

# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

## FACULTAD DE MECÁNICA

CARRERA DE MECÁNICA

# "DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA EL DIAGNÓSTICO DE FALLAS EN SISTEMAS MECÁNICOS POR DESALINEAMIENTOS EN ACOPLES FLEXIBLES MEDIANTE ANÁLISIS COMPARATIVO DE ESPECTROS DE VIBRACIÓN"

Trabajo de integración curricular

Tipo: Proyecto técnico

Presentado para optar el grado académico de:

INGENIERO MECÁNICO

## **AUTORES:**

DARÍO JAVIER GUANANGA PUJOS KLEBER ADRIÁN PILCO GARCÍA

Riobamba – Ecuador

2021



## ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

## FACULTAD DE MECÁNICA

CARRERA DE MECÁNICA

# "DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA EL DIAGNÓSTICO DE FALLAS EN SISTEMAS MECÁNICOS POR DESALINEAMIENTOS EN ACOPLES FLEXIBLES MEDIANTE ANÁLISIS COMPARATIVO DE ESPECTROS DE VIBRACIÓN"

Trabajo de integración curricular

Tipo: Proyecto técnico

Presentado para optar el grado académico de:

## INGENIERO MECÁNICO

AUTORES: DARÍO JAVIER GUANANGA PUJOS KLEBER ADRIÁN PILCO GARCÍA DIRECTOR: Ing. JAVIER ENRIQUE ORNA CHÁVEZ

Riobamba – Ecuador

## © 2021, Darío Javier Guananga Pujos y Kleber Adrián Pilco García

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo cita bibliográfica del documento, siempre y cuando se reconozca el Derecho del Autor.

Nosotros, Darío Javier Guananga Pujos y Kleber Adrián Pilco García, declaramos que el presente trabajo de integración curricular es de nuestra autoría y los resultados del mismo son auténticos. Los textos en el documento que provienen de otras fuentes están debidamente citados y referenciados.

Como autores asumimos la responsabilidad legal y académica de los contenidos de este trabajo de integración curricular; el patrimonio intelectual pertenece a la Escuela Superior Politécnica de Chimborazo.

Riobamba, 16 de julio de 2021

we

Darío Javier Guananga Pujos C.C 180464087-6

Kleber Adrián Pilco García C.C 020234197-0

### ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

### FACULTAD DE MECÁNICA

### **CARRERA DE MECÁNICA**

El Tribunal del Trabajo de integración curricular certifica que: El trabajo de integración curricular; tipo: Proyecto técnico, DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA DIAGNÓSTICO SISTEMAS MECÁNICOS EL DE **FALLAS** EN POR **DESALINEAMIENTOS FLEXIBLES MEDIANTE** ANÁLISIS EN ACOPLES COMPARATIVO DE ESPECTROS DE VIBRACIÓN, realizado por los señores: DARÍO JAVIER GUANANGA PUJOS y KLEBER ADRIÁN PILCO GARCÍA, ha sido minuciosamente revisado por los Miembros del Trabajo de integración curricular, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal Autoriza su presentación.

FIRMA

EDWIN

FERNANDO

VITERI NUNEZ

**FECHA** 

Ing. Msc. Edwin Fernando Viteri Núñez PRESIDENTE DEL TRIBUNAL

Ing. Msc. Javier Enrique Orna Chávez DIRECTOR DE TRABAJO DE INTEGRACIÓN CURRICULAR

Ing. Msc. Jorge Isaías Caicedo Reyes MIEMBRO DEL TRIBUNAL



NUNEZ

-05'00

Firmado digitalmente por JAVIER ENRIQUE ORNA CHAVEZ

Firmado digitalmente por

EDWIN FERNANDO VITERI

Fecha: 2021.08.23 16:54:14

2021-07-16

2021-07-16



2021-07-16

### DEDICATORIA

Al gran esfuerzo y sacrificio de mis padres Bolívar y Cecilia por haber criado y formado a un hombre responsable, útil a la sociedad, inculcar en mí el valor del trabajo duro y honesto, enseñarme a no doblegar ante las adversidades de la vida y darme la oportunidad de obtener una profesión, a mis hermanos Alexandra, Cristina, Alejandro y Anthony por el apoyo y compañía durante los momentos más difíciles de la vida y de mis estudios, a mi sobrino Samuel por hacer de mi vida más espléndida, a todos quienes forman parte de la Escuela de Ingeniería Mecánica ESPOCH por brindarme conocimientos del más alto nivel académico y a todos aquellos que en su momento dudaron de mis capacidades y mi potencial, se los dedico.

Darío

El presente trabajo va dedicado a mis padres Luz y Jorge, quienes han sido pilar fundamental durante mi desarrollo personal y académico brindándome su afecto y paciencia incondicionalmente.

Kleber

### AGRADECIMIENTO

A Dios, a mi Divino Niño, a la Santísima Virgen María, a mis familiares, a la Escuela Superior Politécnica de Chimborazo, a la Escuela de Mecánica, por darme la oportunidad de obtener una profesión, culminar con éxito esta etapa de mi vida y ser un ciudadano útil para el país.

Darío

Agradezco a Dios por permitirme culminar esta etapa académica, luego agradezco a mis padres y hermanas ya que sin ellos nada de esto fuese posible.

Kleber

## TABLA DE CONTENIDO

| ÍNDICE DE TABLAS   | xii  |
|--------------------|------|
| ÍNDICE DE FIGURAS  | xiv  |
| ÍNDICE DE GRÁFICOS | xvii |
| ÍNDICE DE ANEXOS   | xvii |
| RESUMEN            | xix  |
| ABSTRACT           | xx   |
| INTRODUCCIÓN       | xxi  |

## CAPÍTULO I

| DIAGNÓSTICO DEL PROBLEMA | 1                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antecedentes             | 1                                                                                                                                                                                |
| Delimitación             | 1                                                                                                                                                                                |
| Delimitación espacial    | 1                                                                                                                                                                                |
| Delimitación sectorial   | 1                                                                                                                                                                                |
| Formulación del problema | 2                                                                                                                                                                                |
| Objetivos                | 2                                                                                                                                                                                |
| Objetivo general         | 2                                                                                                                                                                                |
| Objetivos específicos    | 2                                                                                                                                                                                |
|                          | DIAGNÓSTICO DEL PROBLEMA.<br>Antecedentes.<br>Delimitación<br>Delimitación espacial.<br>Delimitación sectorial.<br>Formulación del problema.<br>Objetivos.<br>Objetivos general. |

## CAPÍTULO II

| 2       | REVISIÓN DE LA LITERATURA O FUNDAMENTOS TEÓRICOS | 3 |
|---------|--------------------------------------------------|---|
| 2.1     | Desalineación                                    | 3 |
| 2.1.1   | Desalineación angular                            | 3 |
| 2.1.2   | Desalineación paralela                           | 4 |
| 2.1.3   | Desalineación mixta                              | 4 |
| 2.2     | Problemas causados por desalineación             | 4 |
| 2.3     | Acoplamientos                                    | 5 |
| 2.3.1   | Acoplamientos rígidos                            | 5 |
| 2.3.2   | Clasificación de los acoplamientos rígidos       | 6 |
| 2.3.2.1 | Acoplamiento de manguito                         | 6 |
| 2.3.2.2 | Acoplamiento de abrazadera                       | 6 |
| 2.3.2.3 | Acoplamiento de disco                            | 6 |

| 2.3.3   | Acoplamientos flexibles                                                  | 6  |
|---------|--------------------------------------------------------------------------|----|
| 2.3.4   | Acoplamientos flexibles metálicos                                        | 7  |
| 2.3.4.1 | Acoplamiento de rejilla                                                  | 7  |
| 2.3.4.2 | Acoplamiento de engrane                                                  | 7  |
| 2.3.4.3 | Acoplamiento de disco                                                    | 8  |
| 2.3.4.4 | Acoplamiento de cadena                                                   | 8  |
| 2.3.5   | Acoplamientos flexibles con elemento elástico                            | 9  |
| 2.3.5.1 | Acoplamiento flexible                                                    | 9  |
| 2.3.5.2 | Acoplamiento de mordaza                                                  | 9  |
| 2.3.5.3 | Acoplamiento FRC                                                         | 9  |
| 2.3.6   | Juntas universales                                                       | 10 |
| 2.4     | Tolerancias de alineación para acoplamientos flexibles                   | 10 |
| 2.5     | Análisis de vibración                                                    | 12 |
| 2.5.1   | Vibraciones generadas por desalineación                                  | 12 |
| 2.5.2   | Respuesta vibracional                                                    | 14 |
| 2.5.3   | Espectro vibratorio del desalineamiento                                  | 17 |
| 2.6     | Máquina para diagnóstico de fallas por vibraciones                       | 18 |
| 2.6.1   | Componentes principales de un banco de diagnóstico de fallas en sistemas |    |
|         | mecánicos por desalineamiento en acoples flexibles por medio de técnicas |    |
|         | de vibración                                                             | 18 |
| 2.6.2   | Funcionamiento del banco de pruebas para el diagnóstico de fallas en     |    |
|         | sistemas mecánicos por desalineamientos en acoples flexibles mediante    |    |
|         | análisis comparativo de espectros de vibración                           | 20 |

## CAPÍTULO III

| 3       | MARCO METODOLÓGICO                                                  | 22 |
|---------|---------------------------------------------------------------------|----|
| 3.1     | Función de despliegue de la calidad - QFD                           | 22 |
| 3.1.1   | Determinación de las demandas o requerimientos del banco de pruebas | 22 |
| 3.1.1.1 | Voz del usuario                                                     | 22 |
| 3.1.1.2 | Análisis de competitividad                                          | 23 |
| 3.1.1.3 | Importancia                                                         | 25 |
| 3.1.1.4 | Voz del ingeniero                                                   | 27 |
| 3.1.1.5 | Conclusiones de la matriz QFD                                       | 30 |
| 3.2     | Diseño conceptual                                                   | 31 |
| 3.2.1   | Estructura funcional                                                | 31 |

| 3.2.2    | Estudio de alternativas para la solución del banco de pruebas            | 32 |
|----------|--------------------------------------------------------------------------|----|
| 3.2.2.1  | Desalineamiento de ejes                                                  | 32 |
| 3.2.2.2  | Transmisión de potencia al acople flexible                               | 33 |
| 3.2.2.3  | Rotación de eje y disco                                                  | 35 |
| 3.2.2.4  | Transmisión de esfuerzos a rodamientos y chumaceras                      | 36 |
| 3.2.3    | Matriz morfológica                                                       | 37 |
| 3.2.4    | Soluciones propuestas                                                    | 38 |
| 3.2.4.1  | Alternativa de solución uno                                              | 39 |
| 3.2.4.2  | Alternativa de solución dos                                              | 40 |
| 3.2.4.3  | Alternativa de solución tres                                             | 41 |
| 3.2.5    | Evaluación de soluciones                                                 | 42 |
| 3.2.5.1  | Criterios de valoración                                                  | 42 |
| 3.3      | Diseño y selección de elementos para el banco de pruebas                 | 46 |
| 3.3.1    | Cálculos dimensionales                                                   | 46 |
| 3.3.2    | Selección del motor eléctrico                                            | 47 |
| 3.3.3    | Selección del material para el diseño del eje                            | 47 |
| 3.3.3.1  | Prediseño del eje diseño a torsión                                       | 47 |
| 3.3.3.2  | Cálculo de las fuerzas y momentos torsores en el eje                     | 49 |
| 3.3.3.3  | Diagramas de cortante y momento flector                                  | 58 |
| 3.3.3.4  | Cálculo de concentración de esfuerzos                                    | 62 |
| 3.3.3.5  | Cálculo del factor de modificación de la condición superficial           | 64 |
| 3.3.3.6  | Cálculo del factor de modificación del tamaño                            | 65 |
| 3.3.3.7  | Cálculo del factor de confiabilidad                                      | 66 |
| 3.3.3.8  | Cálculo del factor de modificación de la temperatura                     | 66 |
| 3.3.3.9  | Cálculo del factor de modificación de efectos varios                     | 67 |
| 3.3.3.10 | Cálculo del límite de resistencia a la fatiga en la ubicación critica de |    |
|          | elementos de máquinas                                                    | 67 |
| 3.3.3.11 | Cálculo del diámetro según ASME B106.1M                                  | 68 |
| 3.3.3.12 | Análisis de rigidez                                                      | 69 |
| 3.3.3.13 | Análisis de velocidades críticas                                         | 72 |
| 3.3.3.14 | Cálculo de la velocidad critica de Rayleight-Ritz                        | 72 |
| 3.3.3.15 | Cálculo de la velocidad critica de Dunkerley                             | 73 |
| 3.3.3.16 | Análisis de resonancia                                                   | 74 |
| 3.3.3.17 | Cálculo de la chaveta                                                    | 75 |
| 3.3.4    | Selección de rodamientos                                                 | 77 |
| 3.3.4.1  | Cálculo de la vida nominal básica del rodamiento                         | 77 |
| 3.3.4.2  | Condición de lubricación del rodamiento                                  | 78 |

| 3.3.4.3 | Factor de contaminación del rodamiento                             | 81  |
|---------|--------------------------------------------------------------------|-----|
| 3.3.4.4 | Cálculo del factor de modificación de la vida útil aSKF            | 81  |
| 3.3.4.5 | Cálculo de la vida normal SKF                                      | 82  |
| 3.3.4.6 | Cálculo de la carga mínima de cargas                               | 82  |
| 3.3.5   | Selección de chumaceras bipartidas                                 | 83  |
| 3.3.6   | Selección del acople flexible                                      | 83  |
| 3.3.6.1 | Cálculo del torque nominal del sistema                             | 83  |
| 3.3.6.2 | Factor de servicio                                                 | 84  |
| 3.3.6.3 | Selección del acople flexible de rejilla                           | 84  |
| 3.4     | Construcción, montaje y pruebas de funcionamiento del banco de     |     |
|         | pruebas                                                            | 85  |
| 3.4.1   | Construcción del banco de pruebas                                  | 85  |
| 3.4.1.1 | Materiales de construcción de los elementos del banco de pruebas   | 85  |
| 3.4.1.2 | Operaciones y tiempos de construcción del banco de pruebas         | 87  |
| 3.4.1.3 | Flujograma de construcción                                         | 89  |
| 3.4.2   | Montaje del banco de pruebas                                       | 93  |
| 3.4.2.1 | Flujograma de montaje                                              | 94  |
| 3.4.2.2 | Tiempo total de construcción y montaje                             | 95  |
| 3.4.3   | Protocolo de pruebas                                               | 95  |
| 3.4.3.1 | Prueba de funcionamiento sin alineamiento                          | 96  |
| 3.4.3.2 | Prueba de funcionamiento con alineamiento                          | 97  |
| 3.5     | Manual de operación y mantenimiento del banco de pruebas para el   |     |
|         | diagnóstico de fallas en sistemas mecánicos por desalineamiento en |     |
|         | acoples flexibles                                                  | 98  |
| 3.5.1   | Manual de operación                                                | 98  |
| 3.5.1.1 | Características generales del banco de pruebas                     | 98  |
| 3.5.1.2 | Características específicas del banco de pruebas                   | 99  |
| 3.5.1.3 | Simulación de desalineamiento con el banco de pruebas              | 100 |
| 3.5.1.4 | Alineación de ejes con el alineador SKF TKSA 11                    | 101 |
| 3.5.2   | Manual de mantenimiento                                            | 101 |
| 3.6     | Análisis de costos del banco de pruebas                            | 103 |
| 3.6.1   | Costos directos                                                    | 103 |
| 3.6.1.1 | Materiales                                                         | 103 |
| 3.6.1.2 | Costo de máquinas y herramientas                                   | 104 |
| 3.6.1.3 | Mano de obra                                                       | 105 |
| 3.6.1.4 | Costo total directo                                                | 105 |
| 3.6.2   | Costos indirectos                                                  | 105 |

| <b>3.6.3</b> <i>Costo total</i> 106 | 3.6.3 | Costo total | 106 |
|-------------------------------------|-------|-------------|-----|
|-------------------------------------|-------|-------------|-----|

## CAPÍTULO IV

| 4       | RESULTADOS                                                                  | 107 |
|---------|-----------------------------------------------------------------------------|-----|
| 4.1     | Pruebas de funcionamiento                                                   | 107 |
| 4.1.1   | Objetivo                                                                    | 107 |
| 4.1.2   | Alcance                                                                     | 107 |
| 4.1.3   | Especificaciones del equipo de medición                                     | 107 |
| 4.1.4   | Alineación                                                                  | 107 |
| 4.1.5   | Toma de vibraciones                                                         | 109 |
| 4.1.5.1 | Condiciones de operación                                                    | 109 |
| 4.1.5.2 | Análisis comparativo de los espectros de vibraciones                        | 111 |
| 4.1.5.3 | Análisis comparativo de los espectros de vibraciones en las chumaceras lado |     |
|         | libre                                                                       | 112 |
| 4.1.5.4 | Análisis comparativo de los espectros de vibraciones en las chumaceras lado |     |
|         | del acople                                                                  | 115 |
| 4.1.5.5 | Análisis comparativo de los espectros de vibraciones en el motor lado       |     |
|         | libre                                                                       | 118 |
| 4.1.5.6 | Análisis comparativo de los espectros de vibraciones en el motor lado del   |     |
|         | acople                                                                      | 121 |
| 4.1.5.7 | Ensayos a diferentes velocidades con y sin alineamiento en chumacera y      |     |
|         | motor                                                                       | 123 |
|         |                                                                             |     |

| CONCLUSIONES    | 126 |
|-----------------|-----|
| RECOMENDACIONES | 127 |
| BIBLIOGRAFÍA    |     |
| ANEXOS          |     |

