabajo de investigación se concluye que:

- Pensando en la optimización de recursos y contando con una red telefónica de cobre tradicional existente, donde los parámetros de funcionamiento de la red son deficientes. El objetivo principal de las redes FTTX que utilizan tecnología VDSL, es llegar con altas velocidades de transmisión de datos a distancias que no cubren las redes de cobre actuales, mejorando la calidad de servicio de la población y generando un incremento de usuarios para el proveedor de servicios.
- Dentro de las arquitecturas FTTx, la solución más factible para la implementación de la red, es una red con arquitectura FTTC (Fibra Hasta la Cera o Bordillo), esta reciben su nombre de acuerdo al nivel de cercanía de la fibra a los equipos del usuario. Es la más utilizada en la actualidad debido a que la fibra óptica se emplea desde las instalaciones del proveedor de servicio hasta un armario inteligente y desde este se reutiliza la red de cobre existente que llega al usuario.
- Para evidenciar el mejoramiento del servicio luego de la implementación y puesta en operación de la red, se realizaron mediciones eléctricas de los principales parámetros eléctricos de funcionamiento de una red como son Resistencia de Bucle, Atenuación y SNR. Basándose en los valores establecidos por la Normativa vigente de la CNT EP. para el funcionamiento de redes telefónica, se utilizó la escala de Likert, para obtener el porcentaje de aceptación de la red implementada, teniendo como resultado:
  - Un porcentaje de aceptación del 91.27% con respecto a la Resistencia de Bucle a una distancia de 0.268 Km.
  - Se observa que la atenuación alcanza un valor máximo de aceptación del 91.03% a una distancia de 0.268 Km garantizando el funcionamiento óptimo de la red.
  - Se ha demostrado que la red ha mejorado de manera notoria con un valor máximo de aceptación de SNR del 95.29% lo cual garantiza el funcionamiento óptimo de los servicio de voz y datos.
- Se evidencia mediante las mediciones eléctricas de la Red de Acceso con Fibra Óptica
  utilizando Tecnología VDSL/ FTTC implementada, cumple con todos los requerimientos
  solicitados por la CNT EP., asegurando el funcionamiento óptimo del servicio de voz y
  datos que provee la empresa en el sector del Cisne.

#### RECOMENDACIONES

- La implementación de Red de Acceso con Fibra Óptica utilizando Tecnología VDSL/
  FTTX es una solución económica para las empresas proveedoras de servicio que posean
  redes telefónicas de cobre antiguas y necesiten mejorar el servicio de sus clientes. Se
  recomienda antes de la implementación de cualquier red futura realizar un análisis
  minucioso del estado de la red actual.
- Luego de la implementación de la nueva red se recomienda realizar un estudio de demanda comercial para el incremento de infraestructura de red secundaria ya que la red implementada ofrece escalabilidad y la proveedora se favoreciera con el incremento de los usuarios, y recuperara más pronto la inversión realizada.

# BIBLIOGRAFÍA

- Alvarado, B. (2007). Principios Básicos para la Implementación de VDSL. Universiada Galileo.

  Retrieved from http://biblioteca.galileo.edu/tesario/bitstream/123456789/25/1/TESIS

  VDSL.pdf
- Álvarez, M., Campana, J., Berrocal, F., & González, V. (2009). Tecnólogias de Banda Ancha y Convergencia de Redes. (G. S.A., Ed.) (1ed ed.). Madrid. Retrieved from http://oa.upm.es/2697/2/BERROCAL\_LIBRO\_2009\_01.pdf
- Blanco, A. (2010). Tecnologías de acceso de banda ancha y su integración con ATM. Monografias, 1, 36. Retrieved from http://www.monografias.com/trabajos14/acceso-atm/acceso-atm/2.shtml
- Corporacion Nacional de Telecomunicaciones CNT EP. (2012). Normas Construcción de Planta Externa.
- Corporacion Nacional de Telecomunicaciones CNT EP. (2015). Normativa de Diseño de Planta Externa con Plataformas de Acceso Exterior para Despliegue de Red con Tecnologia VDSL/FTTC.
- González, J., & Vega, I. (2009). Diseño de una Red de Acceso que Utiliza Tecnología FTTB

  Con VDSL2 en el Sector "La Mariscal" de la Ciudad de Quito. ESCUELA

  POLITÉCNICA NACIONAL FACULTAD. Retrieved from

  http://www.epn.edu.ec/institucion/ubicacion-geografica/
- Haros, U. (2011). INFORMATICA II: Requerimientos para Conexion RTB (p. 1). Retrieved from http://urielharos.blogspot.com/2011/05/requerimientos-para-conexion-rtb.html
- Unión Internacional de Telecomunicaciones ITU-T. (2003). G.984.1: Redes ópticas pasivas con capacidad de Gigabits: Características generales. Retrieved from https://www.itu.int/rec/T-REC-G.984.1-200803-I/es
- Marchukov, Y. (2011). Desarrollo de una aplicación gráfica para el diseño de infraestructuras FTTH. UNIVERSIDAD POLITECNICA DE VALENCIA. Retrieved from https://riunet.upv.es/bitstream/handle/10251/13413/memoria.pdf?sequence=1
- Mynor, F., & Ramírez, M. (2011). Consideraciones técnicas de redes de planta externa de cobre para implementación de servicios ADSL. Retrieved from http://biblioteca.usac.edu.gt/tesis/08/08\_0293\_EO.pdf
- Oviedo, J. (2011). Red de Acceso con Fibra Óptica mediante Tecnología FTTX para optimizar espacios y servicios en la Corporación Nacional de Telecomunicaciones EP. (Empresa

- Pública). UNIVERSIDAD TECNICA DE AMBATO. Retrieved from http://repo.uta.edu.ec/bitstream/123456789/441/1/Tesis\_t654ec.pdf
- Prieto, J. (2014). Diseño de una red de acceso mediante fibra óptica. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA. Retrieved from http://oa.upm.es/33869/1/PFC\_jaime\_prieto\_zapardiel.pdf
- Sigüencia, J., & Villacreses, A. (2011). Estudio para la implementación de armarios inteligentes en la red telefónica de la corporación nacional de telecomunicaciones E.P. del cantón Azogues para brindar servicio triple play. Retrieved from
- https://dspace.ups.edu.ec/bitstream/123456789/1082/11/UPS-CT002151.pdf
- Valarezo, J. (2013). Despliegue de las técnicas VDSL2. Evaluación preliminar. Universidad Católica De Santiago De Guayaquil. Retrieved from http://repositorio.ucsg.edu.ec/bitstream/3317/515/1/T-UCSG-POS-MTEL-11.pdf
- Vega, M. (2002). Tecnología Very High Speed Digital. Universidad Nacional De Ingenieria. Retrieved from http://cybertesis.uni.edu.pe/bitstream/uni/11310/1/vega\_sm.pdf

#### **ANEXOS**

#### ANEXO A. NORMATIVA DE REFERENCIA

# NORMATIVA DE DISEÑO DE PLANTA EXTERNA CON PLATAFORMAS DE ACCESO EXTERIOR PARA DESPLIEGUE DE RED CON TECNOLOGÍA VDSL/FTTC

#### 2. CAPITULO 2

#### ASPECTOS GENERALES

#### 2.1 OBJETIVO

Los criterios descritos en este documento tienen como finalidad, establecer la normativa de referencia para el diseño, previo a la construcción de redes de acceso de cobre y la implementación de plataformas de acceso exterior para despliegues de red con tecnología VDSL/FTTC y brindar servicios de Nueva Generación.

#### 2.2 ALCANCE

Esta Norma aplica a toda la Corporación Nacional de Telecomunicaciones CNT EP., en lo concerniente a la implementación de plataformas de acceso exterior, Redes de Acceso por cobre.

Es necesario que la persona que aplica este instructivo tenga conocimientos de Planta externa y de la Norma Técnica de Diseño y Dibujo Geo referenciado de Redes de planta externa de la Corporación Nacional de Telecomunicaciones CNT EP.

#### 3. CAPITULO 3

## DESARROLLO DEL PROCEDIMIENTO

- 3.1 DISEÑO DE PLANTA EXTERNA CON PLATAFORMAS DE ACCESO EXTERIOR
- 3.1.1 ARQUITECTURA DE LA PLANTA EXTERNA
- **3.1.1.1 RED PUNTO A PUNTO (P2P)**

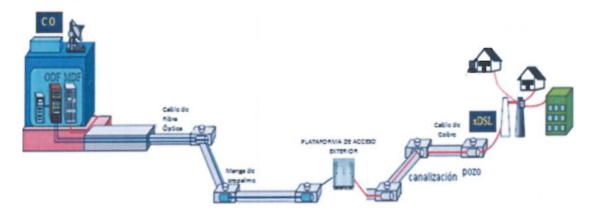



Figura 1. Esquema de Redes Punto a Punto (P2P).

# 3.1.1.2 RED PUNTO A MULTIPUNTO (GPON)

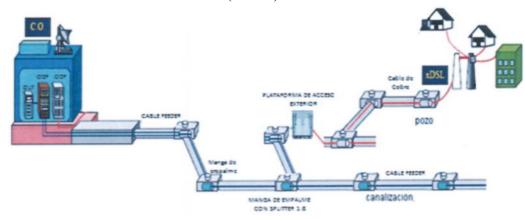



Figura2. Esquema de Redes Punto a Multipunto

#### 3.1.2 GENERALIDADES DE LA PLANTA EXTERNA

Conforma todo el conjunto de elementos que parte del par de hilos de cobre conectados a un equipo terminal, iniciando desde el domicilio y recorriendo la red de dispersión, la red secundaria en forma aérea y subterránea hasta la plataforma de accesos exterior y/o armario de distribución, y del equipo de accesos mediante uno o dos hilos de fibra óptica igualmente aérea o subterránea, hasta la central local o nodo.