## ÍNDICE DE TABLAS

| Tabla 1-2:  | Tolerancias de desalineamiento recomendadas según Ludeca              | 12 |
|-------------|-----------------------------------------------------------------------|----|
| Tabla 1-3:  | Clasificación de los requerimientos del usuario                       | 23 |
| Tabla 2-3:  | Características técnicas de la competencia de mercado empresa         |    |
|             | Gunt Hamburg                                                          | 24 |
| Tabla 3-3:  | Características técnicas de la competencia de mercado empresa         |    |
|             | Edibon                                                                | 25 |
| Tabla 4-3:  | Valores nivel de importancia                                          | 26 |
| Tabla 5-3:  | Evaluación de encuestas realizadas                                    | 26 |
| Tabla 6-3:  | Ponderación para el factor de venta (FV)                              | 27 |
| Tabla 7-3:  | Factor de incidencia                                                  | 28 |
| Tabla 8-3:  | Evaluación de encuestas realizadas                                    | 28 |
| Tabla 9-3:  | Solución técnica de los requerimientos para el banco de pruebas en    |    |
|             | orden de importancia                                                  | 30 |
| Tabla 10-3: | Matriz morfológica de alternativas de solución                        | 38 |
| Tabla 11-3: | Evaluación del peso específico de cada criterio                       | 43 |
| Tabla 12-3: | Evaluación del peso específico del criterio estructura base           | 43 |
| Tabla 13-3: | Evaluación del peso específico del criterio sistema de alineación     | 43 |
| Tabla 14-3: | Evaluación del peso específico del criterio múltiples configuraciones | 44 |
| Tabla 15-3: | Evaluación del peso específico del criterio diseño de elementos       |    |
|             | mecánicos                                                             | 44 |
| Tabla 16-3: | Tabla de conclusiones                                                 | 44 |
| Tabla 17-3: | Prediseño de alternativa seleccionada                                 | 45 |
| Tabla 18-3: | Datos del motor de la marca Siemens                                   | 47 |
| Tabla 19-3: | Propiedades mecánicas del material AISI 304                           | 47 |
| Tabla 20-3: | Parámetros en el factor de la condición superficial de Marín          | 65 |
| Tabla 21-3: | Factores de confiabilidad correspondientes a ocho desviaciones        |    |
|             | estándar porcentuales del límite de resistencia a la fatiga           | 66 |
| Tabla 22-3: | Efecto de la temperatura de operación en la resistencia a la tensión  |    |
|             | del acero                                                             | 67 |
| Tabla 23-3: | Datos de pesos y deformaciones que actúan en el eje para el cálculo   |    |
|             | de la velocidad crítica de Rayleight-Ritz                             | 72 |
| Tabla 24-3: | Datos de deformaciones que actúan en el eje para el cálculo de la     |    |
|             | velocidad crítica de Dunkerley                                        | 73 |
| Tabla 25-3: | Control de velocidades críticas del eje                               | 74 |
| Tabla 26-3: | Datos de la chaveta para el eje del banco de pruebas                  | 75 |
|             |                                                                       |    |

| Datos del rodamiento SKF seleccionado                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elementos de la chumacera seleccionada                          | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Máquinas y herramientas utilizadas                              | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Materiales de construcción del banco de pruebas                 | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Operaciones y tiempos de construcción del banco de pruebas      | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Montaje del banco de pruebas                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tiempo de montaje del banco de pruebas                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Características del banco de pruebas                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Parámetros para la práctica de desalineamiento                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alineación de los ejes del banco de pruebas                     | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Actividades recomendadas para el mantenimiento preventivo del   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| banco de pruebas                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costos de materiales y elementos mecánicos                      | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costo de máquinas y herramientas utilizadas                     | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costos de mano de obra                                          | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costo total directo                                             | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costos indirectos                                               | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Costo total                                                     | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Valores de frecuencia y velocidad                               | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rango de severidad vibratoria para máquinas normales            | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lista ilustrada de diagnóstico de vibraciones                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Valores generales de velocidad antes y después del alineamiento | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Valores de temperatura                                          | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                 | Datos del rodamiento SKF seleccionado.   Elementos de la chumacera seleccionada.   Máquinas y herramientas utilizadas.   Materiales de construcción del banco de pruebas.   Operaciones y tiempos de construcción del banco de pruebas   Montaje del banco de pruebas.   Tiempo de montaje del banco de pruebas.   Características del banco de pruebas.   Parámetros para la práctica de desalineamiento.   Alineación de los ejes del banco de pruebas   Actividades recomendadas para el mantenimiento preventivo del banco de pruebas.   Costos de materiales y elementos mecánicos.   Costos de mano de obra   Costos indirectos   Costo total directo   Valores de frecuencia y velocidad.   Rango de severidad vibratoria para máquinas normales.   Lista ilustrada de diagnóstico de vibraciones.   Valores de temperatura. |

## ÍNDICE DE FIGURAS

| Figura 1-2:  | Desalineación angular                                              | 3  |
|--------------|--------------------------------------------------------------------|----|
| Figura 2-2:  | Desalineación paralela                                             | 4  |
| Figura 3-2:  | Desalineación mixta                                                | 4  |
| Figura 4-2:  | Consecuencias comunes en componentes                               | 5  |
| Figura 5-2:  | Acoplamientos rígidos: a) manguito b) abrazadera c) disco          | 6  |
| Figura 6-2:  | Acoplamientos flexibles metálicos                                  | 8  |
| Figura 7-2:  | Acoplamientos flexibles con elementos elásticos: a) flexible b)    | 10 |
|              | mordaza c) FRC                                                     | 10 |
| Figura 8-2:  | Componentes de una junta universal                                 | 10 |
| Figura 9-2:  | Puntos flexibles en las posiciones vertical y horizontal de un eje | 11 |
| Figura 10-2: | Vibración axial a 1 RPM por desalineamiento angular                | 13 |
| Figura 11-2: | Vibración radial a 2 RPM por desalineamiento paralelo              | 14 |
| Figura 12-2: | Movimiento del sistema masa-resorte                                | 15 |
| Figura 13-2: | Desplazamiento en función del tiempo                               | 15 |
| Figura 14-2: | Señal de vibración en una máquina cualquiera                       | 16 |
| Figura 15-2: | Generación de la onda compleja (c) y su respuesta en frecuencia    |    |
|              | debido a las componentes del desalineamiento                       | 17 |
| Figura 16-2: | Tipos de forma de onda para diferentes escenarios                  | 18 |
| Figura 17-2: | Esquema del banco de pruebas para el diagnóstico de fallas         | 20 |
| Figura 1-3:  | Banco de pruebas didáctico para análisis de vibraciones marca Gunt | 22 |
|              | Hamburg                                                            | 25 |
| Figura 2-3:  | Banco de pruebas didáctico para análisis de vibraciones marca      |    |
|              | Edibon                                                             | 24 |
| Figura 3-3:  | Análisis funcional del banco de pruebas-Nivel 0                    | 31 |
| Figura 4-3:  | Análisis funcional del banco de pruebas-Nivel 1                    | 31 |
| Figura 5-3:  | Base para desalineación modelo uno                                 | 32 |
| Figura 6-3:  | Base para desalineación modelo dos                                 | 33 |
| Figura 7-3:  | Acople de rejilla                                                  | 33 |
| Figura 8-3:  | Acople de cadena                                                   | 34 |
| Figura 9-3:  | Acople de mordaza                                                  | 34 |
| Figura 10-3: | Eje y un disco                                                     | 35 |
| Figura 11-3: | Eje y dos discos                                                   | 35 |
| Figura 12-3: | Puntos de medición para la monitorización de la condición          | 36 |
| Figura 13-3: | Chumacera fabricada                                                | 37 |

| Figura 14-3: | Alternativa de solución uno para el banco de pruebas                   |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| Figura 15-3: | Alternativa de solución dos para el banco de pruebas                   |  |  |  |  |  |  |
| Figura 16-3: | Alternativa de solución tres para el banco de pruebas                  |  |  |  |  |  |  |
| Figura 17-3: | Esquema del sistema a diseñar                                          |  |  |  |  |  |  |
| Figura 18-3: | Eje para el banco de pruebas, unidades en [mm]                         |  |  |  |  |  |  |
| Figura 19-3: | Sistema de coordenadas para el eje del banco de pruebas                |  |  |  |  |  |  |
| Figura 20-3: | Vista frontal y lateral de los discos de balanceo                      |  |  |  |  |  |  |
| Figura 21-3: | Opciones de configuraciones del banco de pruebas                       |  |  |  |  |  |  |
| Figura 22-3: | Sistema de transmisión mediante poleas y bandas                        |  |  |  |  |  |  |
| Figura 23-3: | Ángulo formado entre la banda y el eje X                               |  |  |  |  |  |  |
| Figura 24-3: | Fuerzas que actúan en el sistema de transmisión mediante polea y       |  |  |  |  |  |  |
|              | banda                                                                  |  |  |  |  |  |  |
| Figura 25-3: | Diagrama de cuerpo libre del eje                                       |  |  |  |  |  |  |
| Figura 26-3: | Diagrama de cuerpo libre del eje en el plano XY                        |  |  |  |  |  |  |
| Figura 27-3: | (a) Diagrama de fuerza cortante. (b) Diagrama de momento flector       |  |  |  |  |  |  |
|              | en el plano XY                                                         |  |  |  |  |  |  |
| Figura 28-3: | Diagrama de cuerpo libre del eje en el plano XZ                        |  |  |  |  |  |  |
| Figura 29-3: | a) Diagrama de fuerza cortante. (b) Diagrama de momento flector en     |  |  |  |  |  |  |
|              | el plano XZ                                                            |  |  |  |  |  |  |
| Figura 30-3: | Deformación del eje                                                    |  |  |  |  |  |  |
| Figura 31-3: | Deformación del eje en el punto más crítico                            |  |  |  |  |  |  |
| Figura 32-3: | Nueva configuración del eje para el banco de pruebas, unidades en      |  |  |  |  |  |  |
|              | [mm]                                                                   |  |  |  |  |  |  |
| igura 33-3:  | Deformación del eje en el punto más crítico                            |  |  |  |  |  |  |
| Figura 34-3: | Configuración definitiva del eje para el banco de pruebas, unidades    |  |  |  |  |  |  |
|              | en [mm]                                                                |  |  |  |  |  |  |
| Figura 35-3: | Configuración de la chaveta para el eje del banco de pruebas           |  |  |  |  |  |  |
| Figura 36-3: | Flujograma utilizado en la construcción del sistema de alineación      |  |  |  |  |  |  |
| Figura 37-3: | Modelado y construcción del sistema de alineación                      |  |  |  |  |  |  |
| Figura 38-3: | Flujograma utilizado en la construcción del sistema motor o            |  |  |  |  |  |  |
|              | conductor                                                              |  |  |  |  |  |  |
| Figura 39-3: | Modelado y construcción del sistema motor o conductor                  |  |  |  |  |  |  |
| Figura 40-3: | Flujograma utilizado en la construcción del sistema motor o            |  |  |  |  |  |  |
|              | conductor                                                              |  |  |  |  |  |  |
| Figura 41-3: | Sistema motor o conductor                                              |  |  |  |  |  |  |
| Figura 42-3: | Construcción del sistema motor o conductor                             |  |  |  |  |  |  |
| Figura 43-3: | Flujograma utilizado en la construcción del sistema soporte v fijación |  |  |  |  |  |  |

| Figura 44-3: | Sistema soporte y fijación                                       | 92  |
|--------------|------------------------------------------------------------------|-----|
| Figura 45-3: | Construcción del sistema soporte y fijación                      | 92  |
| Figura 46-3: | Flujograma utilizado en la construcción del sistema de seguridad | 93  |
| Figura 47-3: | Modelado del sistema de seguridad                                | 93  |
| Figura 48-3: | Construcción del sistema de seguridad                            | 93  |
| Figura 49-3: | Flujograma utilizado para el montaje del banco de pruebas        | 95  |
| Figura 50-3: | Puntos de medición banco de pruebas recomendado                  | 96  |
| Figura 1-4:  | Informe de alineación de ejes SKF                                | 108 |
| Figura 2-4:  | Puntos y direcciones de medición del banco de pruebas            | 109 |
|              |                                                                  |     |

## ÍNDICE DE GRÁFICOS

| Gráfico 1-2: | Señal de vibración en una máquina cualquiera                            | 17  |
|--------------|-------------------------------------------------------------------------|-----|
| Gráfico 1-3: | Función de despliegue de la calidad QFD                                 | 29  |
| Gráfico 2-3: | Sensibilidad a la muesca en el caso de aceros y aleaciones de           |     |
|              | aluminio                                                                | 62  |
| Gráfico 3-3: | Sensibilidad a la muesca para materiales sometidos a torsión inversa    | 63  |
| Gráfico 4-3: | Eje redondo con filete en el hombro en flexión                          | 63  |
| Gráfico 5-3: | Eje redondo con filete en el hombro en torsión                          | 64  |
| Gráfico 6-3: | Análisis de esfuerzos reversibles tanto a flexión como a torsión en     |     |
|              | fatiga                                                                  | 69  |
| Gráfico 7-3: | Diagrama de la temperatura de viscosidad según los grados de viscosidad |     |
|              | de la ISO (Aceites minerales, índice de viscosidad 95)                  | 79  |
| Gráfico 8-3: | Cálculo de la viscosidad nominal $V_1$                                  | 80  |
| Gráfico 9-3: | Factor aSKF para los rodamientos radiales de bolas                      | 81  |
| Gráfico 1-4: | Chumacera lado libre desalineado a 2500 rpm                             | 112 |
| Gráfico 2-4: | Chumacera lado libre alineado a 2500 rpm                                | 113 |
| Gráfico 3-4: | Chumacera lado del acople desalineado a 2500 rpm                        | 115 |
| Gráfico 4-4: | Chumacera lado del acople alineado a 2500 rpm                           | 116 |
| Gráfico 5-4: | Motor lado libre desalineado a 2500 rpm                                 | 118 |
| Gráfico 6-4: | Motor lado libre alineado a 2500 rpm                                    | 119 |
| Gráfico 7-4: | Motor lado acople desalineado a 2500 rpm                                | 121 |
| Gráfico 8-4: | Motor lado acople alineado a 2500 rpm                                   | 122 |

## ÍNDICE DE ANEXOS

- ANEXO A: CATÁLOGO DE RODAMIENTOS DE BOLAS A RÓTULA SKF
- ANEXO B: FACTOR DE CONTAMINACIÓN DEL RODAMIENTO
- ANEXO C: CATÁLOGO DE SOPORTES DE CHUMACERAS BIPARTIDAS SKF
- **ANEXO D:** FACTOR DE SERVICIO DE ACOPLES SKF
- ANEXO E: CATÁLOGO DE ACOPLES FLEXIBLES DE REJILLA SKF
- **ANEXO F:** GUÍA DE LABORATORIO
- ANEXO G: PLANOS

#### RESUMEN

El objetivo del presente es diseñar y construir un banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, para ello se utilizó el diseño conceptual evaluando alternativas que cubran las necesidades del estudiante de la carrera de mecánica, la solución seleccionada está enfocada para que el equipo pueda ser fácilmente operado y realizar la práctica satisfactoriamente. El equipo propuesto consta de: una base para el motor, un acople flexible tipo rejilla, un acople rígido, un eje corto, un eje largo, dos chumaceras bipartidas y dos discos de balanceo, cada uno de las partes fueron diseñados y seleccionados, cumpliendo con los requerimientos y parámetros de diseño para su correcto funcionamiento. Para la obtención de los datos se realizó pruebas con el equipo desalineado y alineado con el fin de comparar los espectros de vibración en ambos casos. Se realizaron pruebas a tres velocidades:1500, 2000 y 2500 rpm. Para la alineación se utilizó un alineador de ejes TKSA 11 y para la recolección de datos se utilizó un colector CMDT 390. Durante la práctica con el equipo desalineado se observó espectros de vibración con amplitudes altas con valores de velocidad RMS de hasta 6 mm/s y temperaturas de 55°C, al realizar el diagnóstico de vibraciones se determinó espectros relacionados al desalineamiento angular, paralelo y eje doblado. Se concluye que a mayor velocidad de operación el espectro de vibración crece, aumentando su valor de velocidad RMS, temperatura y ruido llegando a calidades de vibración insatisfactoria e inaceptable. Al alinear el equipo estos valores disminuyen drásticamente obteniendo calidades de vibración buena y satisfactoria. Se recomienda realizar pruebas utilizando otro tipo de acoples flexibles a distintas velocidades para poder apreciar el comportamiento del espectro de vibración y como este influye en la máquina.

Palabras clave: < ESPECTRO DE VIBRACIÓN >, < DESALINEACIÓN ANGULAR >, < DESALINEACIÓN PARALELA>, < DESALINEACIÓN MIXTA>, < SEVERIDAD DE VIBRACIÓN>, < ANÁSLISIS DE VIBRACIONES>, < VELOCIDAD RMS>.



#### SUMMARY

The objective of this work is to design and build a test bench for the diagnosis of failures in mechanical systems due to misalignments in flexible couplings through comparative analysis of vibration spectra. For this the conceptual design was used evaluating alternatives that meet the needs of the students in the Mechanics career, the solution is focused on the easy equipment operation and to make the practice satisfactorily. The proposed equipment consists of: a base for the motor, a flexible grid-type coupling, a rigid coupling, a short shaft, a long shaft, two split bearings and two balancing discs, each of the parts were designed and selected complying with the requirements and design parameters for its correct operation. To obtain the data, tests were carried out with the equipment misaligned and aligned to compare the vibration spectra in both cases. Tests were carried out at three speeds: 1500, 2000 and 2500 rpm. A TKSA 11 axis aligner was used for the alignment and a CMDT 390 collector was used for data collection. During the practice with the misaligned equipment, vibration spectra with high amplitudes with RMS velocity values of up to 6 mm / s were observed. Temperatures of 55  $^{\circ}$  C, when performing the vibration diagnosis, spectra related to angular and parallel misalignment and bent axis were determined. It is concluded that at higher operating speed the vibration spectrum grows, increasing its value of RMS speed, temperature, and noise, reaching unsatisfactory and unacceptable vibration qualities. When aligning the equipment these values decrease drastically obtaining good and satisfactory vibration qualities. It is recommended to carry out tests using other types of flexible couplings at different speeds to be able to appreciate the behavior of the vibration spectrum and how it influences the machine.

Keywords: < MECHANICAL SYSTEMS >, < VIBRATION SPECTRUM >,

< ANGULAR MISALIGNMENT >, < PARALLEL MISALIGNMENT >, < VIBRATION SEVERITY >, < RMS SPEED>.

### INTRODUCCIÓN

En la industria actual se presenta la enorme necesidad de estudiar las vibraciones mecánicas ya que éstas son las mayores causantes de fallas en elementos mecánicos rotativos, he aquí la necesidad de disponer de equipos que permitan simular y detectar el comienzo de una futura falla o avería ya desarrollada en elementos de máquinas como consecuencia de vibraciones y a la par conocer las herramientas necesarias para analizar las causas del problema y corregirlas.

El presente trabajo de integración curricular tiene como objetivo principal diseñar y construir un banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, para lograr este objetivo se realizaron una serie de actividades que ayudaron a la sustentación del tema y al éxito de las prácticas de laboratorio con el banco de pruebas.

La importancia del tema de este trabajo de integración curricular radica en la generación de material científico y didáctico para los estudiantes de la carrera de Mecánica ya que podrán observar en la práctica los fenómenos estudiados en cátedras como Diseño de elementos de máquinas, Vibraciones, Mantenimiento Industrial, etc. ya que el banco de pruebas les permitirá aprender las técnicas para resolver desalineamientos que es una de las fallas más comunes encontradas en la industria y finalmente fomentar su interés investigativo.

Para el desarrollo del trabajo de integración curricular se estudia y caracteriza los espectros de vibración esperados por desalineamientos angular, paralelo y mixto y se lo compara con los espectros brindaros por la carta de Charlotte para finalmente corregir el desalineamiento y obtener las conclusiones pertinentes.

En el capítulo I se da a conocer el diagnóstico del problema en donde se listan los antecedentes, delimitaciones y objetivos de la investigación. En el capítulo II se presenta la revisión de la literatura y antecedentes teóricos en donde se da a conocer a profundidad sobre los tipos de desalineamientos, los problemas que ocasiona dichos desalineamientos, tipos de acoples, análisis de espectros de vibración y finalmente se analiza el banco de pruebas. En el capítulo III se da a conocer la metodología utilizada en el diseño, construcción y montaje del banco de pruebas, el análisis de costos, protocolo de pruebas y el análisis comparativo de espectros de vibración. Finalmente, en el capítulo IV se presenta las conclusiones y recomendaciones obtenidos de la investigación para culminar con éxito el trabajo de integración curricular.

### **CAPÍTULO I**

### 1 DIAGNÓSTICO DEL PROBLEMA

### **1.1** Antecedentes

Uno de los campos en el mundo de la ingeniería mecánica que ha crecido inmensurablemente es el mantenimiento, por lo tanto, el estudio de vibraciones mecánicas se ha convertido en algo esencial para el estudiante y futuro ingeniero ya que el buen funcionamiento de la maquinaria y elementos de máquinas está directamente relacionado en la mayoría de los casos con su comportamiento vibratorio. El banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, permite evidenciar estos fenómenos de forma sencilla a la par que permite generar experimentos o prácticas controladas, compuestos de mecanismos que permiten observar la mayor cantidad de fenómenos vibratorios al realizar pruebas de desalineamientos (Moreno y Martínez, 2015: p.12).

Actualmente no existe un laboratorio en la carrera de mecánica, equipado para realizar ensayos de desalineación en acoples flexibles por medio de análisis comparativo de espectros de vibración, por lo que se hace necesario para brindar al estudiante el conocimiento teórico-práctico y para el futuro profesional de la carrera de mecánica que corregirá fallas asociadas a esta temática en un ambiente de trabajo.

### 1.2 Delimitación

### 1.2.1 Delimitación espacial

El presente proyecto se desarrolla en la carrera de mecánica de la Escuela Superior Politécnica del Chimborazo, en la ciudad de Riobamba, provincia de Chimborazo.

#### **1.2.2** Delimitación sectorial

En base al plan nacional de desarrollo 2017-2021 denominado plan toda una vida, el desarrollo de este trabajo de integración curricular apoyará el acceso a todos los niveles de educación contribuyendo así a uno de los ejes establecidos en dicho plan como es impulsar la productividad y competitividad para el crecimiento económico sostenible.

### 1.3 Formulación del problema

Hoy en día la mayoría de fallas en elementos de máquinas se debe más por desbalance y desalineación mecánico que por un mal diseño, como la mayoría de máquinas están constituidas por elementos rotativos como acoples, el análisis de sus comportamientos ante vibraciones es fundamental para el buen desempeño de una máquina, por ende, evitar fallas que en ocasiones son irreversibles y acortan la vida útil del elemento.

La ingeniería recurre a métodos para verificar la condición actual o detectar señales de alarma de problemas en elementos de máquinas mediante el banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, esto permitirá al estudiante de la carrera de mecánica identificar fenómenos de desalineación y vibraciones para que se ejecuten acciones de proyección para compensar estos efectos (García, 2003, p.16).

### 1.4 Objetivos

### 1.4.1 *Objetivo general*

Diseñar y construir un banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración.

### **1.4.2** *Objetivos específicos*

- Analizar el estado del arte de fallas en sistemas mecánicos debidos a desalineamientos en acoples flexibles.
- Diseñar y seleccionar los componentes para el banco de pruebas.
- Construir el banco de pruebas.
- Analizar los espectros de sistemas mecánicos con y sin desalineamiento en acoples flexibles.
- Generar una guía didáctica para el correcto uso del banco de pruebas por parte de estudiantes de la carrera de mecánica en prácticas de laboratorio.

### **CAPÍTULO II**

#### 2 **REVISIÓN DE LA LITERATURA O FUNDAMENTOS TEÓRICOS**

#### 2.1 Desalineación

La desalineación, al igual que el desequilibrio, es una de las principales causas de vibración de la maquinaria, puede ser definida como la condición en la que la línea central geométrica de dos ejes acoplados no coincide con el eje de rotación. Algunas máquinas han sido incorporadas con cojinetes autoalineables y acoplamientos flexibles que pueden soportar bastante desalineación. Sin embargo, a pesar de esto, no es raro encontrar altas vibraciones debido a la desalineación. (Ezzat, 2017, p.16). Existen tres tipos de desalineación:

#### 2.1.1 Desalineación angular

Se produce cuando la línea central de los dos ejes motriz y conducido forman un ángulo entre sí. La presencia de una fuerte vibración axial a 1x RPM caracteriza este tipo de desalineación, que puede ir acompañada de armónicos de la velocidad de rotación del eje con amplitudes bajas (Fernandez, 2020).

Características:

- Fuerte vibración axial a 1x RPM posiblemente con armónicos 2x y 3x.
- El armónico de 2x RPM en la dirección axial puede alcanzar un valor igual o incluso superior a 1x.
- Vibración en dirección radial, probablemente de menor amplitud que en dirección axial, en 1x, 2x y 3x.
- Las medidas de fase axial en ambos lados del acoplamiento están desfasadas 180°.



Figura 1-2. Desalineación angular Fuente: (Fernandez, 2020) 3

### 2.1.2 Desalineación paralela

En una desalineación paralela la línea central del eje de las dos máquinas es paralela entre sí y tiene un desplazamiento. Tiene lecturas de vibración similares a la desalineación angular, excepto que tiene una alta vibración radial que alcanza 180 ° fuera de fase a través del acoplamiento. Cuando predomina la desalineación paralela, 2 es a menudo mayor que 1, pero su amplitud relativa a 1 a menudo puede estar determinada por el tipo de acoplamiento y su construcción. La construcción del acoplamiento a menudo influirá significativamente en la forma del espectro si la desalineación es severa (Ezzat, 2017, p.17).

Cuando hay una desalineación angular o radial severa, pueden ocurrir armónicos más altos entre 4x y 8x.



Fuente: (Ezzat, 2017, p.17)

### 2.1.3 Desalineación mixta

Es la más común de las situaciones, la línea central del eje de las dos máquinas tiene la desalineación paralela y angular de los dos tipos anteriores (DMC, 2019).



Figura 3-2. Desalineación mixta

Fuente: (DMC, 2019)

### 2.2 Problemas causados por desalineación

La desalineación del eje es responsable de hasta el 50 % de todos los costos relacionados con las averías de la maquinaria rotativa. La alineación precisa de los ejes puede evitar una gran cantidad

de averías de la maquinaria y reducir gran parte del tiempo de inactividad no planificado que resulta en una pérdida de producción (Ely y Vietsch, 2011).

La desalineación normalmente se manifiesta con una fuerte vibración en las direcciones axiales y radiales produciendo niveles de vibración muy elevados en las proximidades del acoplamiento que pueden llegar a precipitar la degradación de los rodamientos, el desgaste del acoplamiento, la rotura de pernos, el sobrecalentamiento excesivo del sistema conductor por un aumento del consumo eléctrico, etc. (Dynamox, 2018).



Figura 4-2. Consecuencias comunes en componentes mecánicos debido a desalineamiento Fuente: (Dynamox, 2018)

### 2.3 Acoplamientos

Son dispositivos mecánicos que se utilizan para transmitir potencia / par de un eje a otro, además son capaces de transmitir cargas axiales de empuje entre máquinas y cualquier crecimiento axial que pueda ocurrir debido a la alta temperatura. Existen dos clases generales de acoplamientos: rígidos y flexibles (Mott, 2006, p.513).

### 2.3.1 Acoplamientos rígidos

Los acoplamientos rígidos son un tipo de acoplamiento que solo debe utilizarse cuando los ejes están alineados con precisión, no sólo en el momento de la instalación, sino también durante el funcionamiento de las máquinas. Si existe desalineamiento angular, radial o axial apreciables, se inducirán esfuerzos, los cuales pueden causar falla prematura por fatiga en los ejes y aumentar las cargas en los rodamientos (Baviskar, 2018).

### 2.3.2 Clasificación acoplamientos rígidos

Hay tres tipos principales de acoplamientos rígidos: manguito, abrazadera y bridado.

### 2.3.2.1 Acoplamiento de manguito

No son más que una especie de cilindro / tubo hueco y grueso llamado manguito. Cuentan con dos o más orificios roscados en el manguito. Además, el chavetero y la chaveta garantizan que el eje y el manguito no se deslicen. No admiten alineaciones y se utilizan donde la capacidad de carga de trabajo es ligera a mediano (Baviskar, 2018).

### 2.3.2.2 Acoplamiento de abrazadera

Formados por 2 piezas y utilizados para conectar ejes del mismo diámetro. El acoplamiento está enclavado en ambos ejes con pernos. Aquellos permiten una instalación y desinstalación rápida y sencilla. Se utilizan para cargas de trabajo medio a pesado con velocidad moderada (mech4study, 2018).

### 2.3.2.3 Acoplamiento de disco

Consta de 2 bridas a cada lado, ambas tienen un número igual de orificios roscados para atornillar, se unen con tornillos y tuercas. También se cuentan con una sección clave en el cubo y los ejes para que no haya una condición de deslizamiento. Se utilizan para aplicaciones industriales de servicio mediano y pesado (Baviskar, 2018).



**Figura 5-2.** Acoplamientos rígidos: a) manguito b) abrazadera c) disco **Fuente:** (mech4study, 2018)

### 2.3.3 Acoplamientos flexibles

La alineación perfecta entre ejes es inevitable, los acoplamientos rígidos suelen llevar a roturas por fatiga, sobrecalentamiento de los cojinetes y otras, mismas se pueden evitar utilizando acoplamientos flexibles (Faires, 1995, p.382). Los acoplamientos flexibles se utilizan para transmitir par torsional uniformemente, además permitir cierto desalineamiento axial, radial y angular.

Algunos acoplamientos necesitan lubricación para evitar el calentamiento, algunos pueden tolerar mayor desalineación que otros, intencionadamente o no, pero todos ellos actúan mejor con buena alineación. Por lo tanto, los ejes deben estar lo más alineado posible; para que el acoplamiento puede compensar la desalineación no intencionada (asentamiento de pavimentos) y la desalineación inevitable (debida a cambios de temperatura, deformación, desgaste de los cojinetes, etc.) (Faires, 1995, p.383). Se puede diferenciar entre acoplamientos flexibles metálicos y acoplamientos con un elemento elástico (UNE, sf).

### 2.3.4 Acoplamientos flexibles metálicos

La transmisión de potencia se realiza mediante componentes metálicos.

### Características:

- Más rígido a la torsión en comparación con los acoplamientos elastoméricos
- Ofrece la mejor relación par-diámetro con una mayor densidad de potencia
- Oferta más competitiva (por capacidad de par)
- Excelente rango de temperatura (generalmente limitado por el material del sello de aceite)
- Buena resistencia química

### 2.3.4.1 Acoplamiento de rejilla

En aplicaciones de alto rendimiento (kW) y alto par donde se producen vibraciones, cargas de impacto y desalineación, los acoplamientos de rejilla son una excelente opción. El diseño de la rejilla y los dientes del cubo permite que estos acoplamientos se adapten al movimiento y las tensiones de los tres planos, lo que puede reducir los niveles de vibración hasta en un 30%. El elemento de rejilla cónico está fabricado con una aleación de acero de alta resistencia. La rejilla, que es el componente de desgaste principal del acoplamiento, está diseñada para un reemplazo rápido y fácil (SKF, 2018).

### 2.3.4.2 Acoplamiento de engrane

Es un acoplamiento de servicio pesado con una increíble flexibilidad de diseño. Los valores de par de torsión muy altos, junto con capacidades de orificio inigualables, le dan a este acoplamiento

una gran ventaja sobre otros tipos de acoplamientos. El diseño de la coronación de los dientes de los acoplamientos de engranajes reduce drásticamente el juego y el juego radial (SKF, 2018).

### 2.3.4.3 Acoplamiento de disco

El acoplamiento de disco es la solución en aplicaciones de par medio a alto que requieren rigidez torsional, ofrecen cierta tolerancia para la desalineación y no requieren lubricación, está disponible en dos versiones básicas: disco único y doble disco. Las unidades de un solo disco solo pueden admitir desplazamiento angular. Las unidades de paquete de doble disco, con un espaciador, permitirán un desplazamiento angular, paralelo o combinado (SKF, 2018).

### 2.3.4.4 Acoplamiento de cadena

Pueden transmitir un par más alto que sus ejes, ideales para aplicaciones de alto par. Las bridas están unidas entre sí con cadenas de rodillos dúplex que les permiten adaptarse a una desalineación de hasta 2 °. Para proporcionar la máxima vida útil y confiabilidad, se debe instalar con una cubierta y lubricarlos adecuadamente. Si se va a someter a operaciones de inversión, golpes o cargas pulsantes u otras condiciones de funcionamiento severas, seleccione un acoplamiento de un tamaño más grande de lo normal (SKF, 2018).



**Figura 6-2.** Acoplamientos flexibles metálicos **Fuente:** (SKF, 2018)

### 2.3.5 Acoplamientos flexibles con elemento elástico

La transmisión de potencia se realiza mediante un componente flexible ubicado entre los mangones o las partes metálicas (SKF, 2018).

### Características:

- Torsionalmente suave
- No requiere lubricación
- Generalmente menos costoso (para capacidades de torque similares) que los acoplamientos metálicos
- Suelen tener elementos o elastómeros reemplazables en campo

### 2.3.5.1 Acoplamiento flexible

Están diseñados para adaptarse a cargas de choque y desalineación y amortiguar los niveles de vibración. Son acoplamientos fáciles de instalar y que no requieren mantenimiento. Constan de dos bridas y un neumático. Las bridas están recubiertas de fosfato para mejorar la resistencia a la corrosión (SKF, 2018).

### 2.3.5.2 Acoplamiento de mordaza

Los acoplamientos de mordaza proporcionan una solución rentable para aplicaciones de potencia estándar, amortiguando cargas de impacto moderadas y amortiguando los niveles bajos de vibración (SKF, 2018).

### 2.3.5.3 Acoplamiento FRC

Con una mayor capacidad de carga que los acoplamientos de mordaza y un funcionamiento sin mantenimiento, están diseñados como acoplamientos de uso general. Pueden amortiguar cargas de impacto moderadas, amortiguar los niveles bajos de vibración y adaptarse a la desalineación incidental. Están recubiertos de fosfato para mejorar la resistencia a la corrosión y están disponibles con elementos resistentes al fuego y antiestáticos (SKF, 2018).



Figura 7-2. Acoplamientos flexibles con elementos elásticos: a) flexible b) mordaza c) FRC Fuente: (SKF, 2018)

### 2.3.6 Juntas universales

Cuando una aplicación necesita adaptarse a desalineamientos mayor que los tres grados que suelen permitir los acoplamientos flexibles, se usa con frecuencia una junta universal. Se utilizan comúnmente para aplicaciones industriales, todoterreno y agrícolas de par bajo a medio. Estos acoplamientos ofrecen una solución económica para aplicaciones de hasta 1800 r / min y proporcionarán ángulos de trabajo de hasta 25 ° o 35 ° para accionamientos manuales (Mott, 2006, p.517).



**Figura 8-2.** Componentes de una junta universal **Fuente:** (Mott, 2006)

### 2.4 Tolerancias de alineación para acoplamientos flexibles

"Para que un acoplamiento flexible acepte una desalineación tanto paralela como angular, debe haber al menos dos puntos a lo largo de los ejes proyectados del eje donde el acoplamiento pueda flexionarse o articularse para adaptarse a la condición de desalineación" (Piotrowski, 2006, p. 343).

La potencia de rotación de un eje se transfiere a otro eje a través de estos puntos de flexión. Estos puntos nexos también se conocen como planos de flexión o puntos de transmisión de potencia. Si hay más de dos puntos de flexión, habrá una cantidad considerable de movimiento incontrolado entre los dos ejes conectados, lo que normalmente dará como resultado niveles de vibración muy altos en la maquinaria.



Figura 9-2. Puntos flexibles en las posiciones vertical y horizontal de un eje Fuente: (Piotrowski, 2006, p.343)

Hay tres factores que afectan las tolerancias de alineación de la maquinaria rotativa: la velocidad del tren de transmisión, la desviación máxima en el punto contiguo o en el punto de transmisión y recepción de energía, y la distancia entre los puntos de flexión o puntos de transmisión de energía. La última parte de la definición de desalineación del eje es probablemente la más difícil de lograr y, por lo general, el único aspecto de la alineación que a menudo se ignora (Piotrowski, 2006, p. 343).