#### 3.1.3 ELEMENTOS DE LA RED DE PLANTA EXTERNA

- Red de Dispersión
- Red Secundaria (aérea y subterránea)
- Plataforma de Acceso
- Armario de distribución (Reflejo) según el Escenario
- Fibra Óptica (aérea y subterránea)
- Central Local o Nodo.

#### 3.1.3.1 RED DE DISPERSIÓN

Es un punto de conexión entre la red secundaria y las líneas individuales de cada abonado. Constituye además puntos de corte para labores de operación y mantenimiento.

# 3.1.3.2 RED SECUNDARIA

Medio de interconexión entre el equipo de acceso exterior / armario de distribución y las cajas de dispersión.

#### 3.1.3.3 PLATAFORMA DE ACCESO EXTERIOR

Permite integrar los servicios de telefonía e internet de banda ancha, se conecta a la central telefónica o nodo más cercano por medio de fibra óptica.




Figura3. Plataformas de Acceso

# 3.1.3.4 ARMARIO DE DISTRIBUCIÓN (REFLEJO)

Es el lugar de conexión entre los cables primarios y los cables secundarios por medio de los bloques de conexión de 50 o 100 pares, están ubicados junto a las plataformas de acceso exterior en un determinado punto del distrito y servirá (las regletas primarias) como reflejo de los puertos del MDF del equipo de acceso según el escenario que se proponga.



Figura 4. Plataformas de Acceso

# 3.1.3.5 FIBRA ÓPTICA.

Medio de transmisión entre la central local o nodo y las plataformas de acceso exterior.

#### 3.1.3.6 CENTRAL LOCAL O NODO.

Punto donde llegan las líneas de abonados y permite conectar hacia los equipos de conmutación.

# 3.1.4 CARACTERÍSTICAS DE LOS CABLES Y ACCESORIOS

#### 3.1.4.1 CABLES DE COBRE Y ACCESORIOS.

#### 3.1.4.1.1 CALIBRE

El calibre de los conductores de los cables telefónicos multipar es: 0.4

# 3.1.4.1.1.1 Capacidad.

| Redes Canalizadas                                           | Redes Aéreas            |
|-------------------------------------------------------------|-------------------------|
| 10, 20, 30, 50, 70, 100, 150, 200, 300, 400, 600, 900, 1800 | 10, 20, 30, 50, 70, 100 |

#### 3.1.4.1.1.2 Características Mecánicas.

Para redes subterráneas se usarán cables rellenos con vaselina de petróleo, en lugares donde se tenga presencia prolongada de humedad. Los cables aéreos serán del tipo auto soportado, con mensajero de acero (cables secos).

#### 3.1.4.1.2 SISTEMAS DE PUESTA A TIERRA

Para reducir el nivel de ruido y proteger la red contra descargas eléctricas e interferencias electromagnéticas, se instalará sistemas de puesta a tierra en cada plataforma de acceso y a lo largo de toda la de red secundaria.

En los sistemas de telecomunicaciones las protecciones de puesta o toma a tierra deben cumplir con una resistencia máxima de acuerdo a lo siguiente: Los valores menores a  $3\Omega$  se utilizan en la planta interna (dentro de la central local o nodo de acceso). Para la red de planta externa los valores serán  $10~\Omega$  (Ohmios).

#### 3.1.4.1.4 HERRAJES.

Son accesorios de acero galvanizado cuya principal función es sujetar el cable al poste.

# 3.1.4.1.4.1 Herraje Terminal.

Se denomina comúnmente como herraje Tipo A.

Se lo emplea cuando se tiene una caja de dispersión de 10 o 20 pares.

Cuando el tendido del cable secundario aéreo presente un cambio de trayectoria. En el caso de tener un empalme aéreo.

## 3.1.4.1.4.1 Herraje de Paso.

Se lo denomina como herraje Tipo B.

Se lo emplea cuando se presentan trayectorias rectas.

# 3.1.4.2 CABLES DE FIBRA ÓPTICA Y ACCESORIOS.

Los cables de fibra óptica son en forma general de dos tipos:

- Fibra óptica canalizada: para aplicaciones en canalización existente o proyectada en enlaces rurales, urbanos e interurbanos de acuerdo a diseño.
- Fibra óptica aérea: para aplicaciones en postería existente o proyectada en enlaces rurales, urbanos e interurbanos de acuerdo a diseño.

# 3.1.4.2.1 CABLES DE FIBRA ÓPTICA CANALIZADO.

Se utiliza este tipo de cable en lugares en los que exista canalización o se haya proyectado construirla. La fibra óptica que al momento utiliza la CNT EP para sus enlaces debe cumplir como requerimiento con uno de los siguientes estándares de acuerdo al diseño y las aplicaciones para las que se vaya a construir el enlace:

- ITU-T G.652 "Standard for non-dispersion shifted single-mode fiber".
- ITU-T G.655 "Standard for non-zero, dispersion-shifted single-mode."

# 3.1.4.2.2 CABLES DE FIBRA ÓPTICA AÉREO.

Se utiliza este tipo de cable en lugares en los que exista postería o se haya proyectado la instalación de la misma. La fibra óptica aérea que al momento utiliza la CNT EP para sus enlaces, puede ser de dos tipos:

- ADSS (All-DielectriC Self Suported), con capacidades de 6 a 256 hilos, utiliza preformados para sujeción a los herrajes y que soporta vanos desde 90 hasta 800 metros.
- FIGURA 8, con capacidades de 4 a 96 hilos, cuenta con un mensajero de acero que sirve para sujeción en los herrajes A y B y que soporta vanos de 80 hasta 120 metros como máximo.

Deben cumplir como requerimiento con uno de los siguientes estándares de acuerdo al diseño y las aplicaciones para las que se vaya a construir el enlace:

- ITU-T G.652 "Standard for non-dispersion shifted single-mode fiber".
- ITU-T G.655 "Standard for non-zero, dispersion-shifted single-mode."

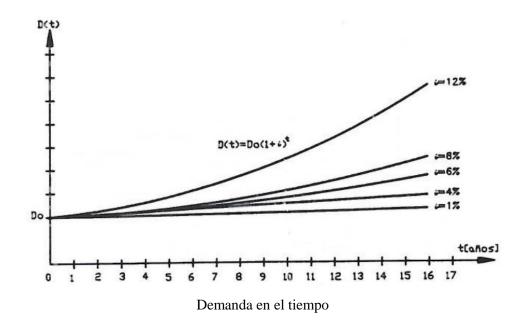
#### 3.1.5 DISEÑO DE PLANTA EXTERNA RED DE COBRE

#### 3.1.5.1 **DEMANDA**

Representa el requerimiento que tienen los posibles abonados, influenciados en la capacidad de adquisición (ARPU).

De esto se fundamenta el desarrollo exitoso de una empresa, mediante la investigación certera de lo que pasará con la demanda de servicio a través de una investigación periódica de campo en cada sector (1).

$$D(t) = Do(1 - i)^{t}$$


$$Do = 1[linea]$$

$$i = 12\%$$

$$t = 10[años]$$

$$D(t) = 1(1 - 0.12)^{10}$$

$$D(t) = 3.1 \approx 3[lineas] //$$



# 3.1.5.3 **DISEÑO**

# 3.1.5.3.1 CONSIDERACIONES GENERALES

# 3.1.5.3.1.1 **Objetivos:**

- Diseñar redes en función del requerimiento y presupuesto.
- Alcanzar la calidad en servicio de transmisión.
- Obtener el máximo rendimiento costo/beneficio.
- Considerar la actividad económica del posible abonado.
- Procurar no causar una extrema alteración en la sociedad como sobrecargar postes con cargas mayores a las permitidas, romper pavimentos o aceras sin un análisis previo, diseñar en sectores que afecten la red por factores naturales (inducciones de alta o baja frecuencia, alto nivel freático, aguas servidas, etc.).
- Considerar instalaciones existentes y su calidad, ejemplo: recorte de redes antiguas, descongestión de redes operando.
- Determinar la ubicación geográfica del posible abonado: vías de comunicación, áreas de influencia, en qué dirección y cómo se desarrollará la población y las construcciones en el área.

#### 3.1.5.3.2 PARÁMETROS A CONSIDERAR DURANTE EL DISEÑO

#### 3.1.5.3.2.1 Plan Fundamental de Transmisión

El Plan Fundamental de Transmisión define el límite dentro del cual se puede garantizar un servicio de telecomunicaciones a través de la red de cobre, y está en

función de los parámetros eléctricos de la misma, por tanto, dependiendo de los servicios a brindar se deberá respetar la resistencia de bucle de los cables.

Con el propósito de garantizar la calidad de los diferentes servicios a ser ofrecidos a través de tecnologías ADSL/VDSL las mismas que nos permitirá asegurar un servicio hacia el usuario, es indispensable que el diseño de una red de cobre no debe sobrepasar un radio de 800 metros a I Km entre la plataforma de acceso exterior y la caja de dispersión más lejana.

#### 3.1.5.3.3 SECUENCIA A SEGUIR EN EL DISEÑO

Un diseño de planta externa debe seguir la siguiente secuencia:

- Censo
- Diseño de la red de dispersión
- Diseño de la red secundaria
- Rediseño de la red secundaria existente
- Diseño de interconexión (red primaria)
- Diseño de la red de fibra óptica
- Diseño de la canalización y subidas (Obra Civil).
- Memoria técnica y volúmenes de obra.
- Planos (Información en papel e información magnética).

# 3.1.5.3.3.1 CENSO

Para realizar esta actividad, primero debemos recabar la planimetría georefenciada del área objeto del diseño mediante fuentes confiables: IGM, INEC, Municipios, consejos cantonales entre otros.