Las tolerancias sugeridas que se muestran a continuación son valores generales basados en más de 20 años de experiencia en alineación de ejes y no deben excederse. Solo deben usarse si no se prescriben otras tolerancias en las normas internas existentes o por el fabricante de la máquina. En la mayoría de los casos, un observación rápida a la tabla le indicara si la desalineación del acoplamiento está permitida o no (Ludeca, 2002, p. 63).

|                                  |            |                     | Tolera | ncias     |              |
|----------------------------------|------------|---------------------|--------|-----------|--------------|
|                                  | [RPM]      | métricas            | (mm)   | pulgadas  | (mils)       |
| Pie cojo                         | cualquiera | 0.06 mm             |        | 2.0 mils  |              |
| Acoplamiento corto flexible      |            | Aceptable Excelente |        | Aceptable | Excelente    |
|                                  |            | OK                  |        | OK        |              |
| Paralelo                         | 600        | 6. No. 1            | 0      |           | 5.0          |
|                                  | 750        | 0.10                | 0.09   | 9.0       | 5.0          |
|                                  | 900        | 0.19                | 0.09   | 6.0       | 3.0          |
|                                  | 1200       |                     |        | 4.0       | 3.0          |
|                                  | 1500       | 0.09                | 0.06   | 4.0       | 2.3          |
|                                  | 1800       | 0.05                | 0.00   | 3.0       | 2.0          |
|                                  | 3000       | 0.06                | 0.03   | 210       |              |
|                                  | 3600       | 0.00                | 0.05   | 1.5       | 1.0          |
|                                  | 6000       | 0.03                | 0.02   |           |              |
| Angularidad                      | 7200       |                     |        | 1,0       | 0,5          |
| (Correspondiente a la diferencia |            |                     |        |           | 11.125-123.1 |
| entre los bordes del             | 600        |                     |        | 15,0      | 10,0         |
| acoplamiento por cada 100        | 750        | 0,13                | 0,09   |           |              |
| milimetros o cada 10 pulgadas    | 900        |                     |        | 10,0      | 7.0          |
| de diámetro del acople)          | 1200       |                     |        | 8,0       | 5,0          |
| -+++=-                           | 1500       | 0,07                | 0,05   |           |              |
|                                  | 1800       | 1.0000              |        | 5,0       | 3,0          |
|                                  | 3000       | 0,04                | 0,03   |           |              |
|                                  | 3600       |                     |        | 3,0       | 2,0          |
|                                  | 6000       | 0,03                | 0,02   | 0-12491   |              |
|                                  | 7200       |                     |        | 2,0       | 1,0          |

Tabla 1-2: Tolerancias de desalineamiento recomendadas según Ludeca.

Fuente: (Torres, 2013)

### 2.5 Análisis de vibración

El análisis de vibraciones permite obtener un conocimiento más profundo sobre el estado de la maquinaria, frente a otros métodos este puede identificar problemas antes de que se vuelvan demasiado graves y provoquen una falla catastrófica. Debido a que estos diagnósticos se llevan a cabo mientras la maquinaria está en funcionamiento, no es necesario ningún tiempo de inactividad mientras se realizan los diagnósticos. Con una supervisión regular de la vibración se puede detectar diversidad de fallas entre los cuales se pueden resaltar: rodamientos deteriorados o defectuosos, aflojamiento mecánico, engranajes desgastados o rotos (Paredes, 2018, p.44).

### 2.5.1 Vibraciones generadas por desalineación

La desalineación entre dos ejes acoplados produce fuerzas en los cojinetes que dependen en gran parte de la precarga rotativa y de la rigidez del eje, en la mayoría de los casos estas fallas son difíciles de solucionar ya que es fundamental conocer y tener claro varios aspectos y variables como el tipo de cojinete, las especificaciones técnicas del acople, las limitaciones del equipo de alineación, el tipo de vibración que se produce con las diferentes variaciones de desalineación que existe, etc. (ASME, 2014).



Figura 10-2 Vibración axial a 1 RPM por desalineamiento angular Fuente: (ASME, 2014)

Según ASME (2014), en su investigación llamada "Análisis Vibracional en Equipos Rotativos y Mantenimiento Predictivo", cuando existe un desalineamiento angular se presenta una vibración axial que tiene una frecuencia de 1 RPM, como se observa en la figura 11-2 como referencia se considera un eje rígido y un pin del acoplamiento en el cual por cada giro del eje rígido, el eje flexible presenta un ciclo de movimiento axial por consecuencia el eje deflexionado vibra axialmente en cantidades importantes.

En el caso de un desalineamiento paralelo, existe una vibración radial y tiene una frecuencia de 2 RPM, en la figura 11-2 se observa un eje rígido y un pin del acoplamiento de referencia en el cual por cada giro del eje rígido el eje flexible presenta dos ciclos de movimiento radial, en el escenario de un severo desalineamiento se puede producir vibraciones a 3 RPM, estas vibraciones se producen en la dirección del desalineamiento por tanto si el desalineamiento paralelo es vertical, la consecuente vibración también será en la dirección vertical (ASME, 2014).



Figura 11-2 Vibración radial a 2 RPM por desalineamiento paralelo Fuente: (ASME, 2014)

La desalineación en el acople producirá niveles de vibración muy elevados en las proximidades de la junta que pueden llegar a acelerar la degradación de los componentes, por lo que es conveniente corregirla antes de que se produzcan daños más considerables en los elementos de máquinas. En cualquier escenario, mientras mayor es el grado del desalineamiento, mayor es el nivel de vibraciones a causa de ello. Al acoplar rotores desalineados, mediante cualquier tipo de acople, se producen fuerzas sobre cada machón de la junta (acción y reacción). La magnitud de estas fuerzas depende, entre gran parte, de las características físicas del acoplamiento y del grado de desalineamiento existente (ASME, 2014).

### 2.5.2 Respuesta vibracional

La vibración es un indicio de una situación normal o anormal de una máquina, es decir, toda máquina genera vibraciones en su actividad tradicional, pero cuando uno de sus componentes falla las características de estas vibraciones cambian, los cuales mediante un estudio y procedimiento especifico permite identificar el tipo y lugar de esta falla, lo que facilita su rápida reparación o su respectivo mantenimiento preventivo.
La representación más simple de una vibración es el movimiento que percibe una masa suspendida de un resorte cuando es soltado desde una distancia cualquiera, la masa se mueve por arriba y por debajo del punto de equilibrio, por lo tanto se puede decir que el resorte de la figura 12-2 experimenta un movimiento armónico simple (Olarte et al., 2010: p.219).





Durante el movimiento la masa realiza un desplazamiento que representado en función del tiempo es de forma sinusoidal que se muestra en la figura 13-2



Figura 13-2. Desplazamiento en función del tiempo Fuente: (Olarte et al., 2010: p.220)

Los parámetros más importantes de las vibraciones son las siguientes:

- Desplazamiento: es la cantidad de movimiento que la masa realiza con respecto a su posición de equilibrio.
- Periodo: es el tiempo que emplea la masa en completar un ciclo.

- Frecuencia: es el número de ciclos por unidad de tiempo.
- Velocidad: es la relación de cambio de posición con respecto al tiempo.
- Aceleración: es la relación de cambio de velocidad con respecto al tiempo.

Como las máquinas son un conjunto de varias piezas las vibraciones que experimentan éstas es la suma de todas las señales de vibración que provienen de cada una, en la figura 14-2 se observa una señal de vibración producida por cualquier máquina (Olarte et al., 2010: p.220).



**Figura 14-2.** Señal de vibración en una máquina cualquiera **Fuente:** (Olarte et al., 2010: p.220)

Ya que las señales de vibraciones son complejas es necesario transformarlas en señales más sencillas para simplificar la interpretación y el análisis, mediante la Transformada Rápida de Fourier (FFT), la cual capta la señal en el tiempo, la transforma en una serie de ondas sinusoidales y finalmente las conduce al dominio de la frecuencia. Para el caso particular del desalineamiento se considera que por cada giro del eje con desalineamiento paralelo en sólo una de sus direcciones radiales (caso más general) en consecuencia se producirá una componente con el pico igual a la velocidad de giro de la máquina (Fig.15-2.a), posteriormente y debido a la variación en la rigidez del acoplamiento producto del desalineamiento, se genera una segunda componente al doble de la fundamental (2 eventos por cada vuelta del eje) como se observa en la Fig. 15-2 b. Al sumar ambas componentes (Fig.15-2 c), se obtiene como resultado una gráfica de forma extraña y compleja cuyas ondas dependen de la relación de fase entre una componente y la otra. Mediante la FFT se logra transformar esta señal en el tiempo al dominio de la frecuencia. (Torres, 2013, p.20).



Figura 15-2 Generación de la onda compleja (c) y su respuesta en frecuencia debido a las componentes del desalineamiento Fuente: (Torres, 2013)

## 2.5.3 Espectro vibratorio del desalineamiento

Según ASME (2014), "El espectro es un gráfico de los niveles de vibración versus la frecuencia", el análisis de vibraciones básicamente consiste en buscar en el espectro las frecuencias coincidentes y frecuencias conocidas de la máquina con las frecuencias de las vibraciones medidas. Cualquier medidor típico de vibraciones proporciona la forma de onda de la vibración y un espectro como se observa en la gráfica 1-2



**Gráfico 1-2.** Señal de vibración en una máquina cualquiera **Fuente:** (ASME, 2014)

En la gráfica en la parte superior se observa el espectro en el cual se diferencia con mayor facilidad la amplitud y la frecuencia de dos vibraciones que en la forma de onda en el tiempo, por lo tanto, es necesario el espectro para un análisis más acertado.

La forma de onda en el tiempo es igual de importante ya que da un indicio básico de la condición de la máquina, por ejemplo la vibración debido a desalineamiento produce pulsos importantes en la forma de onda, la vibración debido al desbalanceo produce una onda sinusoidal y el ruido en bombas son vibraciones aleatorias, por lo tanto, produce formas de ondas con patrones distintos (ASME, 2014).



**Figura 16-2.** Tipos de forma de onda para diferentes escenarios **Fuente:** (ASME, 2014)

#### 2.6 Máquina para diagnóstico de fallas por vibraciones

El análisis de vibraciones en maquinaria rotativa, es una de las técnicas predictivas de mayor alcance para conocer el estado dinámico-mecánico de las máquinas. Su uso en la industria es cada vez más popular y la tecnología para la toma de datos es cada vez más exequible.

# 2.6.1 Componentes principales de un banco de diagnóstico de fallas en sistemas mecánicos por desalineamiento en acoples flexibles por medio de técnicas de vibración

La máquina general de ensayo de desalineamiento consta de una base rígida que hace de bancada para la máquina en general, sobre ella se encuentran varios dispositivos como lo son: un motor, un eje, dos chumaceras bipartidas, el instrumento de medición de vibraciones, dos discos de balanceo, un acople flexible y un acople rígido. **Bancada.** - La bancada o base es la parte estructural de la máquina, la cual está diseñada para albergar a los demás componentes, así como también de resistir los esfuerzos que se producen debido a la acción misma del ensayo. Cuenta con soportes anti vibratorios para evitar la transición de vibraciones al suelo.

**Motor.** -Motor trifásico 1 HP @ 3600 rpm, reposa sobre una base con perillas, que facilita las tareas de alineación.

**Base escualizable para alineamiento y soporte del motor. -** base con perillas, que facilita las tareas de alineación.

Acople rígido. - para la extensión de eje de motor.

Acople flexible. - con sistema tipo mordazas y rejilla que permite conectar ejes de manera rápida

Eje. – un eje largo en acero inoxidable para discos de balanceo y demás componentes.

**Discos de balanceo con abrazaderas.** – dos discos de balanceo con perforaciones roscadas para rápido montaje de masas. Los discos pueden ser desplazados axialmente a necesidad del estudiante.

**Guarda en acrílico para los discos de balanceo.** - proporciona protección para los estudiantes ante un posible incidente con las masas que se acoplan en el disco de balanceo.

**Chumaceras bipartidas.** - Dos chumaceras bipartidas para montaje rápido de ejes. El mecanismo para instalación de rodamientos, no requiere de prensas, calentamiento, ni golpes para su correcta instalación.

Tornillería, tuercas y arandelas. - en acero inoxidable para el acople de todos los mecanismos.

**Instrumentos de medición.** - Independientemente si los instrumentos de medición se basen en principios físicos o si son electrónicos, existen dos variables indispensables en un análisis de vibraciones y alineaciones. Para ello los instrumentos de medición utilizados en la máquina deben permitir medir ambas variables.

# 2.6.2 Funcionamiento del banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración

El banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, basa su fuente de potencia en un motor trifásico, unido al motor existe un eje al cual se le transmitirá el movimiento; este eje esta unido al motor por medio de un acople flexible tipo rejilla; solidario al eje, se tiene dos discos que deberán estar completamente balanceados, estos discos llevan una serie de orificios los cuales estarán roscados para poder adicionar o quitar masa por medio de pernos con el fin de poder desbalancear la máquina; estos discos van unidos al eje por medio de manguitos de fijación (González et al., 2005: p.101).

El motor se encuentra sobre una mesa que contiene un sistema de perillas para poder desalinear el eje con respecto al acople, todos los elementos estarán sobre una mesa de varios carriles en forma de T invertida para desplazar todos los elementos según el caso de la práctica de laboratorio a realizar. La mesa general y todos los elementos debe tener un sistema anti vibratorio para evitar que todo el sistema entre en resonancia, se colocará caucho por debajo de cada componente.



**Figura 17-2.** Esquema del banco de pruebas para el diagnóstico de fallas **Fuente:** (González et al., 2005: p.101)

El banco de pruebas está diseñado para un ensamble fácil y practico, sus piezas pueden intercambiarse con el uso de llaves y sin golpes evitando su desajuste y facilitando la repetitividad entre prácticas en diversas configuraciones, además, permite experimentar con sus mejores y peores condiciones de operación para aprender a predecir fallas y finalmente está inspirado en la estrategia educativa de aprender haciendo lo que permite construir conocimientos en las técnicas predictivas o de monitoreo de condiciones a través de la experimentación, la exploración y el

trabajo colaborativo, personalizado y dinámico para la academia y la industria, por tanto esta máquina se convierte en una solución educativa.

## **CAPÍTULO III**

## 3 MARCO METODOLÓGICO

#### 3.1 Función de despliegue de la calidad – QFD

En el presente capitulo se presenta los requerimientos que debe cubrir el banco de pruebas, para ello aremos uso del despliegue de la función de calidad o QFD, posteriormente se realiza un análisis funcional con el fin de generar alternativas de solución que permita cubrir cada una de las funciones que realiza el banco de pruebas; cada una de las alternativas propuestas serán evaluadas hasta conseguir el diseño que mejor satisfaga las necesidades del cliente.

#### 3.1.1 Determinación de las demandas o requerimientos del banco de pruebas

Para identificar los requerimientos o demandas que debe cumplir el banco de pruebas, se ha realizado encuestas a docentes y estudiantes de la carrera de mecánica con experiencia en el área de diseño de elementos de máquinas y vibraciones pudiendo identificar los siguientes requerimientos.

#### 3.1.1.1 Voz del usuario

- Fácil montaje y desmontaje
- Fácil de alineación y desalineación
- Facilidad para la toma de datos
- Fácil mantenimiento
- Tamaño adecuado
- Bajo costo de adquisición y manteniendo
- Peso adecuado
- Seguridad de operación
- Buen acabado
- Transportable
- Múltiples configuraciones
- Materiales resistentes
- Potencia adecuada

Cada uno de los requerimientos o demandas mencionados anteriormente se los clasifica acorde a su afinidad, además se agrupan en tres categorías: Básica (B), Unidireccional (O) y Estimulante (E).

|                      | Fácil alineación y desalineación | В |
|----------------------|----------------------------------|---|
| Maniobrabilidad      | Facilidad para la toma de datos  | В |
| 111111001 upintuu    | Múltiples configuraciones        | E |
|                      | Transportable                    | 0 |
|                      | Materiales resistentes           | 0 |
| Diseño               | Peso adecuado                    | 0 |
|                      | Tamaño adecuado                  | 0 |
|                      | Buen acabado                     | E |
| Mantenibilidad       | Fácil montaje y desmontaje       | 0 |
| 1/1/1////information | Fácil mantenimiento              | 0 |
| Desempeño            | Seguridad de operación           | В |
| Desempento           | Potencia adecuada                | В |
| Costo                | Costo de adquisición.            | 0 |
| 00500                | Costo de mantenimiento           | 0 |

Tabla 1-3: Clasificación de los requerimientos del usuario

## 3.1.1.2 Análisis de competitividad

Para el análisis de competencias se lo realizo con referencia a dos empresas: Gunt Hamburg y Edibon ambas dedicadas a realizar este tipo de banco de pruebas didácticos para la educación técnica e ingeniería.

Competencia 1:



Figura 1-3. Banco de pruebas didáctico para análisis de vibraciones marca Gunt Hamburg

Fuente: (Gunt Hamburg, 2020)

| Fabricante:       | Gunt Hamburg                                                                 |  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Origen:           | Alemania                                                                     |  |  |  |  |  |  |  |
| Estructura:       | Placa base de aluminio con ranuras para el montaje rápido y flexible         |  |  |  |  |  |  |  |
|                   | de diferentes sistemas de ensayo 1100x800 mm                                 |  |  |  |  |  |  |  |
|                   | M8-ranuras, espaciamiento 50 mm                                              |  |  |  |  |  |  |  |
| Toma de datos:    | Mediante analizador de vibraciones asistido por PC PT 500.04                 |  |  |  |  |  |  |  |
| Motor:            | Motor asíncrono con convertidor de frecuencia:                               |  |  |  |  |  |  |  |
|                   | Potencia motriz: 0,37kW                                                      |  |  |  |  |  |  |  |
|                   | Número de revoluciones nominal: 2800min-1                                    |  |  |  |  |  |  |  |
|                   | Rango de revoluciones vía convertidor: 1006000min-1                          |  |  |  |  |  |  |  |
| Alineación:       | La placa base del motor está montada sobre un carro de motor, lo que         |  |  |  |  |  |  |  |
|                   | permite alinear el motor en ángulo y transversalmente.                       |  |  |  |  |  |  |  |
| Partes del banco: | - 2 árboles: Ø=20mm, longitud 300mm, 500mm                                   |  |  |  |  |  |  |  |
|                   | <ul> <li>2 volantes desequilibrados: Ø=150mm, 1675g cada uno, con</li> </ul> |  |  |  |  |  |  |  |
|                   | contrapesos recambiables (tornillos)                                         |  |  |  |  |  |  |  |
|                   | - 2 caballetes de cojinetes: 6004 (se pueden cambiar)                        |  |  |  |  |  |  |  |
|                   | - Acoplamiento Control Flex: par nominal: 15Nm                               |  |  |  |  |  |  |  |
|                   | - 1 cubierta protectora                                                      |  |  |  |  |  |  |  |
|                   |                                                                              |  |  |  |  |  |  |  |
| Peso total:       | Peso aproximado total 95Kg                                                   |  |  |  |  |  |  |  |

 Tabla 2-3: Características técnicas de la competencia de mercado empresa Gunt Hamburg

Fuente: (Gunt Hamburg, 2020)

Realizado por: Guananga, D.; Pilco, K. 2020

Competencia 2:



Figura 2-3. Banco de pruebas didáctico para análisis de vibraciones marca Edibon

Fuente: (Edibon, 2020, p.1)

| Fabricante:       | Edibon                                                               |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Origen:           | España                                                               |  |  |  |  |  |  |
| Estructura:       | Mesa ranurada con perfiles de aluminio anodizado de 1100 x 770 mm    |  |  |  |  |  |  |
| Toma de datos:    | El sistema consta de dos sensores de aceleración, un sensor de       |  |  |  |  |  |  |
|                   | revoluciones, un amplificador de medición con grado de amplificación |  |  |  |  |  |  |
|                   | regulable, USB box y el software de análisis.                        |  |  |  |  |  |  |
| Motor:            | Motor asíncrono con variador de frecuencia                           |  |  |  |  |  |  |
|                   | Potencia motriz: 0,37 KW                                             |  |  |  |  |  |  |
|                   | Número de revoluciones nominal: 2800 rpm                             |  |  |  |  |  |  |
|                   | Potencia y velocidad regulable                                       |  |  |  |  |  |  |
| Alineación:       | Carro de desplazamiento que incorpora dos micrómetros para su        |  |  |  |  |  |  |
|                   | alineamiento preciso                                                 |  |  |  |  |  |  |
| Partes del banco: | - 1 acople flexible                                                  |  |  |  |  |  |  |
|                   | - 2 caballetes de cojinetes con rodamientos fácilmente               |  |  |  |  |  |  |
|                   | intercambiables. Rodamientos de bolas 6804-ZZ                        |  |  |  |  |  |  |
|                   | - 2 volantes de inercia con contrapesos recambiables d=150           |  |  |  |  |  |  |
|                   | mm, 1700 g cada uno                                                  |  |  |  |  |  |  |
|                   | - 2 árboles: Ø=20mm, longitud 300mm, 500mm                           |  |  |  |  |  |  |
|                   | - Cubierta protectora transparente, incluye un interruptor de        |  |  |  |  |  |  |
|                   | seguridad que permite parar automáticamente si se abre               |  |  |  |  |  |  |

Tabla 3-3: Características técnicas de la competencia de mercado empresa Edibon

Fuente: (Edibon, 2020, pp. 2-3)

Realizado por: Guananga, D.; Pilco, K. 2020

### 3.1.1.3 Importancia

Se realizo un total de 20 encuestas a docentes y estudiantes de la carrera de mecánica ya que ellos van a usar este banco de pruebas, la encuesta evalúa el nivel de importancia de cada una de los requerimientos presentados en la voz del usuario.

| Valor | Descripción              |
|-------|--------------------------|
| 1     | Sin importancia          |
| 2     | Poco importante          |
| 3     | Relativamente importante |
| 4     | Importante               |
| 5     | Muy relevante            |

Tabla 4-3: Valores nivel de importancia

A continuación, se muestra los resultados obtenidos:

| Tabla 5-3: Evaluación de encuestas rea | lizada | 8 |   |
|----------------------------------------|--------|---|---|
|                                        | 1      | 2 | 2 |

|    |                                  | 1 | 2 | 3 | 4  | 5  | Total | Importancia |
|----|----------------------------------|---|---|---|----|----|-------|-------------|
| 1  | Fácil alineación y desalineación | 0 | 0 | 8 | 9  | 3  | 20    | 4           |
| 2  | Fácil para la toma de datos      | 0 | 0 | 2 | 11 | 7  | 20    | 4           |
| 3  | Múltiples configuraciones        | 0 | 1 | 0 | 11 | 8  | 20    | 4           |
| 4  | Transportable                    | 1 | 2 | 2 | 11 | 4  | 20    | 4           |
| 5  | Materiales resistentes           | 0 | 1 | 2 | 9  | 8  | 20    | 4           |
| 6  | Peso adecuado                    | 0 | 5 | 3 | 10 | 2  | 20    | 3           |
| 7  | Tamaño adecuado                  | 0 | 0 | 2 | 10 | 8  | 20    | 4           |
| 8  | Buen acabado                     | 0 | 3 | 6 | 9  | 2  | 20    | 4           |
| 9  | Fácil montaje y desmontaje       | 1 | 2 | 3 | 5  | 9  | 20    | 4           |
| 10 | Fácil mantenimiento              | 0 | 1 | 4 | 10 | 5  | 20    | 4           |
| 11 | Seguridad de operación           | 0 | 0 | 1 | 9  | 10 | 20    | 5           |
| 12 | Potencia adecuada                | 0 | 2 | 2 | 3  | 13 | 20    | 4           |
| 13 | Costo de adquisición             | 0 | 0 | 6 | 11 | 3  | 20    | 4           |
| 14 | Costo de mantenimiento           | 0 | 0 | 6 | 11 | 3  | 20    | 4           |

Fuente: Propia 2020

Realizado por: Guananga, D.; Pilco, K. 2020

A continuación, se realiza un análisis entre el banco de pruebas que se desea diseñar con bancos de pruebas comerciales existentes en el mercado, además se definen parámetros como:

Índice de mejora: Se calcula de la siguiente manera

$$IM = \frac{Objetivo}{Propia \ Empresa}$$

Factor de venta: Indica cuál de los requerimientos es el que más le impulsa a adquirir el producto al cliente.

| Tabla 6-3: Ponderación | para el factor de venta ( | (FV) |
|------------------------|---------------------------|------|
|------------------------|---------------------------|------|

| Fuerte=1,5  | • |
|-------------|---|
| Posible=1,2 | • |
| Ningún=1    |   |

Fuente: (Riba Romeva, 2002)

Ponderación: El valor de las ponderaciones se determina mediante:

Ponderacion = I \* IM \* FV

Donde:

I: Importancia.

IM: Índice de Mejora.

FV: Factor de Venta.

#### 3.1.1.4 Voz del ingeniero

En este punto, se traduce las demandas del cliente en especificaciones técnicas, a continuación, se indican los requerimientos técnicos para el diseño del banco de pruebas:

- Estructura base
- Sistema de alineación
- Sistema de toma de datos
- Diseño de elementos mecánicos
- Guardas de protección
- Rectificado de piezas
- Selección de elementos mecánicos
- Motor eléctrico

Correlaciones: Nos permiten establecer una relación entre la voz del usuario y la voz del ingeniero, cada una de las características técnicas establecidas en la voz del ingeniero atiende a cada una de los requerimientos del cliente, esta relación se lo realiza a través de un factor de incidencia, en caso de no existir relación se deja el espacio en blanco.

| Fuerte =9 | ۲                  |
|-----------|--------------------|
| Medio=3   | 0                  |
| Bajo=1    | $\bigtriangledown$ |

Tabla 7-3: Factor de incidencia

Fuente: (Riba Romeva, 2002)

Realizado por: Guananga, D.; Pilco, K. 2020

Compromisos técnicos: Ubicada en el techo de la casa de la calidad, evalúa las correlaciones de las especificaciones técnicas establecidas en la voz del ingeniero, se pueden presentar tres casos:

- Positiva: Al mejorar una especificación técnica también mejora la otra
- Negativa: Al mejorar una especificación técnica otra puede verse perjudicada
- Sin correlación: No existe una correlación entre las especificaciones técnicas

| ۲ | Muy Positiva |
|---|--------------|
| 0 | Positiva     |
| × | Negativa     |
| ж | Muy negativa |

Tabla 8-3: Evaluación de encuestas realizadas

Fuente: (Riba Romeva, 2002)

Realizado por: Guananga, D.; Pilco, K. 2020

A continuación, se presenta la casa de calidad evaluado cada uno de los parámetros antes mencionados:

Gráfico 1-3. Función de despliegue de la calidad QFD

|                              |                                                                                   |                  | 1              | $\langle$             | 8                            |                          | Ì                                            | $\diamond$           | $\diamond$                        |                          |            |                      | Muy<br>Pos<br>Neg<br>Muy           | / pos<br>iitiva<br>jativa<br>/ neg | itiva<br>a<br>ativa | 0<br>+<br>×     |                |            |                 |
|------------------------------|-----------------------------------------------------------------------------------|------------------|----------------|-----------------------|------------------------------|--------------------------|----------------------------------------------|----------------------|-----------------------------------|--------------------------|------------|----------------------|------------------------------------|------------------------------------|---------------------|-----------------|----------------|------------|-----------------|
|                              |                                                                                   |                  | $\sim$         | $\sim$                | $\bigtriangleup$             | $\bigcirc$               | $\bigtriangleup$                             | $\Delta$             |                                   | $\bigtriangleup$         | _          |                      | ANAL                               | ISIS D                             | E COR               | MPET            | VIDAD          | 0<br>      |                 |
|                              |                                                                                   |                  |                |                       |                              | icos                     |                                              |                      |                                   |                          | A          | В                    | С                                  | D                                  | Е                   | F               | G              | н          | н               |
|                              |                                                                                   | IIERO            |                | L                     | datos                        | mecán                    | ç                                            |                      | SO                                |                          | EV         | ALUA<br>USU          | CÓN E<br>ARIO                      | DEL                                |                     |                 |                |            |                 |
| B B<br>O U<br>E E            | lásico<br>Inidimensional<br>stimulante                                            | VOZ DEL INGEN    | structura base | istema de alineaciór  | istema de toma de c          | ijseño de elementos      | tuardas de protecció                         | ectificado de piezas | elección de element               | lotor eléctrico          | nportancia | ropia empresa        | UNT HAMBURG                        | DIBON                              | bjetivo             | ndice de mejora | actor de venta | onderación | onderación en % |
| VOZ L                        |                                                                                   |                  | ш              | S                     | S                            |                          | 0                                            | œ                    | S                                 | N                        | =          | ٩.                   | U<br>r                             | ш                                  | 0                   | -               | Ш              | <u>م</u>   |                 |
| Facil all                    | neacion                                                                           | в                |                | •                     | •                            |                          | 0                                            |                      |                                   | _                        | 4          | 1                    | 5                                  | 3                                  | 5                   | 5               |                | 30         | 10.4            |
| Facili pa                    |                                                                                   | в                |                | _                     | U                            | ~                        | 0 is                                         |                      | ~                                 |                          | 4          | 1                    | 5                                  | 5                                  | 5                   | 5               |                | 30         | 10.4            |
| Transport                    | stable                                                                            | E                | 0              | _                     | _                            | 0                        | -                                            |                      | 0                                 | _                        | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               |                | 24         | 8.34            |
| Matasia                      |                                                                                   | 0                |                |                       |                              | 0                        |                                              | _                    | ~                                 | _                        | 4          | 1                    | 3                                  | 3                                  | 4                   | 4               | •              | 19,2       | 0.08            |
| Dese or                      | les resisientes                                                                   | 0                | 0              | _                     |                              | 0                        | <u>0                                    </u> | _                    | 0                                 |                          | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               |                | 10         | 5.00            |
| Tomoño                       |                                                                                   | 0                | 0              | _                     | _                            |                          |                                              | ~                    | _                                 | _                        | 3          | 1                    | 4                                  | 4                                  | 4                   | 4               |                | 14.4       | 5.01            |
| Buona                        | ahada                                                                             | 0                |                |                       |                              | U                        |                                              | 0                    |                                   | -                        | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               |                | 19.2       | 5.56            |
| Eácil m                      | ontaie v desmontaie                                                               | 0                |                | _                     | -                            | **                       | <u>}</u>                                     | •                    | 0                                 |                          | 4          | -                    | 3                                  | 3                                  | 4                   | 4               |                | 10         | 0.30            |
| Fáoil m                      | antonimionto                                                                      | 0                |                | _                     |                              |                          |                                              | _                    |                                   |                          | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               | -              | 10.2       | 0.34            |
| Securid                      | lad de operación                                                                  | •                | -              | _                     | (i)                          |                          | 0                                            | _                    | •                                 |                          | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               |                | 24         | 0.00            |
| Botonoi                      | a adocuada                                                                        | D<br>D           |                |                       | s <u> </u>                   | _                        |                                              |                      | 6 - 3                             |                          | 2          | 1                    | 4                                  | 3                                  | 4                   | 4               |                | 10.2       | 6.60            |
| Costo d                      | a adecuada<br>le adquisición                                                      | 0                | 0              | 0                     | 0                            | 0                        |                                              | _                    | 0                                 | 0                        | 4          | 1                    | 4                                  | 4                                  | 4                   | 4               | -              | 19.2       | 6.26            |
| Costo d                      |                                                                                   | 0                | -              | 0                     | 0                            | 0                        |                                              | _                    | 0                                 | 4                        | 4          | 1                    | 3                                  | 4                                  | 3                   | 3               |                | 14.4       | 5.01            |
|                              | e mantenimiento                                                                   | v                |                | •                     | ų – į                        |                          |                                              | _                    |                                   |                          | 10         |                      |                                    | <b>.</b>                           |                     |                 |                | 287.6      | 100             |
|                              | D                                                                                 | _                | _              |                       |                              |                          | _                                            |                      | _                                 |                          | 1          | F                    | F=E/E                              | 3                                  | H=A                 | .F.G            |                |            | 100             |
|                              | Propia empresa                                                                    | a                | 1              | 1                     | 1                            | 1                        | 1                                            | 1                    | 1                                 | 1                        |            |                      |                                    |                                    |                     |                 |                |            |                 |
|                              | GUNT HAMBUR                                                                       | RG               | 5              | 5                     | 5                            | 5                        | 4                                            | 5                    | 4                                 | 4                        |            |                      |                                    |                                    |                     |                 |                |            |                 |
|                              | EDIBON                                                                            |                  | 5              | 4                     | 5                            | 4                        | 5                                            | 5                    | 4                                 | 4                        |            | -                    |                                    |                                    |                     |                 |                |            |                 |
|                              | Incidencia                                                                        |                  | 644.4          | 338.4                 | 324                          | 567.6                    | 216                                          | 201.6                | 433.2                             | 260.4                    | 2985       | .6                   |                                    |                                    |                     |                 |                |            |                 |
|                              | Incidencia %                                                                      |                  | 21.6           | 11.3                  | 10.9                         | 19                       | 7.23                                         | 6.75                 | 14.5                              | 8.72                     | 100        |                      |                                    |                                    |                     |                 |                |            |                 |
| Factor<br>Fue<br>Mec<br>Baja | r de incidencia<br>rte = 9 $\bigcirc$<br>dio = 3 $\bigcirc$<br>a = 1 $\checkmark$ | ESPECIFICACIONES | Base ranurada  | Base de desalineación | Utilización de acelerometros | Ejes, discos de balanceo | Guardas de acrílico                          | Piezas maquinadas    | Chumaceras, rodamientos y acoples | Motor de 1Hp de potencia |            | Fac<br>Fuer<br>Posil | ctor d<br>te = 1<br>ble =<br>una = | le vei<br>1,5<br>1,2<br>= 1        | e ta                |                 |                |            |                 |

#### 3.1.1.5 Conclusiones de la matriz QFD

Como se puede observar en la matriz QFD existen requerimientos con mayor ponderación que otros, mismos que muestran que características son las más relevantes del banco de pruebas desde el punto de vista del usuario.

| Orden de Valaragión |              | Doquorimionto               | Solución tácnica                |  |  |  |  |  |
|---------------------|--------------|-----------------------------|---------------------------------|--|--|--|--|--|
| importancia         | v aloi acion | Kequelinnento               | Solucion tecinca                |  |  |  |  |  |
| 1                   | 10,4         | Fácil alineación            | Base para alineamiento          |  |  |  |  |  |
| 2                   | 10,4         | Fácil para la toma de datos | Uso de acelerómetros            |  |  |  |  |  |
| 3                   | 8,34         | Múltiples configuraciones   | Partes fácilmente desmontables  |  |  |  |  |  |
|                     |              |                             | e intercambiables               |  |  |  |  |  |
| 4                   | 8,34         | Fácil montaje y desmontaje  | Elementos empernados a la       |  |  |  |  |  |
|                     |              |                             | estructura base                 |  |  |  |  |  |
| 5                   | 8,34         | Seguridad de operación      | Guardas de protección           |  |  |  |  |  |
| 7                   | 6,68         | Tamaño adecuado             | Diseño de elementos mecánicos   |  |  |  |  |  |
|                     |              |                             | como: ejes, discos de balanceo  |  |  |  |  |  |
| 8                   | 6,68         | Fácil mantenimiento         | Chumaceras bipartidas           |  |  |  |  |  |
| 9                   | 6,68         | Potencia adecuada           | Motor con variador de           |  |  |  |  |  |
|                     |              |                             | frecuencia                      |  |  |  |  |  |
| 10                  | 6,68         | Transportable               | Estructura base ranurada        |  |  |  |  |  |
| 11                  | 6,26         | Costo de adquisición        | Selección adecuada de           |  |  |  |  |  |
|                     |              |                             | elementos como: chumaceras,     |  |  |  |  |  |
|                     |              |                             | rodamientos y acoples           |  |  |  |  |  |
| 12                  | 5,56         | Materiales resistentes      | Eje de acero inoxidable AISI    |  |  |  |  |  |
|                     |              |                             | 304                             |  |  |  |  |  |
| 13                  | 5,56         | Buen acabado                | Rectificado de piezas           |  |  |  |  |  |
|                     |              |                             | maquinadas                      |  |  |  |  |  |
| 14                  | 5,01         | Peso adecuado               | Diseño y selección de elementos |  |  |  |  |  |
|                     |              |                             | mecánicos                       |  |  |  |  |  |

 Tabla 9-3: Solución técnica de los requerimientos para el banco de pruebas en orden de importancia

Realizado por: Guananga, D.; Pilco, K. 2020

En cuanto al grado de incidencia el cual nos indica cuales son las características técnicas más importantes se encuentran: correcto diseño y selección de elementos, sistema de alineación y estructura base. Estas características al tener un grado de incidencia alto son las que mayor

precaución se tendrá en la fase de diseño asegurándose que se cumplan con mayor grado de cumplimiento.