Posteriormente procedemos a actualizar la planimetría en el campo recorriendo de calle en calle y de inmueble en inmueble, ubicando nombres de calles o avenidas, aprovechando la labor de campo para ubicar puntos referenciales relevantes como: el norte, escuelas, oficinas públicas, ríos, quebradas, etc. Y todos aquellos puntos de orientación que ayuden al futuro constructor a ubicarse fácilmente en el terreno. Este procedimiento nos generará un plano de censo de abonados.

#### 3.1.5.3.3.2 DISEÑO DE LA RED DE DISPERSIÓN.

Es la caja de dispersión con sus cables bifilares salientes, la cantidad de abonados a servirse de una caja, conforma el área de dispersión, el conjunto de todas estas áreas forma la RED DE DISPERSIÓN.

Cada caja puede ser de 10 y 20 pares o las existentes en el mercado, homologadas por la Corporación Nacional de Telecomunicaciones CNT E.P. Por efectos de mantenimiento, seguridad y estética, la longitud máxima de una línea de abonado no podrá exceder de:

- 50 metros en Zona Urbana.
- 150 metros en Zona Rural.

No se instalará desde una misma caja de dispersión ni en la misma dirección, más de 6 líneas de abonado, si este es el caso, se deberá instalar una nueva caja de dispersión tratando de conservar siempre una distribución radial y uniforme alrededor de la caja.

No se deberá cruzar una vía principal o carretera de alto tráfico con cables de acometida, en este caso se deberá instalar un cable secundario aéreo o subterráneo y habilitar una caja de dispersión.

Cuando esté listo el censo, se deberán dibujar los perímetros de las áreas de dispersión calculadas por caja, ubicándola en lo posible en un poste sin transformador o pared. Procurar que los limites pase por los ejes de avenidas y calles a fin de evitar que los cables de dispersión atraviesen transversalmente las vías.

Una vez que se han estructurado los pequeños paquetes de áreas de dispersión, se los agrupa en grandes paquetes llamados distritos, procurando que tengan forma rectangular. Si un distrito contiene 40 áreas de dispersión y cada caja tiene una capacidad de 10 pares, entonces la capacidad de pares secundarios es 400; si contiene 35 áreas, la capacidad secundaria es 350, etc.

Es decir, habrá tantos distritos cuantos grandes paquetes de áreas de dispersión se haya agrupado.

#### 3.1.5.3.3.3 DISEÑO DE LA RED SECUNDARIA.

Son los cables de baja capacidad desde 10 a 200 pares que salen de las plataformas de acceso exterior o armarios de distribución de cada distrito, para alimentar las cajas de dispersión. El área de cobertura de la red secundaria es igual al área de cobertura de la red de dispersión. La suma de estos dos conforma el llamado DISTRITO.

La plataforma de acceso de preferencia, será ubicada en el centro geográfico o centro poblacional del área de cobertura del distrito en un sitio óptimo para un fácil mantenimiento, preferiblemente esquinero, como se muestra en la Figura 15-2.

Las capacidades de cada uno de los distritos de red secundaria diseñados, estarán determinados por las capacidades de equipos de acceso exterior que posee la CNT EP., (indicados en los cuadros 1 y 2), procurando siempre que estas redes, no excedan la distancia de 800 metros entre el equipo de acceso y la caja de dispersión más alejada.

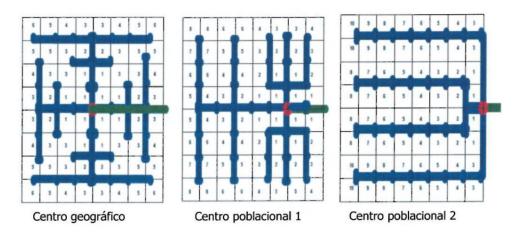



Figura12. Esquema de Red Secundaria

Descripción:

Verde: Dirección del cable del enlace de fibra óptica

Rojo: Plataforma de acceso

Azul: Despliegue de la red secundaria máximo 800 m.

Una vez que las cajas han sido ubicadas en el diseño de la red de dispersión, se procede a unirlas por medio de cables con la adecuada capacidad, aéreos o canalizados según su forma de instalación. En forma descriptiva, para generar un plano llamado RED SECUNDARIA (Ver Anexo 3) y en forma eléctrica, para generar un plano llamado ESQUEMA DE EMPALMES.

#### 3.1.5.3.3.4 REDISEÑO DE LA RED SECUNDARIA EXISTENTE.

Cuando se intervenga con plataformas de acceso en redes secundarias existentes, los equipos de acceso exterior se colocarán junto a los armarios de distribución existentes de cada uno de los distritos de red secundaria. El rediseño de esta red existente, estará condicionada a la capacidad de los equipos de acceso de la CNT EP., es decir, si la capacidad de red secundaria existente, está dentro de los límites de la capacidad de los equipos de acceso.

En el caso de que las redes secundarias existentes excedan las capacidades de los equipos de acceso, se procederá a realizar un rediseño del distrito, subdividiendo el mismo en dos o más distritos, hasta que tengamos redes acordes a las capacidades de los equipos de acceso. Al subdividir distritos, se procurará reutilizar los cables y series completas de las redes existentes operativas.

Es necesario previo al rediseño, realizar un inventario o levantamiento total de la red existente, de manera que no quede caja de dispersión, cable, acometida, reserva etc., sin ser intervenida. El dimensionamiento y el tipo de tarjeta a ser utilizado en las plataformas de acceso exterior, dependerá de la revisión de la demanda Comercial en coordinación con la Gerencia de Ingeniería.

Los diseños serán presentados de acuerdo a las normas técnicas de diseño y dibujo de redes de Telecomunicaciones con cobre vigentes.

#### 3.1.5.3.3.4.2 Cables en la Red Secundaria

Se denomina cable de distribución y es el que une un armario de distribución con una caja de dispersión. Este tipo de cable pertenece a la red secundaria por Io tanto se lo denomina cable secundario. Las capacidades de los cables para la red secundaria serán:

- Para cables canalizados no podrá exceder de 200 pares en 0.4 mm.
- Para cables aéreos no podrá exceder de 100 pares en 0.4 mm.
- Para cables murales no podrá exceder de 100 pares en 0.4 mm.

#### 3.1.5.3.3.4.7 Descongestiones.

Con frecuencia se da en los diseños el reemplazo de una red existente por una nueva por Io que se debe tomar las siguientes consideraciones:

- Hacer un levantamiento total de los cables secundarios existentes y de las cajas con su nomenclatura de cada uno de los distritos a desmontar.
- Verificar el estado eléctrico y mecánico de las instalaciones existentes, y su tiempo de vida.

- Los límites de un distrito formarán sólo un perímetro cerrado, identificando los distritos colindantes.
- > 3.1.5.3.3.5 ESQUEMÁTICOS DE CONEXIÓN ENTRE PLATAFORMAS OUTDOOR Y ARMARIOS DE PLANTA EXTERNA.

En general se cuentan con dos escenarios:

- Sitios nuevos atendidos desde una plataforma y que se diseñe la Planta Externa con cobre
- Sitios existentes donde se considere realizar reducción de bucle.
- **ESCENARIO: SITIOS NUEVOS**

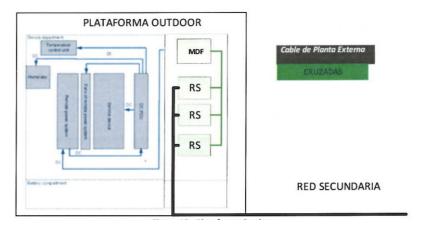



Figura 19. Plataforma Outdoor

> ESCENARIO: SITIOS EXISTENTES PARA REDUCCIÓN DE BUCLE DE ABONADO

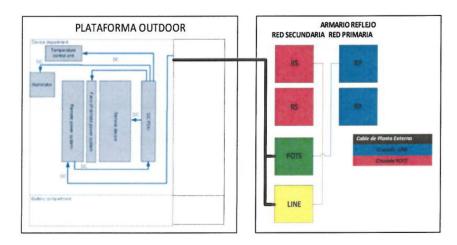



Figura 20 Plataforma Outdoor con Armario Reflejo

# 3.1.5.3.3.5 DISEÑO DE LA RED DE FIBRA ÓPTICA (ENLACE).

El diseño de un enlace de fibra óptica es el resultado del análisis de diferentes alternativas existentes como medio de transmisión, permitiendo la comunicación entre los sitios a enlazar (localidades, nodos, centrales, estaciones, etc.).

El desarrollo de un diseño de enlace de fibra óptica para redes de Planta Externa deberá ser analizado, y considerar los siguientes aspectos:

- Atenuación del enlace
- Impacto ambiental
- Tipo de cable
- Tipo de fibra óptica
- Conectores ópticos
- Empalmes

Existen otros parámetros, los cuales serán determinados por otras áreas técnicas (Energía, Conmutación, Infraestructura, entre otras) o definidos de acuerdo a las características técnicas de los materiales y equipos, lo que brindará una valiosa información durante las etapas de diseño y construcción.

#### *3.1.5.3.3.5.1 FACTORES QUE INTERVIENEN EN UN ENLACE.*

Los factores que se debe considerar para establecer un enlace de fibra óptica son:

- Pérdidas totales del enlace.
- Ancho de banda del enlace.

El ancho de banda dependerá de las características de la fibra y la longitud del enlace. A mayor longitud decrece el ancho de banda. En algunos casos el fabricante del equipo óptico establece el ancho de banda que puede soportar un enlace considerando las distancias y el tipo de fibra óptica, lo cual facilitará la determinación del diseño.

Generalmente los enlaces de interconexión Central — Nodo a nivel de ciudad, utilizan cables de fibra óptica monomodo bajo la recomendación ITU G.652 y ITU G.655.Para enlaces troncales o requerimientos de mejoramiento del medio de transmisión (tecnología DWDM) se necesitará un mejor comportamiento de la fibra ante la atenuación por lo que se recomienda la utilización de la fibra monomodo bajo la recomendación ITU - G.655.La realización de un análisis de las pérdidas por atenuación en el enlace diseñado, permitirá manejar un criterio técnico durante el proceso de recepción de los enlaces construidos.

#### 3.1.5.3.3.5.2 CONFIGURACIONES PARA REDES DE FIBRA ÓPTICA.

Las redes de fibra óptica para planta externa pueden presentar las siguientes configuraciones:

- Punto a multipunto (GPON)
- Punto a punto
- Anillo
- Malla

Las configuraciones a utilizarse para la interconexión entre la central local o nodo con las plataformas de acceso exterior, serán los enlaces de fibra óptica punto a multipunto (GPON) y los enlaces de fibra óptica punto a punto. (P2P).

# 3.1.5.3.3.5.2.1 ENLACE DE FIBRA ÓPTICA PUNTO A MULTIPUNTO (GPON)

Es el cable troncal de fibra óptica (Feeder) que sale de la Central local o Nodo para alimentar a los distritos conformados por plataformas de acceso que independientemente, o junto a los armarios de distribución proyectados o existentes, conformará los llamados distritos (red de cobre).

Una vez que las plataformas de acceso han sido ubicadas en el diseño (distritos de red secundaria) se procede a unirlos por medio de cables de fibra óptica de adecuada capacidad los cuales interconectaran la salida de un splitter 1: 8 con el puerto uplink del equipo de acceso. Los buffer a utilizar serán el 22 de un cable de 288 h y los penúltimos buffer de los cables de menor capacidad.

El splitter será colocado en una manga existente o proyectada del cable troncal (Feeder) desplegado en el sector o cercano al mismo. La atenuación máxima de la red no debe superar los 28 dB, para el diseño en la CNT EP se consideran 3 dB de margen de seguridad, por lo cual todos los diseños con esta configuración deben tener máximo 25 dB de pérdida en el cálculo del Link Budget de la ODN.

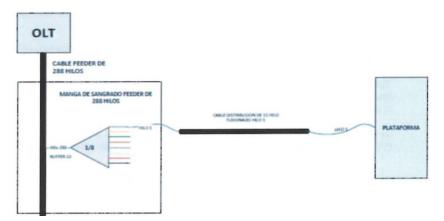



Figura 21. Enlace de Fibra Punto Multipunto

# 3.1.5.3.3.5.2.2 ENLACE DE FIBRA ÓPTICA PUNTO A PUNTO (P2P)

Es el cable de fibra óptica de capacidad adecuada que sale de la central o nodo para alimentar a los distritos conformados por plataformas de acceso que independientemente o junto a los armarios de distribución proyectados o existentes, conformarán los llamados distritos (red de cobre). Una vez que las plataformas de acceso han sido ubicadas en el diseño (distritos red secundaria), se procede a unirlos por medio de cables de fibra óptica de adecuada capacidad tomando en cuenta que es necesario 2 (dos) hilos de FO para el uplink de cada una de las plataformas de acceso.

En cuanto a los empalmes (derivaciones) diseñados, se mantendrá el mismo criterio de sangrado utilizados en la red GPON, las mangas que protegen estos empalmes nos permiten trabajar hasta con 6 cables de entrada o salida debido a los 6 orificios que contienen las mismas.

En la central local o nodo, el cable de fibra óptica estará parqueado en un ODF que nos permita interconectar mediante patchcord al equipo MPLS, como muestra la Figura 22.

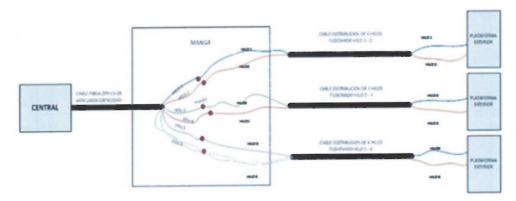



Figura 22 Enlace de Fibra Punto a Punto.

Una vez que las plataformas de acceso exteriores junto a los armarios de distribución han sido ubicadas en el diseño según los casos indicados anteriormente, se procederá a generar en forma descriptiva un plano llamado ENRUTAMIENTO DE ENLACE DE FIBRA ÓPTICA, y en forma eléctrica un plano llamado ESQUEMA DE ENLACE DE FIBRA ÓPTICA

Los enlaces serán diseñados de acuerdo a las normas técnicas de diseño y dibujo de redes de Telecomunicaciones con fibra óptica vigentes.

# 3.1.5.3.3.5.2.3 PROCEDIMIENTO DE DISEÑO

La codificación para la identificación de los equipos de acceso serán en base a un nombre que puede ser el del sector en donde se diseñe el distrito, acompañados de tres dígitos que corresponderán al número mismo del equipo de acceso, esta numeración será de forma ascendente desde la plataforma de acceso más cercana a la central local o nodo hacia la periferia. Es decir, los distritos próximos a la central tienen la numeración más baja. Procurar que la fibra óptica sea canalizada, salvo que no lo permitan la topografía del terreno, la configuración de calles o carreteras, o las ordenanzas locales.

Para las redes de fibra óptica aéreas se deben cumplir los criterios dados para las redes secundarías aéreas en cuanto a tierras, herrajes y capacidad de cables aéreos permitidos. Se debe proyectar una tierra en cada plataforma de accesos. Se debe evitar el tendido de cable en cruce de vías concesionadas, si no es posible se puede encontrar una solución enterrando el cable empleando el sistema de TOPO.

Cuando se remplace la red primaria existente por cable de fibra óptica, el diseñador realizará el levantamiento total la red primaria a fin de que todo sea descongestionado. Para reducir el nivel de ruido y proteger la red contra descargas eléctricas e interferencias electromagnéticas, se instalará sistemas de puesta a tierra en cada plataforma de acceso y a lo largo de toda la de red secundaria.

# 3.1.5.3.3.5.2.4 LONGITUD DEL CABLE DE FIBRA ÓPTICA

La longitud total del cable de fibra óptica proyectado, es el resultado de la siguiente sumatoria: distancia longitudinal de ODF a ODF es decir:

- Las distancias establecidas de poste a poste
- La distancia longitudinal de pozo a pozo (distancia de eje a eje) Las subidas a poste

- La longitud total de acceso en el túnel y/o cárcamo hasta el Rack del ODF en cada estación
- Reservas de cable:
  - 0 30 m en cada estación,
  - 0 30 m por cada empalme en POZO
  - 15 m (en cada extremo de cable) por cada empalme en poste.
  - 0 30 m. por cada 500 m de longitud a lo largo del enlace, en lugares de demanda y alto riesgo como cruces de carreteras.

Al resultado de la sumatoria total del cable, se adicionará el 5% debido a la catenaria y senos correspondientes.

# 3.1.5.3.3.6 DISEÑO DE CANALIZACIÓN Y SUBIDAS (OBRA CIVIL)

Existe una infraestructura civil (pozos, canalización) que conecta la central local o nodo con las plataformas de acceso y armarios de distribución y estos con las cajas de dispersión, posibilitando la instalación de cables de fibra óptica y cobre de mediana y baja capacidad, a fin de salvar obstáculos como gradas, puentes, quebradas, ríos, etc. formando lo que se llama la CANALIZACIÓN.

Los tramos de canalización se interconectan por medio de pozos (cámaras), en forma descriptiva mediante la ampliación de detalles, para generar un plano llamado CANALIZACION Y SUBIDAS. La infraestructura civil será diseñada de acuerdo a las normas técnicas de diseño y dibujo de canalización telefónica vigentes

#### 3.1.5.3.3.6.1 PEDESTAL PARA LA PLATAFORMA DE ACCESO

Es la base hueca de hormigón armado de h= 1.0 m, pie de 0.50 y 0.14 m., de espesor, para equipos HUAWEI SIOO, S200, S300, con la diferencia de ancho y largo que presenta cada uno de estos equipos. La construcción de la base o pedestal, debe incluir el acceso al pozo, el tubo para el medidor, y la tierra para la plataforma.

El acceso al pozo ubicado junto a la base o pedestal, se Io realizará mediante 4 tubos PVC de 4" desde la boquilla del pozo a la cavidad ubicada en el lado inferior derecha de la base de hormigón. El tubo en donde se alojará el medidor de energía para el equipo de acceso, puede ser colocado al lado izquierdo o derecho de la base hueca de hormigón para las plataformas SIOO Y S200, dependiendo de la ubicación del poste de la empresa eléctrica desde donde se tomará la energía para el funcionamiento del equipo.

Considerando que la plataforma S300 tiene una puerta lateral (a su derecha vista desde el frente), se puede ubicar el tubo para el medidor al lado izquierdo de la base de acuerdo al siguiente esquema. Figura 23

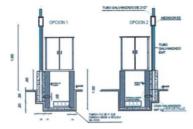
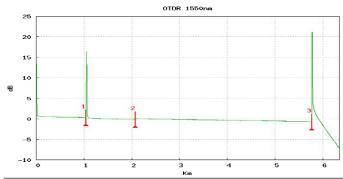



Figura 23. Base para instalación del Armario Inteligente.