#### 3.2 Diseño conceptual

Una vez identificado las características técnicas que tendrá el banco de pruebas se realiza un análisis conceptual, para ello se realiza una estructura funcional en la cual se identifica la función principal que realiza el equipo, posteriormente se definen módulos generando alternativas de solución mismas que serán evaluadas hasta identificar la solución más adecuada.

#### 3.2.1 Estructura funcional

La función principal del banco de pruebas es el diagnostico de fallas en sistemas por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración.



**Figura 3-3.** Análisis funcional del banco de pruebas-Nivel 0 **Realizado por:** Guananga, D.; Pilco, K. 2020

Una vez definida la función global o principal y los flujos de entrada y salida, se establecen las sub funciones necesarias para cumplir con la función principal.



Figura 4-3. Análisis funcional del banco de pruebas-Nivel 1

Realizado por: Guananga, D.; Pilco, K. 2020

## 3.2.2 Estudio de alternativas para la solución del banco de pruebas

Como se puede observar en la figura 4-3 se indican de forma secuencial cada una de las funciones que realiza el banco de pruebas. Estas funciones se pueden cumplir aplicando diferentes alternativas de solución. A continuación, se detalla las alternativas propuestas:

#### 3.2.2.1 Desalineamiento de ejes

Para el desalineamiento de ejes se presenta dos modelos de bases de desalineación.

Modelo uno:

Como se puede observar en la figura 5-3 se muestra un modelo de una base de desalineación compuestas por dos placas de acero que me permite una desalineación radial, angular o mixta mediante un mecanismo de tornillos.



**Figura 5-3.** Base para desalineación modelo uno **Realizado por:** Guananga, D.; Pilco, K. 2020

Ventajas:

- Permite realizar una desalineación angular, radial o mixta
- Fácil uso para el usuario

Desventajas:

- Estructura pesada
- Geometría grande

#### Modelo dos:

El segundo modelo es una base de desalineación más sencilla, su desalineación se la realiza igualmente con mecanismo de tornillo, sin embargo, este modelo solo permite movimiento hacia los lados por lo que únicamente se puede generar una desalineación paralela.



**Figura 6-3.** Base para desalineación modelo dos **Realizado por:** Guananga, D.; Pilco, K. 2020

Ventajas:

- Estructura liviana
- Geometría pequeña en comparación al primer modelo

Desventajas:

- Solo permite desalineación paralela

## 3.2.2.2 Transmisión de potencia al acople flexible

Para la transmisión de potencia entre ejes se utiliza un acople flexible, para este caso se a considerado tres tipos de acoples: rejilla, cadena y mordaza. Cada uno de los acoples mencionados cuenta con ventajas y desventajas mismas que serán consideradas para seleccionar el más adecuado para el banco de pruebas.

Acople de rejilla:



**Figura 7-3.** Acople de rejilla Fuente: (SKF, 2018)

Ventajas:

- Soportan vibraciones, cargas de impacto y desalineación
- Se adaptan al movimiento y a las tensiones en los tres planos
- Reduce los niveles de vibración hasta en un 30%
- La rejilla está diseñada para un reemplazo rápido y fácil

- Fácil instalación

Desventajas:

- Requieren lubricación periódicamente
- Capacidad limitada para adaptarse a la desalineación <=1.4°

Acople de cadena:



Figura 8-3. Acople de cadena Fuente: (SKF, 2018)

Ventajas:

- Pueden desacoplarse fácilmente sin mover los ejes
- Permite adaptarse hasta una desalineación de dos grados

Desventajas:

- Poca absorción de choques y vibraciones
- Requiere lubricación

Acople de mordaza:



Figura 9-3. Acople de mordaza Fuente: (SKF, 2018)

Ventajas:

- Amortigua cargas de impacto moderadas y amortiguamiento de niveles bajo de vibración
- No necesita lubricación
- Aplicaciones en potencia estándar

Desventajas:

- Permite adaptarse hasta una desalineación máxima <=1°

#### 3.2.2.3 Rotación de eje y disco

En cuanto se enciende el motor empieza a rotar el eje mismo que tiene montado un disco de balanceo. Se presenta dos configuraciones con un disco y con dos discos de balanceo:

Con un disco de balanceo:

Como se puede observar el eje se encuentra montado con un disco de balanceo, este disco permite añadir o quitar masas en sus dos hileras de agujeros para poder generar el desbalanceo. Con esta configuración el balanceo se pude realizar en un plano (balanceo estático) (Sánchez et al., 2017: p. 291).



Figura 10-3. Eje y un disco Realizado por: Guananga, D.; Pilco, K. 2020

Ventajas:

- Menor peso
- Un plano de balanceo

#### Desventaja:

- Pocas configuraciones

Con dos discos de balanceo:

La segunda opción muestra una configuración de un eje con dos discos de balanceo, esto permite una mayor cantidad de configuraciones ya que se permite ir intercambiando pesos en dos planos de balanceo (balanceo dinámico) (Sánchez et al., 2017: p.291).



Figura 11-3. Eje y dos discos Realizado por: Guananga, D.; Pilco, K. 2020 35

#### Ventajas:

- Mayor cantidad de configuraciones
- Dos planos de balanceo

#### Desventajas:

- Mayor peso

#### 3.2.2.4 Transmisión de esfuerzos a rodamientos y chumaceras

Al existir un desalineamiento entre ejes se produce esfuerzos axiales y radiales, mismos que son transmitidos a los rodamientos y chumaceras de la estructura, para el diseño del banco de pruebas se propone dos alternativas de solución utilizar chumaceras comerciales o chumaceras fabricadas.

#### Chumaceras comerciales:



### Figura 12-3. Puntos de medición para la monitorización de la condición

Fuente: (SKF, 2009, p.27)

Ventajas:

- Estructura rígida
- Poseen puntos apropiados para la medición mismos que se ajustan a la ISO 10816-1:1995
   "Vibración mecánica. Evaluación de la vibración de la máquina mediante mediciones en piezas no giratorias."
- Amplia gama de chumaceras en el mercado
- Fácil mantenimiento ya que posee orificios taladrados y roscados para las boquillas engrasadoras
- Fácil instalación e intercambio de rodamientos

#### Desventajas:

- Costosas
- Estructura robusta

Chumaceras Fabricadas:



Figura 13-3. Chumacera fabricada Realizado por: Guananga, D.; Pilco, K. 2020

Ventajas:

- Estructura fina
- Dimensiones acordes al banco de pruebas

## Desventajas:

- Costosas
- Difícil de fabricar
- Sus puntos de medición no están sujetos a ninguna norma

#### 3.2.3 Matriz morfológica

Una vez definida las funciones que realizara el banco de pruebas para satisfacer la función principal, se realiza una matriz morfológica en donde se plantean alternativas para cumplir dichas funciones.



 Tabla 10-3: Matriz morfológica de alternativas de solución

Realizado por: Guananga, D.; Pilco, K. 2020

#### 3.2.4 Soluciones propuestas

El banco de pruebas propuesto consta de un motor eléctrico de 1Hp mismo que será el encargado de encender el equipo, además consta de una base de desalineación que permite generar la desalineación entre ejes; están unidos a través de un acople flexible responsable de la transmisión del torque y potencia que se transmite entre ejes. Los ejes utilizados son un eje corto y un eje largo, este último lleva montado uno o dos discos de balanceo. Al encender el motor eléctrico los ejes empiezan a girar junto con los discos de balanceo transmitiendo esfuerzos radiales y axiles

hacia las rodamientos y chumaceras lugar donde se realizará la toma de medidas con el colector de datos. El funcionamiento lo cumplen las tres soluciones propuestas sin embargo se ha propuesto opciones de los componentes que mejor se adapten a este banco de pruebas.

#### 3.2.4.1 Alternativa de solución uno

Como se puede observar el banco de pruebas consta de una base ranurada que permite un fácil montaje y desmontaje de los distintos elementos que lo conforman, además permite un deslizamiento de los mismos a través de sus ranuras lo que facilita un fácil montaje y desmontaje. Consta de un acople flexible de rejilla mismo que transmite potencia y permite un desalineamiento entre los ejes, utiliza dos chumaceras bipartidas comerciales estas servirán como interfaz para la toma de medidas a través del colector de datos.



**Figura 14-3.** Alternativa de solución uno para el banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2020

Ventajas:

- Fácil montaje y desmontaje de los elementos que conforman el banco
- Chumaceras bipartidas que permiten un fácil intercambio de rodamientos y montaje del eje. Las mismas se ajustan a normas de vibración como la ISO 10816-1:1995
- Posee dos discos de balanceo obteniendo así dos planos de balanceo estático y dinámico
- Acople flexible de rejilla soporta desalineación angular y radial además de cargas de impacto. Su capacidad de desalineación máxima es de <=1.4°</li>

- Base de desalineación que permite múltiples configuraciones de desalineamiento gracias a su mecanismo de tornillo

#### Desventajas:

- El acople flexible de rejilla necesita lubricación
- Las chumaceras necesitan apoyos para adaptarse a las dimensiones requeridas

#### 3.2.4.2 Alternativa de solución dos

La segunda alternativa de solución es similar a la primera, sin embargo, esta utiliza dos chumaceras fabricadas acorde a las dimensiones del banco de pruebas. Sobre el eje se encuentra montado un solo disco de balanceo lo que le permite obtener un plano de balanceo. El sistema de desalineación es el mismo que la solución uno sin embargo como se puede notar el acople flexible es un acople tipo cadena.



**Figura 15-3.** Alternativa de solución dos para el banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2020

### Ventajas:

- Fácil montaje y desmontaje de los elementos que conforman el banco
- Chumaceras fabricadas de acuerdo a las dimensiones del banco de pruebas
- Su acople de cadena tiene una capacidad máxima de desalineación <= 2°

Desventajas:

- Solo permite un plano de desbalanceo (estático)
- El acople necesita lubricación
- Limitado soporte a choques de carga por parte del acople

#### 3.2.4.3 Alternativa de solución tres

La última solución propuesta presenta una base de desalineación diferente a las primeras soluciones, esta permite únicamente una desalineación paralela pero su estructura es mucho más liviana que las anterior. Su acople flexible es un acople tipo mordaza por lo que no necesita lubricación, sobre el eje se monta un solo disco de balanceo esto le permite obtener un solo plano de balanceo.



**Figura 16-3.** Alternativa de solución tres para el banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2020

Ventajas:

- Fácil montaje y desmontaje de los elementos que conforman el banco
- Base de desalineamiento más liviana
- Su acople no necesita lubricación

#### Desventajas:

- El acople soporta menos desalineación que los acoples de las anteriores soluciones, su capacidad máxima de desalineación es <=1°</li>
- Solo permite desalineación paralela

## 3.2.5 Evaluación de soluciones

Luego de formular alternativas de solución para el banco de pruebas se realizará una evaluación de cada una de ellas, permitiendo así poder seleccionar la más adecuada. Para la selección de la mejor alternativa se utilizará el método ordinal corregido de criterios ponderados, el cual se basa en tablas que relacionan las soluciones propuestas con criterios de valoración establecidos, evaluando de la siguiente manera (Riba Romeva, 2002):

- 1 si el criterio (o solución) de las filas es superior (o mejor;>) que el de las columnas.
- 0,5 si el criterio (o solución) de las filas es equivalente (o igual=) al de las columnas.
- 0 si el criterio (o solución) de las filas es inferior (o peor;<) que el de las columnas.

#### 3.2.5.1 Criterios de valoración

Los criterios de valoración para el banco de pruebas son los siguientes:

- Estructura base: Debido a que el banco de pruebas debe ofrecer un fácil montaje y desmontaje de los distintos componentes que van montados sobre el mismo.
- Sistema de alineación: Esta es la encargada de permitir la desalineación entre ejes, misma que debe ser capaz de generar los desalineamientos requeridos para la práctica.
- Múltiples configuraciones: Cada uno de los componentes montados en el banco de pruebas como ejes, disco de balanceo y demás elementos deben ser capaz de soportar las cargas generadas durante su uso, además de ofrecer distintas configuraciones.
- Selección de elementos mecánicos: El banco de pruebas va estar sujeto a desalineaciones lo cual conlleva a la correcta selección de rodamientos, chumaceras y acoples ya que estos van a soportar las cargas generadas por dichos desalineamientos además será la interfaz entre el colector de datos y el espectro de vibración.

A continuación, se muestra la evaluación del peso específico de cada criterio enunciado anteriormente:

| Sistema de alineación = Estructura base > Múltiples configuraciones > Selección de elementos |                 |                          |                              |                                        |               |             |
|----------------------------------------------------------------------------------------------|-----------------|--------------------------|------------------------------|----------------------------------------|---------------|-------------|
| mecanicos                                                                                    |                 |                          |                              |                                        |               |             |
| Criterio                                                                                     | Estructura base | Sistema de<br>alineación | Múltiples<br>configuraciones | Selección de<br>elementos<br>mecánicos | $\Sigma^{+1}$ | Ponderación |
| Estructura base                                                                              |                 | 0,5                      | 1                            | 1                                      | 3,5           | 0,35        |
| Sistema de                                                                                   | 0,5             |                          | 1                            | 1                                      | 3,5           | 0,35        |
| alineación                                                                                   |                 |                          |                              |                                        |               |             |
| Múltiples                                                                                    | 0               | 0                        |                              | 1                                      | 2             | 0,2         |
| configuraciones                                                                              |                 |                          |                              |                                        |               |             |
| Selección de                                                                                 | 0               | 0                        | 0                            |                                        | 1             | 0,1         |
| elementos                                                                                    |                 |                          |                              |                                        |               |             |
| mecánicos                                                                                    |                 |                          |                              |                                        |               |             |
|                                                                                              |                 |                          |                              | Suma                                   | 10            | 1           |

| Tabla 12-3: Evaluación del | l peso específico del criterio estructura bas |
|----------------------------|-----------------------------------------------|
|----------------------------|-----------------------------------------------|

| solución $1 =$ solución $2 =$ solución $3$ |            |            |            |             |             |  |  |
|--------------------------------------------|------------|------------|------------|-------------|-------------|--|--|
| Estructura base                            | Solución 1 | Solución 2 | Solución 3 | $\Sigma$ +1 | Ponderación |  |  |
| Solución 1                                 |            | 0,5        | 0,5        | 2           | 0,33        |  |  |
| Solución 2                                 | 0,5        |            | 0,5        | 2           | 0,33        |  |  |
| Solución 3                                 | 0,5        | 0,5        |            | 2           | 0,33        |  |  |
|                                            |            |            | suma       | 6           | 1           |  |  |

Realizado por: Guananga, D.; Pilco, K. 2020

| solución 1 = solución 2 > solución 3 |            |            |            |     |             |  |  |
|--------------------------------------|------------|------------|------------|-----|-------------|--|--|
| Sistema de alineación                | Solución 1 | Solución 2 | Solución 3 | ∑+1 | Ponderación |  |  |
| Solución 1                           |            | 0,5        | 1          | 2,5 | 0,42        |  |  |
| Solución 2                           | 0,5        |            | 1          | 2,5 | 0,42        |  |  |
| Solución 3                           | 0          | 0          |            | 1   | 0,17        |  |  |
|                                      | suma       | 6          | 1          |     |             |  |  |

Realizado por: Guananga, D.; Pilco, K. 2020

| solución $1 >$ solución $2 =$ solución $3$ |            |            |            |     |             |  |  |
|--------------------------------------------|------------|------------|------------|-----|-------------|--|--|
| Múltiples<br>configuraciones               | Solución 1 | Solución 2 | Solución 3 | ∑+1 | Ponderación |  |  |
| Solución 1                                 |            | 1          | 1          | 3   | 0,55        |  |  |
| Solución 2                                 | 0          |            | 0,5        | 1,5 | 0,27        |  |  |
| Solución 3                                 | 0          | 0          |            | 1   | 0,18        |  |  |
|                                            | suma       | 5,5        | 1          |     |             |  |  |

Tabla 14-3: Evaluación del peso específico del criterio múltiples configuraciones

Tabla 15-3: Evaluación del peso específico del criterio diseño de elementos mecánicos

| solución 1 > solución 3 > solución 2 |            |            |            |     |             |  |
|--------------------------------------|------------|------------|------------|-----|-------------|--|
| Selección de elementos mecánicos     | Solución 1 | Solución 2 | Solución 3 | ∑+1 | Ponderación |  |
| Solución 1                           |            | 1          | 1          | 3   | 0,5         |  |
| Solución 2                           | 0          |            | 0          | 1   | 0,17        |  |
| Solución 3                           | 0          | 1          |            | 2   | 0,33        |  |
|                                      |            |            | suma       | 6   | 1           |  |

Realizado por: Guananga, D.; Pilco, K. 2020

| <b>Tabla 16-3:</b> | Tabla ( | de concl | lusiones |
|--------------------|---------|----------|----------|
|--------------------|---------|----------|----------|

| Conclusiones | Estructura base | Sistema de<br>alineación | Múltiples<br>configuraciones | Selección de<br>elementos<br>mecánicos | Σ    | Prioridad |
|--------------|-----------------|--------------------------|------------------------------|----------------------------------------|------|-----------|
| Solución 1   | 0,12            | 0,15                     | 0,11                         | 0,05                                   | 0,43 | 1         |
| Solución 2   | 0,12            | 0,15                     | 0,05                         | 0,02                                   | 0,34 | 2         |
| Solución 3   | 0,12            | 0,06                     | 0,04                         | 0,03                                   | 0,25 | 3         |

Realizado por: Guananga, D.; Pilco, K. 2020

Como se puede observar en la tabla 16-3 la mejor solución para el banco de pruebas es la alternativa de solución uno, siendo esta la que cumple con mayor valor en todos los criterios evaluados. A continuación, se presenta un prediseño en el cual se indica las partes que conforman este banco de pruebas:





#### 3.3 Diseño y selección de elementos para el banco de pruebas

#### 3.3.1 Cálculos dimensionales

El proceso continúa con el desarrollo de los cálculos dimensionales para definir las óptimas condiciones que cumplan con todos los requerimientos tanto ingenieriles como estéticos, teniendo en cuenta que el banco de pruebas debe ser pequeño, compacto y didáctico para finalmente elegir la mejor alternativa para la construcción, tipo de proceso de fabricación, acabado y precisión de los elementos del banco de pruebas.