# ANEXO B. PRUEBAS DE MEDICIÓN DE FIBRA ÓPTICA.

VIAVI


Cable Id: msan el cisne-nodo unach
Location A: msan

Fiber Id: G652 27
Location B: nodo unach

Job ld :

Technician Id:

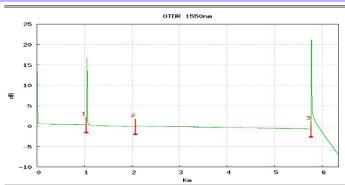
| MTS 4000 (S/N 25918) |          | 4126 l       | _A (S/N 10002 | )         |       |                   |             |
|----------------------|----------|--------------|---------------|-----------|-------|-------------------|-------------|
| Setup                |          |              |               |           |       |                   |             |
| OTDR                 | 1550nm   | n 60ns       | 10km          | 64cm      | 20.0s | 1.47109           | -81.0 dB    |
| Alarms               |          |              |               |           |       |                   |             |
| Thresholds           |          |              | None          |           |       |                   |             |
| Summary              |          |              |               |           |       |                   |             |
| Filename             | Laser nm | Link Loss dB | Link Orl dB   | Fiber End | l Km  | Direction         | Event Alarm |
| .sor                 | 1550     | 1.248        | 30.12         | 5.769     | ) ms  | san -> nodo unach |             |



| Even | t              | Distance | Loss   | Reflect. | Slope | Section | T. Loss |
|------|----------------|----------|--------|----------|-------|---------|---------|
|      |                | Km       | dB     | dB       | dB/km | Km      | dB      |
| 1    | -2:3-          | 1.048    | 0.200  | -31.18   | 0.213 | 1.048   | 0.225   |
| 2    | -              | 2.081    | -0.178 |          | 0.296 | 1.033   | 0.731   |
| 3    | <b>=</b> 00€)- | 5.769    |        | >-19.55  | 0.188 | 3.687   | 1.248   |

# Mediciones en el Hilo 1

VIAVI


Cable Id: msan el cisne-nodo unach Location A: msan

isne-nodo unach Fiber Id : G652 28
Location B : nodo unach

Job ld :

Technician Id:

| MTS 4000 (S/N 25918)    |                  | 4126 I                | A (S/N 10002         | )                  |       |                                 |         |      |
|-------------------------|------------------|-----------------------|----------------------|--------------------|-------|---------------------------------|---------|------|
| Setup<br>OTDR<br>Alarms | 1550nn           | n 60ns                | 10km                 | 64cm               | 20.0s | 1.47109                         | -81.0 d | В    |
| Thresholds              |                  |                       | None                 |                    |       |                                 |         |      |
| Summary                 |                  |                       |                      |                    |       |                                 |         |      |
| Filename<br>.sor        | Laser nm<br>1550 | Link Loss dB<br>1.233 | Link Orl dB<br>29.56 | Fiber End<br>5.769 |       | Direction<br>msan -> nodo unach | Event A | larm |



| Even | t             | Distance | Loss   | Reflect. | Slope | Section | T. Loss |
|------|---------------|----------|--------|----------|-------|---------|---------|
|      |               | Km       | dB     | dB       | dB/km | Km      | dB      |
| 1    | -5;3-         | 1.048    | 0.112  | -30.43   | 0.214 | 1.048   | 0.226   |
| 2    | -             | 2.077    | -0.150 |          | 0.340 | 1.028   | 0.688   |
| 3    | •0 <b>⊙</b> - | 5.769    |        | >-19.56  | 0.188 | 3.692   | 1.233   |

# ANEXO C. FOTOGRAFÍAS DE LA IMPLEMENTACIÓN

# NODO UNACH



**ODF UNACH** 





# **COBERTURA DEL SERVICIO**



RECORRIDO DE LA RED DE FIBRA



RED SECUNDARIA



UBICACIÓN DEL EQUIPO DE ACCESO DE PLATAFORMA EXTERIOR Y

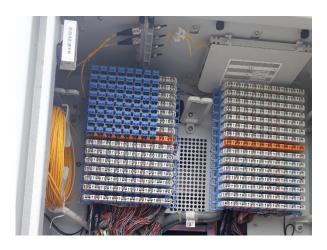


ARMARIO REFLEJO

EQUIPO DE ACCESO DE PLATAFORMA






ARMARIO REFLEJO

ANTES DESPUÉS





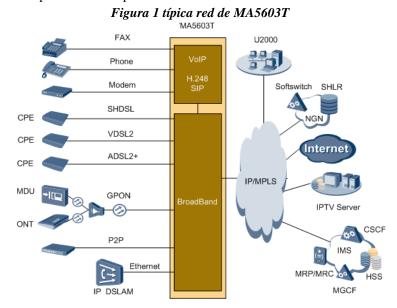
# EQUIPO DE ACCESO DE PLATAFORMA



POST-LINE (RED PRIMARIA)

### ANEXO D. MÓDULO DE ACCESO MULTI-SERVICIO SMARTAX MA5603T

El smartax ma5603t es un módulo de acceso multi-Servicio lanzado por Huawei.

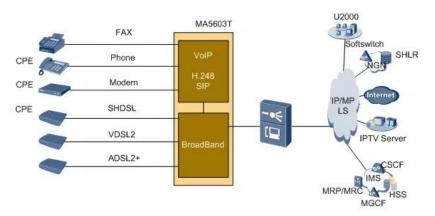

#### MA5603T posicionamiento

El sistema de acceso integrado de cobre óptico, proporciona los servicios integrados de acceso óptico de banda ancha y de banda estrecha y servicios de acceso óptico FTTx que cuentan con una alta velocidad, alto ancho de banda, y alta calidad. Puede funcionar como Olt, msan o IP DSLAM. El ma5603t es un dispositivo de capacidad media.

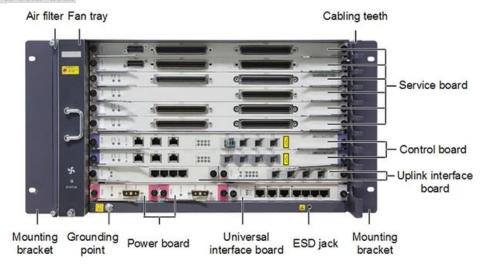
- Admite el Servicio de Acceso GPON/GPON de 10g. Todos los tres pueden funcionar como terminal de línea óptica (OLT) en el sistema GPON, trabajar con la terminal de red óptica (ONT) u otras unidades de red óptica (responsabilidad).
- Apoya el punto a punto (P2P) acceso óptico Fe/GE y proporciona a los usuarios el acceso P2P FTTH cooperando con el ONT.
- Proporciona la solución de servicio de voz basada en el Protocolo de inicio de sesión (SIP) y H.248, soporta el puerto ollas para implementar el servicio de voz, servicio de fax, servicio de módem de banda estrecha, y varios servicios complementarios.
- Proporciona el servicio de línea privada E1/n \* 64 k a través de la placa TDM SHDSL. Y h802edtb Board apoya la función TDM SHDSL.
- Admite servicios de acceso de banda ancha como ADSL2 +, VDSL2 y SHDSL, mejorando la función xDSL.

En la dirección ascendente, el dispositivo está conectado generalmente a la red IP/MPLS a través del Ethernet (GE/10GE) puerto.

La figura 1 muestra la posición del dispositivo en una red.




CPE: equipo de premisa del cliente MDU: Unidad multivivienda
Terminal de red óptica P2P: Punto a Punto
Modo de transferencia síncrono VoIP: Voz sobre IP
NGN: Red de próxima generación Sistema de redes de núcleo multimedia IP


#### MA5603T posicionamiento

Además, el ma5603t también puede ser trasladado a otros OLT en la dirección ascendente en el modo GPON, funcionamiento como ONU en la red.

Figura 2 red típica del ma5603t (funcionamiento como ONU)



# Imágenes detalladas



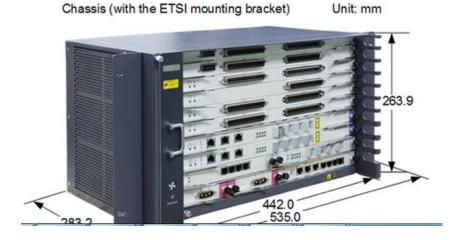


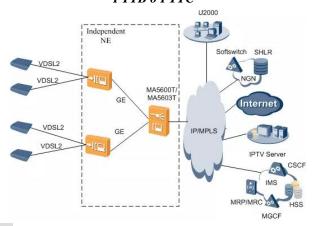

Figura 1 diseño del chasis

|      | 0               | Service b     | oard |      |  |  |  |  |
|------|-----------------|---------------|------|------|--|--|--|--|
|      | 1               | Service b     | oard |      |  |  |  |  |
|      | 2               | Service b     | oard |      |  |  |  |  |
|      | 3               | Service board |      |      |  |  |  |  |
| FANI | 4 Service board |               |      |      |  |  |  |  |
| FAN  | 5 Service board |               |      |      |  |  |  |  |
|      | 6 Control board |               |      |      |  |  |  |  |
|      | 7               | Control b     | oard |      |  |  |  |  |
|      | 8 G             | IU            | 9    | GIU  |  |  |  |  |
|      | 10 Powe         | 11Power       | 12   | GPIO |  |  |  |  |

#### CARACTERÍSTICAS

#### Convergencia

La ma5603t cuenta con una potente capacidad de acceso y convergencia. En la dirección descendente, soporta en cascada a otros dispositivos a través del puerto GE o 10GE. En la dirección ascendente, es compatible con la red IP/MPLS a través del puerto GE o 10GE. También admite doble dirección al sujetadores a través de la conexión directa.


Figura 1 aplicación de red de convergencia

Rendimiento y capacidad muestra la capacidad de conmutación del backplane, la capacidad de conmutación de los tableros de control y los puertos 10GE/GE en cascada de los ma5603t.

## Gestión centrada para los subracks remotos de GE en los escenarios FTTB o FTTC

La ma5603t apoya la gestión centrada para los subrácks remotos GE en los escenarios FTTB o FTTC para que la red ofrece una mayor escalabilidad. La característica de subrack ampliada de GE utiliza nuevas tecnologías como VDSL2 y vectoring en la red de línea de cobre para implemente ultra redes de banda ancha de manera más práctica y rápida.

Figura 2 ma5603t red típica para la gestión centrada para los subrácks remotos GE en los escenarios FTTB o FTTC



#### Información de la empresa

Tecnología de la información., Que proporciona los servicios principales en términos de Industrias de comunicaciones y tecnología de la banda ancha, es una investigación y Desarrollo, producción, ventas, integración de servicios, empresas de alta tecnología. Nuestros productos Cubre principalmente la transmisión y el acceso de señales ópticas, transmisión de señales y acceso, Conversión de señal fotoeléctrica y señal fotoeléctrica, etc.

Chucheng es el agente de las conocidas marcas internacionales como Huawei, ZTE,Los clientes incluyen las principales compañías nacionales de telecomunicaciones, comoComo radio y televisión, electricidad, minería y otros usuarios profesionales de la industria. NosHa estado creciendo activamente en los mercados extranjeros. Los productos se exportan a Europa,Estados Unidos, Asia sudoriental, Oriente Medio, Japón, Corea y otros países vecinos.

# ANEXO E. CONFIGURACIÓN DEL EQUIPO ACCESO DE PLATAFORMA EXTERIOR

MA5603T(config-if-giu-0/8)#Quit MA5603T(config)#display electro-switch Index Current location-0 location-1 0 location-0 0/7 0/81 location-1 VOIP 0/9/-Total: 2 MA5603T(config)#electro-switch 0 location-1 Failure: the data has not been saved, please save data before you set electronic switch MA5603T(config)#save { <cr>|configuration<K>|data<K> }: Command: save MA5603T(config)# It will take several minutes to save configuration file, please wait... MA5603T(config)# Configuration file has been saved to active board successfully, and then system will duplicate it to the standby board MA5603T(config)# Note: The duplicated configuration file in 0 frame 6 slot takes effect after being activated MA5603T(config)# The data is being saved, please wait a moment... MA5603T(config)# MA5603T(config)# 1 [2017-05-16 22:46:06+08:00]: The percentage of saved data on 7 slot's control board is: 21% MA5603T(config)# 1 [2017-05-16 22:46:06+08:00]:The percentage of saved data on 6 slot's control board is: 18% MA5603T(config)# 1 [2017-05-16 22:46:09+08:00]:The percentage of saved data on 7 slot's control board is: 27% MA5603T(config)# 1 [2017-05-16 22:46:09+08:00]:The percentage of saved data on 6 slot's control board is: 24% MA5603T(config)# 1 [2017-05-16 22:46:12+08:00]:The percentage of saved data on 7 slot's control board is: 33% MA5603T(config)# 1 [2017-05-16 22:46:12+08:00]:The percentage of saved data on 6 slot's control board is: 30% MA5603T(config)# 1 [2017-05-16 22:46:15+08:00]:The percentage of saved data on 7 slot's control board is: 39% MA5603T(config)# 1 [2017-05-16 22:46:33+08:00]: The percentage of saved data on 6 slot's control board is: 63% MA5603T(config)# MA5603T(config)# 1 [2017-05-16 22:46:35+08:00]:The data of 7 slot's control board is saved completely MA5603T(config)# 1 [2017-05-16 22:46:35+08:00]:The data of 6 slot's control board is saved completely MA5603T(config)# MA5603T(config)#save electro-switch 0 location-1 Set electronic switch will automatically save data and reboot system, are you sure to make the operation? (y/n)[n]:y MA5603T(config)# It will take several minutes to save configuration file, please wait... MA5603T(config)# Configuration file has been saved to active board successfully, and then system will duplicate it to the standby board MA5603T(config)# Note: The duplicated configuration file in 0 frame 6 slot takes effect after being activated MA5603T(config)# 1 [2017-05-16 22:47:14+08:00]:The percentage of saved data on 7 slot's control board is: 66% MA5603T(config)# 1 [2017-05-16 22:47:14+08:00]: The percentage of saved data on 6 slot's control board is: 63% MA5603T(config)# 1 [2017-05-16 22:47:17+08:00]:The percentage of saved data on 7 slot's control board is: 72% MA5603T(config)# 1 [2017-05-16 22:47:17+08:00]:The percentage of saved data on 6 slot's control board is: 69% MA5603T(config)#

1 [2017-05-16 22:47:18+08:00]: The data of 7 slot's control board is saved

completely

```
MA5603T(config)#
1 [2017-05-16 22:47:18+08:00]: The data of 6 slot's control board is saved
completely
MA5603T(config)#
Platform System start ...
Press 'Ctrl+T' to stop auto-boot
Memory Data Bus Test .....pass.
Memory Address Bus Test .....pass.
Trace code: 0x00000000
Copy from ROM to RAM
                            ..... OK!
Uncompress from ROM to RAM ..... OK!
Copyright (c) 1998 - 2014 by Huawei Technologies Co.,Ltd.
All Rights Reserved.
The last update date of base BIOS A is: Oct 15 2014 10:48:33
BOARD INFORMATION:
 CPU: MPC8349 ADS. Processor #0.(Rev 3.00) running at 528Mhz
 512M bytes DDR(ECC), 128M bytes flash installed on board
 Baudrate of serial channel is 9600bps
 Board's LAN IP address is 10.11.104.2
 Board's LAN Subnet mask is 255.255.255.0
 Board's LAN MAC address is 90:03:25:17:7B:FD
Base BIOS version is 310
Save extended BIOS disable start flag...OK!
Transferring control to the extended BIOS ...OK!
The last update date of extended BIOS is : Jan 19 2015 21:26:03
System is booting from extended BIOS...
Extended BIOS version is 315
Press <D> key to stop auto-boot 3 2 1 0
Now system will boot from flash memory.
Testing Flash memory...OK!
Select area information: Program Area A, Data Area A.
Begin to expand program... OK!
Save extended BIOS enable start flag...OK!
Transferring control to the loaded program...OK!
Starting system application init.....successfully!
Starting system configuration data init...successfully!
Load Voip Fpga.....OK!
Press any key to get started
>>User name:
Username timeout expired
>>User name:root
>>User password:
Huawei Integrated Access Software (MA5603T).
Copyright(C) Huawei Technologies Co., Ltd. 2002-2014. All rights reserved.
MA5603T>
 Warning: Using the default user password is not recommended. Please change the password.
MA5603T>root
 % Unknown command, the error locates at '^'
MA5603T>admin
 \% Unknown command, the error locates at '^'
MA5603T>
MA5603T>ene able
MA5603T#config
MA5603T(config)#config config enable
                                              electro-switch 1 location-0
System is in batch backup or data smooth or configuration recover, there will be no response to your command
MA5603T(config)#electro-switch 1 location-0
System is in batch backup or data smooth or configuration recover, there will be no response to your command
MA5603T(config)#electro-switch 1 location-0
System is in batch backup or data smooth or configuration recover, there will be no response to your command
MA5603T(config)#electro-switch 1 location-0
Failure: the data has not been saved, please save data before you set
electronic switch
MA5603T(config)#save
{ <cr>|configuration<K>|data<K> }:
 Command:
     save
MA5603T(config)#
It will take several minutes to save configuration file, please wait...
MA5603T(config)#
Configuration file has been saved to active board successfully, and then
system will duplicate it to the standby board
```

MA5603T(config)#

Note: The duplicated configuration file in 0 frame 6 slot takes effect after being activated

MA5603T(config)#

The data is being saved, please wait a moment...

MA5603T(config)#

MA5603T(config)#

1 [2017-05-16  $\tilde{2}2:57:35+08:00$ ]:The percentage of saved data on 7 slot's control board is: 21% MA5603T(config)#

1 [2017-05-16  $\tilde{2}2:57:35+08:00$ ]:The percentage of saved data on 6 slot's control board is: 18% MA5603T(config)#

1 [2017-05-16  $\overset{.}{2}$ 2:57:38+08:00]:The percentage of saved data on 7 slot's control board is: 27% MA5603T(config)#

1 [2017-05-16  $\tilde{2}2:57:38+08:00$ ]:The percentage of saved data on 6 slot's control board is: 24% MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}41+08\text{:}00]$ : The percentage of saved data on 7 slot's control board is: 33% MA5603T (config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}41+08\text{:}00]$ : The percentage of saved data on 6 slot's control board is: 30% MA5603T (config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}44+08\text{:}00]$ : The percentage of saved data on 7 slot's control board is: 39% MA5603T (config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}44+08\text{:}00]$ : The percentage of saved data on 6 slot's control board is: 36% MA5603T (config)#

 $1\ [2017-05-16\ 22:57:47+08:00]$ :The percentage of saved data on 7 slot's control board is: 45% MA5603T(config)#  $1\ [2017-05-16\ 22:57:47+08:00]$ :The percentage of saved data on 6 slot's control board is: 42%

MA5603T(config)#

1.120.17.05.16.22:57:50.08:001:The percentage of saved data on 7 slot's control board is: 51%

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}50+08\text{:}00]$ : The percentage of saved data on 7 slot's control board is: 51% MA5603T (config)#

1 [2017-05-16 22:57:50+08:00]:The percentage of saved data on 6 slot's control board is: 48% MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ \tilde{2}2\text{:}57\text{:}53\text{+}08\text{:}00]$ : The percentage of saved data on 7 slot's control board is: 52% MA5603T (config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}53+08\text{:}00]$ : The percentage of saved data on 6 slot's control board is: 49% MA5603T (config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}56\text{+}08\text{:}00]$ :The percentage of saved data on 7 slot's control board is: 52% MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}57\text{:}56+08\text{:}00]$ : The percentage of saved data on 6 slot's control board is: 49% MA5603T (config)#

1 [2017-05-16 22:57:59+08:00]: The percentage of saved data on 7 slot's control board is: 52% MA5603T(config)# 1 [2017-05-16 22:57:59+08:00]: The percentage of saved data on 6 slot's control board is: 49%

MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}58\text{:}02\text{+}08\text{:}00]$  :The percentage of saved data on 7 slot's control board is: 66% MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ 22\text{:}58\text{:}02\text{+}08\text{:}00]$ :The percentage of saved data on 6 slot's control board is: 63% MA5603T(config)#  $1\ [2017\text{-}05\text{-}16\ 22\text{:}58\text{:}05\text{+}08\text{:}00]$ :The percentage of saved data on 7 slot's control board is: 72%

MA5603T(config)#

1 [2017-05-16 22:58:05+08:00]:The percentage of saved data on 6 slot's control board is: 69% MA5603T(config)#

MA5603T(config)#

 $1\ [2017\text{-}05\text{-}16\ \bar{2}2\text{:}58\text{:}08\text{+}08\text{:}00]\text{:}The data of 7 slot's control board is saved completely$ 

MA5603T(config)#

1 [2017-05-16  $\hat{2}2:58:08+08:00$ ]:The data of 6 slot's control board is saved completely

MA5603T(config)#

MA5603T(config)#save electro-switch 1 location-0

Set electronic switch will automatically save data and reboot system, are you sure to make the operation? (y/n)[n]:y MA5603T(config)#

It will take several minutes to save configuration file, please wait...