El punto de partida para el diseño del banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración es la selección del motor eléctrico, entonces se ha decidido utilizar un motor de corriente alterna asíncrona de 1 HP de potencia y 3600 rpm. En esta sección se diseñará y seleccionará si es el caso, los siguientes elementos:

- Discos: contiene dos discos cuya función es generar desbalanceo en su cuerpo por medio de la adicción o sustracción de masas en este caso pernos M 3/8", 40 agujeros que se encuentran distribuidos a dos hileras a 18° en dos circunferencias de 150 y 110 mm.
- Chumaceras: sirven como apoyos del eje, en su interior aloja rodamientos, este elemento es un punto importante para la apreciación del fenómeno vibratorio y se seleccionará del catálogo SKF al igual que los rodamientos.
- Eje: es el elemento que transmite el movimiento desde el acople flexible al resto del sistema, debe brindar una cierta elasticidad de tal forma que soporte deflexiones dentro de un rango determinado que asegure que el sistema no falle.
- Acople flexible: permite trasmitir el movimiento del motor al eje, el acople resistirá cierto desalineamiento para el estudio de su comportamiento y análisis de vibraciones.



Figura 17-3. Esquema del sistema a diseñar Realizado por: Guananga, D.; Pilco, K. 2020 46

## 3.3.2 Selección del motor eléctrico

Se ha seleccionado un motor de corriente alterna asincrónico de la marca siemens serie 1LE0142-0DA26-4AA4-Z

| Motor Siemens |           |     |  |  |
|---------------|-----------|-----|--|--|
| Voltaje       | 220       | V   |  |  |
| Frecuencia    | 60        | Hz  |  |  |
| Potencia      | 1         | HP  |  |  |
| Amperaje      | 3,15/1.82 | А   |  |  |
| Cos(φ)        | 0,84      |     |  |  |
| Velocidad     | 3440      | rpm |  |  |

Tabla 18-3: Datos del motor de la marca Siemens

Fuente: (SIEMENS, 2019, p.12)

Realizado por: Guananga, D.; Pilco, K. 2020

## 3.3.3 Selección del material para el diseño del eje

Por la disponibilidad en el mercado y sus propiedades que brinda se ha decidido utilizar un acero inoxidable AISI 304 que presenta las siguientes propiedades mecánicas.

Tabla 19-3: Propiedades mecánicas del material AISI 304

| AISI/SAE | Módulo de<br>elasticidad<br>(E) | Módulo<br>de rigidez<br>(G) | Resistencia de<br>fluencia en<br>tracción (Sy) | Esfuerzo<br>último en<br>tracción (Sut) | Elongación<br>(2 plg) | Dureza<br>Brinell | Densidad |
|----------|---------------------------------|-----------------------------|------------------------------------------------|-----------------------------------------|-----------------------|-------------------|----------|
|          | GPa                             | GPa                         | MPa                                            | MPa                                     | %                     | HB                | Kg/mm3   |
| 304      | 193                             | 80,8                        | 220                                            | 520                                     | 20                    | 278               | 7,93E-06 |

Fuente: (DIPAC, 2006, p.51)

Realizado por: Guananga, D.; Pilco, K. 2020

## 3.3.3.1 Prediseño del eje diseño a torsión

Como el proceso de diseño de elementos de máquinas es un método de prueba – error, en primera instancia se obtiene un diámetro aproximado que satisfaga las condiciones iniciales, el cual es el punto de partida para las posteriores iteraciones.

El diámetro se calcula en base al momento de torsión máximo nominal utilizando un factor de seguridad alto debido a que las cargas por flexión, carga axial y cortante no se toma en cuenta en primera instancia. Con la ecuación (1) se estima el diámetro para un prediseño.

$$d \ge \sqrt[3]{\frac{16 * M_T}{\pi * \tau_y}} \tag{(1)}$$

Donde:

 $M_T$ : Torque máximo, que es el torque nominal que provee el fabricante del motor eléctrico [ $N \cdot mm$ ]

 $\tau_y$ : Es el esfuerzo permisible a corte, en donde para el cálculo del diámetro previo se puede tomar en un intervalo de  $\tau_y = 20 - 25 MPa$ , como el material es un acero inoxidable AISI 304, se toma un  $\tau_y = 20 MPa$  para dar un mejor coeficiente de seguridad.

Del catálogo del motor siemens se tiene que el  $T_{nominal} = 2,1 Nm$  y que el momento pico de funcionamiento del motor se obtiene en  $T_{arranque} = 2,2 * T_{nominal}$  entonces se tiene:

$$M_T = T_{arranque} = 2,2 * T_{nominal}$$
(2)  
$$M_T = T_{arranque} = 4,62 Nm = 4,62 * 10^3 Nmm$$

Al reemplazar los valores que se obtienen de  $M_T$  y  $\tau_y$  en la ecuación (1), se tiene un diámetro previo para el eje.

$$d \ge \sqrt[3]{\frac{16 * M_T}{\pi * \tau_y}} = \sqrt[3]{\frac{16 * 4,62 * 10^3}{\pi * 20}}$$
$$d \ge 10,55 \ mm$$

Para la siguiente iteración se asume un diámetro mayor al que se obtuvo con la ecuación (1), se asume un diámetro de 25,4 mm (una pulgada), debido a los pesos y fuerzas extras que actúan sobre el sistema como chumaceras y discos de balanceo. En la figura 18-3 se observa la configuración del eje a diseñar.



**Figura 18-3.** Eje para el banco de pruebas, unidades en [mm] **Realizado por:** Guananga, D.; Pilco, K. 2020

En la figura 18-3, se puede observar en la sección A se encontrará el acople flexible, en las secciones B y E se encontrará los rodamientos dentro de chumaceras bipartidas, en las secciones C y D se ubicarán los discos de balanceo y en la sección F se encontrará una polea con su respectiva banda para transmitir el movimiento a un siguiente módulo.

De la figura 18-3, se obtiene los siguientes datos:

$$d_1 = 18 mm$$
  
 $d_2 = 20 mm$   
 $d_3 = 25,4 mm$   
 $d_4 = 20 mm$   
 $d_5 = 18 mm$ 

## 3.3.3.2 Cálculo de las fuerzas y momentos torsores en el eje

El sistema de coordenadas para el eje del banco de pruebas se define tanto para fuerzas como para momentos y es el que se muestra en la figura 19-3



Figura 19-3. Sistema de coordenadas para el eje del banco de pruebas Realizado por: Guananga, D.; Pilco, K. 2020

El peso propio del eje se considera como una fuerza distribuida por lo que se calcula para cada tramo y sección de eje con la siguiente ecuación.

$$F_{eje} = m_{eje} * g = V_{eje} * \rho * g \tag{3}$$

Donde:

 $V_{eje}$ : Volumen del tramo del eje, en donde el volumen es igual a  $\frac{\pi * d^2 * L}{4} [mm^3]$   $\rho$ : Densidad del material del eje  $\left[\frac{Kg}{mm^3}\right]$ g: Gravedad  $\left[\frac{m}{s^2}\right]$ 

Al reemplazar los datos y valores en la ecuación (3) para cada tramo y sección transversal del eje, se obtiene.

Tramo AB

$$F_{eje\ 1} = \left(\frac{\pi * d_1^2 * L_1}{4}\right) * \rho * g$$

$$F_{eje\ 1} = \left(\frac{\pi * (18\ mm)^2 * 45\ mm}{4}\right) * \left(7,93\ x\ 10^{-6}\frac{kg}{mm^3}\right) * 9,81\frac{m}{s^2}$$

$$F_{eje\ 1} = 0,891\ N$$

Tramo BC
$$F_{eje\,2} = \left(\frac{\pi * d_2^2 * L_2}{4}\right) * \rho * g$$

$$F_{eje\,2} = \left(\frac{\pi * (20 \text{ mm})^2 * 225 \text{ mm}}{4}\right) * \left(7,93 \text{ x } 10^{-6} \frac{kg}{\text{mm}^3}\right) * 9,81 \frac{m}{s^2}$$

$$F_{eje\,2} = 5,499 \text{ N}$$

Tramo CD

$$F_{eje\ 3} = \left(\frac{\pi * d_3^2 * L_3}{4}\right) * \rho * g$$

$$F_{eje\ 3} = \left(\frac{\pi * (25,4\ mm)^2 * 150\ mm}{4}\right) * \left(7,93\ x\ 10^{-6}\frac{kg}{mm^3}\right) * 9,81\frac{m}{s^2}$$

$$F_{eje\ 3} = 5,91\ N$$

Tramo DE

$$F_{eje\;4} = \left(\frac{\pi * d_4^2 * L_4}{4}\right) * \rho * g$$

$$F_{eje\;4} = \left(\frac{\pi * (20\;mm)^2 * 220\;mm}{4}\right) * \left(7,93\;x\;10^{-6}\frac{kg}{mm^3}\right) * 9,81\frac{m}{s^2}$$

$$F_{eje\;4} = 5,865\;N$$

Tramo EF

$$F_{eje\,5} = \left(\frac{\pi * d_5^2 * L_5}{4}\right) * \rho * g$$

$$F_{eje\,5} = \left(\frac{\pi * (18 \ mm)^2 * 40 \ mm}{4}\right) * \left(7,93 \ x \ 10^{-6} \frac{kg}{mm^3}\right) * 9,81 \frac{m}{s^2}$$

$$F_{eje\,5} = 0,792 \ N$$

Por lo tanto, la fuerza total en el eje es la suma de cada uno de los tramos y se lo considera como fuerza distribuida, por lo tanto:

$$F_{eje\ total} = 18,07\ N/m$$

Para evaluar todas las fuerzas que actúan en los discos de balanceo, se tiene en cuenta que cada uno de los discos tienen los datos y la configuración que se muestra en la figura 20-3



**Figura 20-3.** Vista frontal y lateral de los discos de balanceo. **Realizado por:** Guananga, D.; Pilco, K. 2020

Se ha seleccionado un acero A36 por su disponibilidad en el mercado para la construcción de los discos de balanceo y de la figura 20-3 se obtiene los siguientes datos:

N° agujeros = 40 espesor = 19 mm  $\rho_{AC} = 7,96 \times 10^{-6} \frac{Kg}{mm^3}$  D = 180 mm  $D_{ext} = 150 mm$   $D_{int} = 110 mm$ perno: M 3/8

El peso total de cada disco se calcula con la fórmula:

$$W_{total} = W_{disco} + W_{perno} \tag{4}$$

Para calcular el peso del disco, se calcula en primera instancia el volumen de éste, que se calcula de la siguiente manera:

$$V_{disco} = (A_d - A_{perf} * N^{\circ}agujeros - A_{eje}) * e$$
<sup>(5)</sup>

Donde:

 $A_d$ : Área del disco macizo y es igual a  $\frac{\pi * D^2}{4}$  $A_{perf}$ : Área de la perforación para el perno y es igual a  $\frac{\pi * d^2}{4}$  $A_{eje}$ : Área de la sección del eje en donde me monta el disco y es igual a  $\frac{\pi * d^2}{4}$ e: Espesor del disco

Al reemplazar los datos en la ecuación (5) se obtiene:

$$V_{disco} = \left(\frac{\pi * D^2}{4} - \left(\frac{\pi * d_{perf}^2}{4}\right) * N^{\circ} agujeros - \frac{\pi * d_{eje}^2}{4}\right) * e$$
$$V_{disco} = \left(\frac{\pi * (180 \text{ mm})^2}{4} - \left(\frac{\pi * (8 \text{ mm})^2}{4}\right) * 40 - \frac{\pi * (25,4 \text{ mm})^2}{4}\right) * 19 \text{ mm}$$
$$V_{disco} = 433369 \text{ mm}^3$$

Con el dato del volumen del disco se puede calcular el peso de éste con la fórmula siguiente:

$$W_{disco} = \rho_{AC} * V_{disco} * g \tag{6}$$

Donde:

 $\rho_{AC}$ : Densidad del material acero A36  $\left[\frac{Kg}{mm^3}\right]$   $V_{disco}$ : Volumen del disco  $[mm^3]$ g: Gravedad  $\left[\frac{m}{s^2}\right]$ 

Al reemplazar los datos en la ecuación (6) se obtiene:

$$W_{disco} = \left(7,96 \ x \ 10^{-6} \frac{Kg}{mm^3}\right) * (433368,9 \ mm^3) * (9,81 \frac{m}{s^2})$$
$$W_{disco} = 33,42 \ N$$

Ahora se procede a calcular el peso de un perno que se insertará en las perforaciones del disco para lograr el desbalanceo, a partir del catálogo del fabricante se obtiene que cada perno *M*8 tiene una masa de 11,7 *gramos*, en un simple cálculo al multiplicar por la gravedad, se obtiene el peso del perno adicional.

$$W_{perno} = (11,7 \ x \ 10^{-3} kg) * 9,81 \frac{m}{s^2}$$
  
 $W_{perno} = 0,115 \ N$ 

Al reemplazar los valores de  $W_{disco}$  y  $W_{perno}$  en la ecuación (4) se obtiene el peso total para cada disco:

$$W_{total} = 33,42 N + 0,115 N$$
  
 $W_{total} = 33,53 N$ 

En el momento que el sistema está en movimiento los pesos extras que se añaden al disco generan una fuerza centrífuga, ésta fuerza se calcula con la siguiente expresión:

$$F_c = \omega^2 * m_p * r \tag{7}$$

Donde:

- $\omega$ : Velocidad del motor  $[\frac{rad}{s}]$
- $m_p$ : Masa del perno [Kg]

r: Radio a la ubicación del perno en la hilera externa con respecto al eje de rotación [m]

Al reemplazar los datos correspondientes en la ecuación (7), en donde la velocidad  $\omega = 360,235 \frac{rad}{s}$  dato del fabricante y r = 75 mm, se tiene:

$$F_c = \left(360,235\frac{rad}{s}\right)^2 * (11,7 \ x \ 10^{-3} kg) * (75 \ x \ 10^{-3} \ m)$$
$$F_c = 113,87 \ N$$

Se debe considerar que el banco de pruebas funciona independientemente y también se completa con diferentes módulos, en tal situación se presenta un sistema de transmisión mediante poleas y bandas al final del eje como se muestra en la figura 21-3



**Figura 21-3.** Opciones de configuraciones del banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2020

Se ha seleccionado el siguiente juego de poleas y bandas por su facilidad de montaje y su inmediata disponibilidad en el mercado, se observa en la figura 22-3



**Figura 22-3.** Sistema de transmisión mediante poleas y bandas **Realizado por:** Guananga, D.; Pilco, K. 2020

A partir de la figura 22-3 y por datos proporcionados por el fabricante se obtiene los siguiente:

 $\begin{array}{l} d_e = 75 \ mm \\ d_s = 112 \ mm \\ L = 302 \ mm \\ Relacion \ lado \ tenso \ y \ lado \ flojo \ \displaystyle \frac{LT}{LF} = 1{,}5 \\ espesor = 35 \ mm \end{array}$ 

$$\rho = 7,86 \ x \ 10^{-6} \frac{Kg}{mm^3}$$

Para descomponer las fuerzas en sus componentes X e Y es necesario obtener el ángulo formado entre la banda y el eje horizontal en este caso eje X, para eso se obtiene el triángulo de la figura 23-3.



Figura 23-3. Ángulo formado entre la banda y el eje X Realizado por: Guananga, D.; Pilco, K. 2020

$$\theta = arc \tan\left(\frac{18,5}{302}\right)$$
$$\theta = 3,5^{\circ}$$

El torque que se transmite mediante la configuración de poleas y bandas se calcula con la siguiente ecuación:

$$T = \frac{P}{\omega} \tag{8}$$

Donde:

- P: Potencia del motor [watts]
- $\omega$ : Velocidad del motor  $\left[\frac{rad}{s}\right]$

La potencia del motor que se seleccionó es 1 *HP* o 745,7 *watts*, al reemplazar en la ecuación (8) se obtiene:

$$T = \frac{745,7 \text{ watts}}{361,28 \frac{rad}{s}}$$
$$T = 2,064 \text{ Nm} = 2064,032 \text{ Nmm}$$

Las fuerzas que se producen debido a la tensión en la banda se representan en la figura 24-3, en donde en se realiza sus respectivos cálculos para obtener sus componentes en las coordenadas x e y. También se identifica que el lado tenso de la banda produce una tensión  $F_2$  y el lado flojo de la banda produce una tensión  $F_1$ 



**Figura 24-3.** Fuerzas que actúan en el sistema de transmisión mediante polea y banda **Realizado por:** Guananga, D.; Pilco, K. 2020

El torque que se transmite mediante las poleas y la banda se expresa también con la siguiente ecuación:

$$T = (F_2 - F_1) * r_e \tag{9}$$

Donde:

- $F_2$ : Tensión que se produce en el lado tenso de la banda.
- $F_1$ : Tensión que se produce en el lado flojo de la banda.
- $r_e$ : Radio de la polea conductora

Como se estableció una relación  $\frac{LT}{LF} = 1,5$  es decir $\frac{F_2}{F_1} = 1,5$ . También se sabe que  $r_e = \frac{d_e}{2}$  al reemplazar en la ecuación (9) y resolver para  $F_1$  se obtiene:

$$T = (1,5 * F_1 - F_1) * \frac{d_e}{2}$$
$$F_1 = \frac{2T}{0,5 * d_e}$$
$$F_1 = \frac{2 * 2064,032 Nmm}{0,5 * 75 mm}$$
$$F_1 = 112 N$$
$$F_2 = 1,5 * F_1 = 168 N$$