MA5603T(config)#

Configuration file has been saved to active board successfully, and then

system will duplicate it to the standby board

MA5603T(config)#

Note: The duplicated configuration file in 0 frame 6 slot takes effect after being activated MA5603T(config)#

1 [2017-05-16  $\tilde{2}2:58:51+08:00$ ]: The percentage of saved data on 7 slot's control board is: 66% MA5603T(config)#

1 [2017-05-16 22:58:51+08:00]: The percentage of saved data on 6 slot's control board is: 63% MA5603T(config)#

1 [2017-05-16 22:58:54+08:00]:The percentage of saved data on 7 slot's control board is: 72% MA5603T(config)#

 $1\ [2017-05\text{-}16\ 22\text{:}58\text{:}54+08\text{:}00]\text{:} The\ percentage\ of\ saved\ data\ on\ 6\ slot's\ control\ board\ is:\ 69\%$ 

```
1 [2017-05-16 22:58:54+08:00]: The data of 7 slot's control board is saved
completely
MA5603T(config)#
1 [2017-05-16 22:58:54+08:00]:The data of 6 slot's control board is saved
completely
MA5603T(config)#
Platform System start ...
Press 'Ctrl+T' to stop auto-boot
Memory Data Bus Test .....pass.
Memory Address Bus Test .....pass.
Trace code: 0x00001111
Copy from ROM to RAM
                             ..... OK!
Uncompress from ROM to RAM ..... OK!
Copyright (c) 1998 - 2014 by Huawei Technologies Co.,Ltd.
All Rights Reserved.
The last update date of base BIOS B is: Oct 15 2014 10:48:33
BOARD INFORMATION:
 CPU: MPC8349 ADS. Processor #0.(Rev 3.00) running at 528Mhz
 512M bytes DDR(ECC), 128M bytes flash installed on board
 Baudrate of serial channel is 9600bps
 Board's LAN IP address is 10.11.104.2
 Board's LAN Subnet mask is 255.255.255.0
 Board's LAN MAC address is 90:03:25:17:7B:FD
Base BIOS version is 310
Save extended BIOS disable start flag...OK!
Transferring control to the extended BIOS ...OK!
The last update date of extended BIOS is : Jan 19 2015 21:26:03
System is booting from extended BIOS...
Extended BIOS version is 315
Press <D> key to stop auto-boot 3 2 1 0
Now system will boot from flash memory.
Testing Flash memory...OK!
Select area information: Program Area A, Data Area A.
Begin to expand program... OK!
Save extended BIOS enable start flag...OK!
Transferring control to the loaded program...OK!
Starting system application init.....successfully!
Starting system configuration data init...successfully!
Load Voip Fpga.....OK!
Press any key to get started
>>User name:
Username timeout expired
>>User name:
Username timeout expired
>>User name:
>>User password:
Username or password invalid.
Configuration console exit, please press any key to log on
>>User name:root
>>User password:
 Huawei Integrated Access Software (MA5603T).
 Copyright(C) Huawei Technologies Co., Ltd. 2002-2014. All rights reserved.
                                  .____
 All user fail login information:
 Access Type IP-Address Time Login Times
 Serial --
                      2017-05-16 23:03:46+08:00
MA5603T>
 Warning: Using the default user password is not recommended. Please change the password.
MA5603T>enable
MA5603T#config
MA5603T(config)#display current-configuration
 \{\  \, <\! \! \text{cr>} | \text{ont}<\! \! K\! >\! | \text{port}<\! \! K\! >\! | \text{section}<\! K\! >\! | \text{service-port}<\! K\! >\! | \text{simple}<\! K\! >\! | \} \colon 
     display current-configuration
[MA5600V800R015: 5800]
[sysmode]
 <sysmode>
```

MA5603T(config)#

```
switch adsl mode to rfc2662 vdsl mode to tr129
electro-switch 0 location-1
electro-switch 1 location-0
xpon mode switch-to profile-mode
voice-spec set vag-num 8
protocol support h248
system workscene msan
[global-config]
 <global-config>
terminal user name buildrun_new_password root *J$1a$k`ScNhj%rB$iKsrA@,^*!-*).) Gk3i>iI'xR$IPySC4bWK;M%:)$* 7
0000:00:00:00:00:00 0000:00:00:00:00:00 root 1 "
ont-lineprofile gpon profile-id 0 profile-name "line-profile_default_0"
tcont 0 dba-profile-id 2
 tcont 1 dba-profile-id 0
 commit
quit
---- More ( Press 'Q' to break ) ----
MA5603T(config)#
MA5603T(config)#interface giu 0/8
MA5603T(config-if-giu-0/8)#display port state all
                             _____
Port Port Optic Native MDI Speed Duplex Flow- Active Link
    Type Status VLAN (Mbps) Ctrl State
          -----
  0 GE normal 1 - auto auto off active offline
 1 GE absence 1 - auto auto off active offline
2 GE absence 1 - auto auto off active offline
3 GE absence 1 - auto auto off active offline
 _____
 Port Detecting Time(Min) TX State Auto-sensing
 -----
  2
             - -
  3
 Port 15Min 15Min 24Hour 24Hour
    AlmProf WarnProf AlmProf WarnProf
   More ( Press 'Q' to break ) -
MA5603T(config-if-giu-0/8)#
MA5603T(config-if-giu-0/8)#quit
MA5603T(config)#vlan 200 standard
System is in batch backup or data smooth or configuration recover, there will be no response to your command
MA5603T(config)#vlan 200 standard
System is in batch backup or data smooth or configuration recover, there will be no response to your command
MA5603T(config)#vlan 200 standard
MA5603T(config)#port vlan 200 0/80 0
MA5603T(config)#display mac-address vlan 200
 It will take some time, please wait...
Failure: There is not any MAC address record
MA5603T(config)#
MA5603T(config)#display vlan 200
{ <cr>|to<K> }:
 Command:
     display vlan 200
 VLAN ID: 200
 VLAN name: VLAN_0200
 VLAN type: standard
 VLAN attribute: common
 VLAN description:
 VLAN forwarding mode: VLAN-MAC
 VLAN broadcast packet forwarding policy: forward
 VLAN unknown multicast packet forwarding policy: forward
 VLAN unknown unicast packet forwarding policy: forward
 VLAN bind service profile ID: -
 VLAN bind RAIO profile index: -
 VLAN priority: -
 F/S/P Native VLAN State
```

```
0 /8 /0
              1 down
 Standard port number: 1
 Service virtual port number: 0
MA5603T(config)#
 Please check whether system data has been changed, and save data in time
Configuration console time out, please press any key to log on
>>User name:root
>>User password:
 Huawei Integrated Access Software (MA5603T).
 Copyright(C) Huawei Technologies Co., Ltd. 2002-2014. All rights reserved.
 User last login information:
 Access Type: Serial
 IP-Address : --
 Login Time: 2017-05-16 23:03:53+08:00
 Logout Time: 2017-05-16 23:16:19+08:00
 _____
 All user fail login information:
 Access Type IP-Address
                          Time
                                             Login Times
 Serial --
                  2017-05-16 23:03:46+08:00
MA5603T>
 Warning: Using the default user password is not recommended. Please change the password.
MA5603T>enable
MA5603T#config
MA5603T(config)#config enable display vlan 200
{ <cr>|to<K> }:
 Command:
     display vlan 200
 VLAN ID: 200
 VLAN name: VLAN_0200
 VLAN type: standard
 VLAN attribute: common
 VLAN description:
 VLAN forwarding mode: VLAN-MAC
 VLAN broadcast packet forwarding policy: forward
 VLAN unknown multicast packet forwarding policy: forward
 VLAN unknown unicast packet forwarding policy: forward
 VLAN bind service profile ID: -
 VLAN bind RAIO profile index: -
 VLAN priority: -
 F/S/P Native VLAN State
 0 /8 /0
              1 up OK
 Standard port number: 1
 Service virtual port number: 0
MA5603T(config)#display may c-address v vlan 200
 It will take some time, please wait...
 SRV-P BUNDLE TYPE MAC
                                 MAC TYPE F /S /P VPI VCI VLAN ID
 INDEX INDEX
   - eth 0026-7300-4b73 dynamic 0/8/0 - -
                                                   200
      - eth 0026-cb39-9600 dynamic 0 /8 /0 - -
                                                   200
      - eth e468-a386-9000 dynamic 0 /8 /0 - -
                                                   200
      - eth 643e-8ca7-2551 dynamic 0 /8 /0 - -
                                                   200
      - eth 0018-8261-0e1b dynamic 0 /8 /0 -
                                                   200
   - eth 643e-8ca4-e55d dynamic 0/8/0 - -
                                                  200
      - eth 4c1f-cc15-cb70 dynamic 0 /8 /0 - -
                                                  200
      - eth a4dc-bef5-5636 dynamic 0 /8 /0 -
                                                  200
   - eth 0018-827c-f635 dynamic 0 /8 /0 -
                                                  200
      - eth 643e-8ca4-8d2c dynamic 0 /8 /0 -
                                                  200
      - eth a4dc-bef5-402b dynamic 0 /8 /0 -
                                                  200
      - eth 0819-a63c-3a52 dynamic 0 /8 /0 -
                                                  200
      - eth 643e-8c9d-6f81 dynamic 0 /8 /0 - -
                                                  200
      - eth 9003-2517-5195 dynamic 0 /8 /0 - -
                                                   200
```

```
- - eth 643e-8ca4-a444 dynamic 0 /8 /0 - -
                                                       200
       - eth 04f9-38dd-197c dynamic 0 /8 /0 - -
                                                        200
       - eth 643e-8ca4-e51b dynamic 0 /8 /0 - -
                                                       200
   - eth 0819-a63c-8060 dynamic 0 /8 /0 - -
                                                        200
---- More ( Press 'Q' to break ) ----
MA5603T(config)#
MA5603T(config)#ip ipadres interface vlanif 200
MA5603T(config-if-vlanif200)#ip address 10.243.95.198 255.255.255.128
{ <cr>|description<K>|sub<K> }:
 Command:
     ip address 10.243.95.198 255.255.255.128
MA5603T(config-if-vlanif200)#quit
MA5603T(config)#ip route-static 0.0.0.0 0.0.0.0 10.243.95.129
\{\ <\!\! cr\!\!>\!\! |description\!\!<\!\!K\!\!>\!\! |permanent\!\!<\!\!K\!\!>\!\! |preference\!\!<\!\!K\!\!>\!\! |tag\!\!<\!\!K\!\!>\!\! |track\!\!<\!\!K\!\!>\ \}\!\!:
 Command:
     ip route-static 0.0.0.0 0.0.0.0 10.243.95.129
MA5603T(config)#save
{ <cr>|configuration<K>|data<K> }:
 Command:
      save
MA5603T(config)#
 It will take several minutes to save configuration file, please wait...
MA5603T(config)#
Configuration file has been saved to active board successfully, and then
system will duplicate it to the standby board
MA5603T(config)#
Note: The duplicated configuration file in 0 frame 6 slot takes effect after being activated
MA5603T(config)#
The data is being saved, please wait a moment...
MA5603T(config)#
MA5603T(config)#
 1 [2017-05-16 23:44:25+08:00]:The percentage of saved data on 7 slot's control board is: 21%
MA5603T(config)#
 1 [2017-05-16 23:44:55+08:00]: The percentage of saved data on 6 slot's control board is: 69%
MA5603T(config)#
MA5603T(config)#
 1 [2017-05-16 23:44:57+08:00]:The data of 7 slot's control board is saved
completely
MA5603T(config)#
 1 [2017-05-16 23:44:57+08:00]:The data of 6 slot's control board is saved
MA5603T(config)#display mac-address vlan 200
 It will take some time, please wait...
                                     MAC TYPE F /S /P VPI VCI VLAN ID
 SRV-P BUNDLE TYPE MAC
 INDEX INDEX
    - eth 643e-8ca4-a58e dynamic 0 /8 /0 - -
       - eth 0026-7300-4b73 dynamic 0 /8 /0 - -
                                                        200
       - eth 643e-8ca7-2239 dynamic 0 /8 /0 - -
                                                        200
      - eth 643e-8ca4-8cc9 dynamic 0 /8 /0 - -
                                                       200
       - eth 643e-8ca4-933b dynamic 0 /8 /0 - -
                                                        200
    - eth 0018-827c-f425 dynamic 0 /8 /0 - -
                                                       200
       - eth 0026-cb39-9600 dynamic 0 /8 /0 - -
                                                        200
       - eth e468-a386-9000 dynamic 0 /8 /0 - -
                                                        200
    - eth 0019-8f5f-a3a1 dynamic 0/8/0 - -
                                                       200
       - eth 643e-8ca7-2551 dynamic 0 /8 /0 - -
                                                        200
       - eth 0018-8261-0e1b dynamic 0/8/0 - -
                                                        200
    - eth 643e-8ca4-e55d dynamic 0 /8 /0 - -
                                                       200
       - eth 4c1f-cc15-cb70 dynamic 0/8/0 - -
                                                       200
                                                       200
       - eth a4dc-bef5-5636 dynamic 0 /8 /0 -
       - eth e030-05de-7fd5 dynamic 0 /8 /0 - -
                                                       200
       - eth 0018-827c-f635 dynamic 0/8/0 -
                                                        200
       - eth 643e-8ca4-8d2c dynamic 0/8/0 - -
                                                        200
       - eth a4dc-bef5-402b dynamic 0 /8 /0 -
                                                       200
 --- More ( Press 'Q' to break ) ---
MA5603T(config)#display mac-address vlan 200
                                                          current-configuration
{ < cr > | ont < K > | section < K > | service-port < K > | simple < K > | < } }:
     display current-configuration
[MA5600V800R015: 5800]
[sysmode]
 <svsmode>
switch adsl mode to rfc2662 vdsl mode to tr129
```

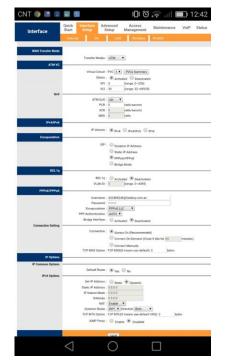
```
electro-switch 0 location-1
electro-switch 1 location-0
xpon mode switch-to profile-mode
voice-spec set vag-num 8
protocol support h248
system workscene msan
[global-config]
 <global-config>
terminal user name buildrun_new_password root *J$1a$k`$cNhj%rB$iKsrA@,^*!-*).) Gk3i>iI'xR$IPySC4bWK;M%:)$* 7
0000:00:00:00:00:00 0000:00:00:00:00:00 root 1 "
ont-lineprofile gpon profile-id 0 profile-name "line-profile_default_0"
tcont 0 dba-profile-id 2
 tcont 1 dba-profile-id 0
 commit
 quit
[device-config]
<device-config>
board add 0/8 H801GICD
board add standby sub0 FLBA
[public-config]
<public-config>
snmp-agent local-engineid 800007DB03900325177BFD0D
[vlan-config]
<vlan-config>
vlan 200 standard
port vlan 200 0/8 0
[emu-config]
<emu-config>
emu add 0 Power4830L 0 0 "GSE200M"
emu add 1 fan 0 1 "H801FCBI"
[config]
<config>
mpls label start 8192
[prevlanif]
 <prevlanif>
interface vlanif200
[vlanif]
to break ) ----
MA5603T(config)#display current-configuration
{ < cr> | ont < K > | port < K > | section < K > | service-port < K > | simple < K > | < K > } :}
 Command:
      display current-configuration
[MA5600V800R015: 5800]
[sysmode]
 <sysmode>
switch adsl mode to rfc2662 vdsl mode to tr129
electro-switch 0 location-1
electro-switch 1 location-0
xpon mode switch-to profile-mode
voice-spec set vag-num 8
protocol support h248
system workscene msan
[global-config]
 <global-config>
terminal user name buildrun_new_password root *J$1a$k`$cNhj%rB$iKsrA@,^*!-*).) Gk3i>iI'xR$IPySC4bWK;M%:)$* 7
0000:00:00:00:00:00 0000:00:00:00:00:00 root 1 "
ont-lineprofile gpon profile-id 0 profile-name "line-profile_default_0"
tcont 0 dba-profile-id 2
 tcont 1 dba-profile-id 0
 commit
 quit
[device-config]
```

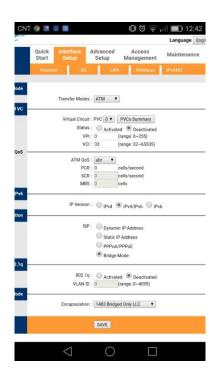
```
<device-config>
board add 0/8 H801GICD
board add standby sub0 FLBA
[public-config]
<public-config>
snmp-agent local-engineid 800007DB03900325177BFD0D
[vlan-config]
<vlan-config>
vlan 200 standard
port vlan 200 0/8 0
[emu-config]
<emu-config>
emu add 0 Power4830L 0 0 "GSE200M"
emu add 1 fan 0 1 "H801FCBI"
[config]
<config>
mpls label start 8192
[prevlanif]
interface vlanif200
[vlanif]
<vlanif200>
interface vlanif200
ip address 10.243.95.198 255.255.255.128
 [meth]
  <meth0>
interface meth0
ip address 10.11.104.2 255.255.255.0
[null]
<null0>
interface null0
[aaa]
<aaa>
 aaa
authentication-scheme "default"
authorization-scheme "default"
  accounting-scheme "default"
  domain "default"
[post-system]
<post-system>
ip route-static 0.0.0.0 0.0.0.0 10.243.95.129
undo ssh server compatible_ssh1x
ssh user root authentication-type password
return
MA5603T(config)#
MA5603T(config)#
MA5603T(config)#
MA5603T(config)#
MA5603T(config)#quit
MA5603T#
```

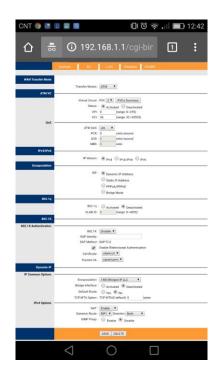
#### ANEXO F. CONFIGURACION DEL EQUIPO DEL CLIENTE






# CONFIGURACIÓN EQUIPO DEL CLIENTE






0