Se necesita las componentes de las fuerzas de tensión en las coordenadas X e Y, por lo tanto, con un simple cálculo del seno y coseno del ángulo que se obtuvo en un paso anterior se obtiene:

$$F_1 x = F_1 * \cos(3,5^\circ)$$

$$F_1 x = 112 * \cos(3,5^\circ) = 111,79 N$$

$$F_1 y = F_1 * \sin(3,5^\circ)$$

$$F_1 y = 112 * \sin(3,5^\circ) = 6,85 N$$

$$F_2 x = F_2 * \cos(3,5^\circ)$$

$$F_2 x = 168 * \cos(3,5^\circ) = 167,69 N$$

$$F_2 y = F_2 * \sin(3,5^\circ)$$

$$F_2 y = 168 * \sin(3,5^\circ) = 10,27 N$$

Mediante suma o resta según el caso se obtiene las fuerzas resultantes que actúan sobre el eje:

$$F_X = 279,48 N$$
  
 $F_Y = -3,42 N$ 

Por último, la polea posee un peso que se calcula con la siguiente ecuación:

$$W_{polea} = \pi * r^2 * e * \rho * g \tag{10}$$

Donde:

- r: Radio de la polea conductora [mm]
- *e*: Espesor de la polea [*mm*]
- $\rho$ : Densidad del material de la polea  $\left[\frac{Kg}{mm^3}\right]$
- g: Gravedad  $\left[\frac{m}{S^2}\right]$

Al reemplazar los datos en la ecuación (10) se obtiene:

$$W_{polea} = \pi * (37,5 mm)^2 * (35 mm) * \left(7,86 x \ 10^{-6} \frac{Kg}{mm^3}\right) * 9,81 \frac{m}{s^2}$$
$$W_{polea} = 11,92 N$$

3.3.3.3 Diagramas de cortante y momento flector

Una vez que se ha determinado todas las fuerzas que actúan sobre el eje se representan éstas en el diagrama de cuerpo libre de la figura 25-3



**Figura 25-3.** Diagrama de cuerpo libre del eje **Realizado por:** Guananga, D.; Pilco, K. 2020

En la configuración del eje en el plano XY actúan las fuerzas debido al peso propio del eje, los pesos de los discos y la polea y la fuerza en el eje Y debido a la tensión de la banda, estas fuerzas se representan a continuación en la figura 26-3





En la figura 27-3 (a) se muestra el diagrama de fuerza cortante, en el cual se puede observar las reacciones R1 y R2 y la figura 44-3 (b) se muestra el diagrama de momento flector para el plano XY



**Figura 27-3.** (a) Diagrama de fuerza cortante. (b) Diagrama de momento flector en el plano XY **Realizado por:** Guananga, D.; Pilco, K. 2020

En el plano XY se obtienen las reacciones  $R_1 y$  y  $R_2 y$  se listan a continuación:

$$R_1 y = 34,71 N$$
  
 $R_2 y = 61,67 N$ 

En la configuración del eje en el plano XZ actúan las fuerzas centrífugas que se producen en los discos y la fuerza en el eje Z debido a la tensión de la banda, estas fuerzas se representan a continuación en la figura 28-3



**Figura 28-3.** Diagrama de cuerpo libre del eje en el plano XZ **Realizado por:** Guananga, D.; Pilco, K. 2020

En la figura 29-3 (a) se muestra el diagrama de fuerza cortante, en el cual se puede observar las reacciones R1 y R2 y la figura 29-3 (b) se muestra el diagrama de momento flector para el plano XZ



**Figura 29-3.** a) Diagrama de fuerza cortante. (b) Diagrama de momento flector en el plano XZ **Realizado por:** Guananga, D.; Pilco, K. 2020

En el plano XY se obtienen las reacciones  $R_1 z$  y  $R_2 z$  y se listan a continuación:

$$R_1 z = 233,02 N$$
  
 $R_2 z = 284,73 N$ 

Una vez que se obtiene las reacciones en las componentes Y y Z con el teorema de Pitágoras se obtiene las cargas radiales que actúan en los apoyos que será de utilidad en el posterior cálculo de rodamientos:

$$R_{1} = \sqrt{(R_{1y})^{2} + (R_{1z})^{2}}$$

$$R_{1} = \sqrt{(34,71 N)^{2} + (233,02 N)^{2}} = 235,59 N$$

$$R_{1} = 0,236 KN$$

$$R_{2} = \sqrt{(R_{2y})^{2} + (R_{2z})^{2}}$$

$$R_{1} = \sqrt{(61,67 N)^{2} + (284,73 N)^{2}} = 291,33 N$$

$$R_{1} = 0.291 KN$$

Para el cálculo del diámetro del eje se necesita el momento flector máximo en el punto más crítico, luego de la inspección se determinó que el punto más crítico es el punto D, entonces se determina el momento flector equivalente generado en el plano XY y en el plano XZ mediante el teorema de Pitágoras.

$$M_{fD} = \sqrt{\left(M_{xy}\right)^2 + (M_{xz})^2}$$
$$M_{fD} = \sqrt{(-2318,2 \text{ Nmm})^2 + (-44086,94 \text{ Nmm})^2}$$
$$M_{fD} = 44798,96 \text{ Nmm}$$

#### 3.3.3.4 Cálculo de concentración de esfuerzos

El factor de concentración del esfuerzo por fatiga  $K_f$  se calcula con la siguiente ecuación:

$$K_f = 1 + q(K_t - 1) \tag{11}$$

Donde:

q: Sensibilidad a la muesca

 $K_t$ : Factor de concentración de esfuerzo debido a la muesca

En primera instancia se calcula la sensibilidad de la muesca en dos casos, cuando el eje está sometido a flexión inversa q y en el caso de que el eje está sometido a torsión inversa  $q_c$ . En el caso de aceros sometidos a flexión inversa se usa el gráfico 2-3 para encontrar q, en donde se establece un radio de muesca r = 3 mm y el *Sut* del acero inoxidable 304 es 0,52 *GPa*.



Gráfico 2-3. Sensibilidad a la muesca en el caso de aceros y

aleaciones de aluminio Fuente: (Budynas y Nisbett, 2008: p.287)

Del gráfico 2-3 se obtiene que q = 0.8

En el caso de aceros sometidos a torsión inversa se usa el gráfico 3-3 para encontrar  $q_c$ , en donde se establece un radio de muesca r = 3 mm y se sabe que se trata de un acero templado y estirado:





Del gráfico 3-3 se obtiene que  $q_c = 1$ 

Se procede a calcular el factor de concentración de esfuerzo debido a la muesca  $K_t$  para flexión inversa, para lo cual se usa el gráfico 4-3 en donde según los datos se sabe que las relaciones  $\frac{r}{d} =$ 0,15 y  $\frac{D}{d} =$  1,27



**Gráfico 4-3.** Eje redondo con filete en el hombro en flexión **Fuente:** (Budynas y Nisbett, 2008: p.1008)

Del gráfico 4-3 se obtiene que  $K_t = 1,5$  para flexión inversa.

Ahora se procede a calcular el factor de concentración de esfuerzo debido a la muesca  $K_{ts}$  para torsión inversa, para lo cual se usa el gráfico 5-3 en donde según los datos se sabe que las relaciones  $\frac{r}{d} = 0,15$  y  $\frac{D}{d} = 1,27$ 



**Gráfico 5-3.** Eje redondo con filete en el hombro en torsión. **Fuente:** (Budynas y Nisbett, 2008: p.1008)

Del gráfico 5-3 se obtiene que  $K_{ts} = 1,28$  para torsión inversa.

Una vez que se obtiene los datos de q,  $q_c$ ,  $K_t$ ,  $K_{ts}$  y al reemplazar en la ecuación (11) se obtiene el factor de concentración del esfuerzo por fatiga  $K_f$  y  $K_{fs}$  para flexión y torsión inversa respectivamente:

$$K_f = 1 + 0.8 * (1.5 - 1)$$
  
 $K_f = 1.4$   
 $K_{fs} = 1 + 1 * (1.28 - 1)$   
 $K_{fs} = 1.28$ 

#### 3.3.3.5 Cálculo del factor de modificación de la condición superficial

Marín (1962) determinó que el factor de modificación de la condición superficial  $K_a$  se determina con la siguiente ecuación:

$$K_a = a(S_{ut})^b \tag{12}$$

Donde:

 $S_{ut}$ : Esfuerzo último en tracción para el acero inoxidable A304,  $S_{ut} = 520 MPa$ Los factores *a* y *b* depende el acabado superficial y se lo determina con la ayuda de la tabla 20-3

| Acabado                 | Fact                   | Exponente             |        |  |
|-------------------------|------------------------|-----------------------|--------|--|
| superficial             | S <sub>ut</sub> , kpsi | S <sub>ut</sub> , MPa | Ь      |  |
| Esmerilado              | 1.34                   | 1.58                  | -0.085 |  |
| Maquinado o laminado en | frío 2.70              | 4.51                  | -0.265 |  |
| Laminado en caliente    | 14.4                   | 57.7                  | -0.718 |  |
| Como sale de la forja   | 39.9                   | 272.                  | -0.995 |  |

Tabla 20-3: Parámetros en el factor de la condición superficial de Marín

Fuente: (Budynas y Nisbett, 2008: p.280)

Como el acabado superficial es un maquinado o laminado en frío de la tabla 20-3 se obtiene:

$$a = 4,51$$
$$b = -0,265$$

Y al reemplazar en la actuación (12) se obtiene el factor  $K_a$ 

$$K_a = 4,51 * (520)^{-0,265}$$
  
 $K_a = 0,862$ 

# 3.3.3.6 Cálculo del factor de modificación del tamaño

Según Marín (1962) el factor de modificación del tamaño  $K_b$  depende el diámetro que se asumió en la primera iteración, en este caso d = 25,4 mm y como  $2,79 \le d \le 51 mm$  se utiliza siguiente ecuación:

$$K_b = 1,24d^{-0,107} \tag{13}$$

Y al reemplazar en la actuación (13) se obtiene el factor  $K_b$ 

$$K_b = 1,24 * (25,4)^{-0,107}$$
  
 $K_b = 0,877$ 

# 3.3.3.7 Cálculo del factor de confiabilidad

Según Haugen y Wirching (1975) el factor de confiabilidad  $K_c$  se puede determinar con la ayuda de la tabla 21-3

 Tabla 21-3: Factores de confiabilidad correspondientes a ocho desviaciones

 estándar porcentuales del límite de resistencia a la fatiga

| Confiabilidad, % | Variación de transformación z" | Factor de confiabilidad k <sub>e</sub> |
|------------------|--------------------------------|----------------------------------------|
| 50               | 0                              | 1.000                                  |
| 90               | 1.288                          | 0.897                                  |
| 95               | 1.645                          | 0.868                                  |
| 99               | 2.326                          | 0.814                                  |
| 99.9             | 3.091                          | 0.753                                  |
| 99.99            | 3.719                          | 0.702                                  |
| 99.999           | 4.265                          | 0.659                                  |
| 99,9999          | 4.753                          | 0.620                                  |

Fuente: (Budynas y Nisbett, 2008: p.285)

El porcentaje de confiabilidad se fijó en un 99% por tanto de la tabla 21-3 se obtiene:

$$K_c = 0,814$$

# 3.3.3.8 Cálculo del factor de modificación de la temperatura

Según Budynas y Nisbett (2008) el factor de modificación de la temperatura  $K_d$  se calcula con la siguiente ecuación:

$$K_d = \frac{S_T}{S_{RT}} \tag{14}$$

Donde:

 $S_T$ : Resistencia a la tensión a la temperatura de operación.

 $S_{RT}$ : Resistencia a la tensión a temperatura ambiente.

Con la ayuda de la tabla 22-3 se obtiene el factor  $K_d$ 

| Temperatura, °C | S <sub>T</sub> /S <sub>RT</sub> | Temperatura, °F | ST/SRT |
|-----------------|---------------------------------|-----------------|--------|
| 20              | 1.000                           | 70              | 1.000  |
| 50              | 1.010                           | 100             | 1.008  |
| 100             | 1.020                           | 200             | 1.020  |
| 150             | 1.025                           | 300             | 1.024  |
| 200             | 1.020                           | 400             | 1.018  |
| 250             | 1.000                           | 500             | 0.995  |
| 300             | 0.975                           | 600             | 0.963  |
| 350             | 0.943                           | 700             | 0.927  |
| 400             | 0.900                           | 800             | 0.872  |
| 450             | 0.843                           | 900             | 0.797  |
| 500             | 0.768                           | 1 000           | 0.698  |
| 550             | 0.672                           | 1 100           | 0.567  |
| 600             | 0.549                           |                 |        |

Tabla 22-3: Efecto de la temperatura de operación en la resistencia a

la tensión del acero

Fuente: (Budynas y Nisbett, 2008: p.283)

La temperatura se considera de 20 °C, por lo tanto, de la tabla 22-3 se obtiene:

 $K_d = 1$ 

# 3.3.3.9 Cálculo del factor de modificación de efectos varios

Los valores reales del factor de modificación de efectos varios  $K_g$  no siempre están disponibles, en tal caso se fija el valor de  $K_g = 1$ 

# 3.3.3.10 Cálculo del límite de resistencia a la fatiga en la ubicación crítica de elementos de máquinas

Después de cuantificar los efectos de la condición superficial, el tamaño, de confiabilidad, la temperatura, y otros propuestos por Marín (1962), plantea la siguiente ecuación para ajustar el límite de resistencia a la fatiga.

$$S_e = K_a K_b K_c K_d K_g S'_e \tag{15}$$

Donde:

 $K_a$ : Factor de acabado superficial,  $K_a = 0,862$ 

 $K_b$ : Factor de tamaño,  $K_b = 0,877$ 

 $K_c$ : Factor de confiabilidad,  $K_c = 0.814$ 

 $K_d$ : Factor de temperatura,  $K_d = 1$ 

 $K_g$ : Factor de efectos vario,  $K_g = 1$ 

 $S'_e$ : Límite de resistencia a la fatiga en viga rotatoria

El límite de resistencia a la fatiga se calcula con la siguiente ecuación

$$S'_e = 0.5S_{ut}$$
 (16)

Al reemplazar el valor de  $S_{ut} = 520 MPa$  en la ecuación (16) se tiene:

$$S'_e = 0.5 * (520 MPa)$$
  
 $S'_e = 260 MPa$ 

Finalmente, al reemplazar los valores obtenidos en la ecuación (15) se obtiene

$$S_e = 0,862 * 0,877 * 0,814 * 1 * 1 * 260$$
  
 $S_e = 159,99 MPa$ 

### 3.3.3.11 Cálculo del diámetro según ASME B106.1M

Se usa la fórmula de ASME elíptica ya que está basada en datos experimentales, por lo que constituye un método de cálculo adecuado.

$$d = \left\{ \frac{16 n}{\pi} \left[ 4 \left( \frac{k_f M_a}{S_e} \right)^2 + 3 \left( \frac{k_{fs} T_a}{S_e} \right)^2 + 4 \left( \frac{k_f M_m}{S_y} \right)^2 + 3 \left( \frac{k_{fs} T_m}{S_y} \right)^2 \right]^{1/2} \right\}^{1/3}$$
(17)

Donde:

 $M_a$ : Momento flector amplitud

 $M_m$ : Momento flector medio

 $T_a$ : Momento torsor amplitud

- $T_m$ : Momento torsor medio
- $k_f$ : Factor de concentración de esfuerzos por fatiga para flexión inversa,  $k_f = 1,4$
- $k_{fs}$ : Factor de concentración de esfuerzos por fatiga para torsión inversa,  $k_{fs} = 1,28$

 $S_e$ : Límite de resistencia a la fatiga,  $S_e = 159,99 MPa$ 

 $S_y$ : Límite de resistencia a la fluencia en tracción,  $S_y = 220 MPa$ 

El análisis de esfuerzos para determinar los momentos medio y amplitud se considera que los esfuerzos normales son totalmente reversibles y los esfuerzos transversales son constantes entonces se tiene:



Gráfico 6-3. Análisis de esfuerzos reversibles tanto a flexión como a torsión en fatiga.
 Realizado por: Guananga, D.; Pilco, K. 2020

Al reemplazar los valores y datos obtenidos y se asume un coeficiente de seguridad n = 2 en la ecuación (17) se obtiene el diámetro en una segunda iteración

$$d = \left\{ \frac{16 n}{\pi} \left[ 4 \left( \frac{1,4 * 44798.96}{159,99} \right)^2 + 3 \left( \frac{1,28 * 4620}{220} \right)^2 \right]^{1/2} \right\}^{1/3}$$
$$d = 19,989 mm$$

Según los requerimientos planteados el diámetro d = 19,989 mm cumple con todos los requerimientos tanto al análisis estático y al análisis a fatiga, por lo tanto, esta iteración es válida y se puede quedar con el diámetro de 1 *pulg* o 25,4 mm al ser mayor que 19,989 mm para aumentar el margen de seguridad y por su disponibilidad inmediata en el mercado.

#### 3.3.3.12 Análisis de rigidez

El criterio de rigidez es más exigente que el análisis estático y el análisis a fatiga, un valor recomendado para limitar las deflexiones de modo que sean seguras y no produzcan la falla del eje es:

$$\delta < \gamma \text{ donde } \gamma = 0,0003 L \tag{18}$$

Donde:

*L*: Distancia entre apoyos

Para el cálculo de las deflexiones a las que está sometido el eje se utilizó el software SAP 2000 V22



Figura 30-3. Deformación del eje Realizado por: Guananga, D.; Pilco, K. 2020

La distancia entre apoyos para la configuración del eje es L = 433 mm por lo tanto la deflexión máxima con la ecuación (18) es:

$$\gamma = 0,0003 * 433 mm$$
$$\gamma = 0,1299 mm$$

Los valores de las deflexiones en el punto más crítico que nos brinda el software SAP 2000 se puede observar en la figura 31-3



**Figura 31-3.** Deformación del eje en el punto más crítico. **Realizado por:** Guananga, D.; Pilco, K. 2020

De la figura 31-3 se obtiene:

$$U_{2} = 0,2924 mm$$

$$U_{3} = 0,021 mm$$

$$\delta = \sqrt{(U_{2})^{2} + (U_{3})^{2}}$$

$$\delta = \sqrt{(0,2924 mm)^{2} + (0,021 mm)^{2}}$$

$$\delta = 0,2932 mm$$

$$\delta < \gamma$$

$$0,2932 < 0,1299 \rightarrow No cumple$$

En el diseño el parámetro más determinante es la rigidez, por lo tanto, en una tercera iteración se debe aumentar la sección del eje para que cumpla con estos requerimientos, en donde se ha seleccionado un diámetro comercial de 1 ¼' o 31,75 mm por su disponibilidad en el mercado, finalmente la configuración definitiva del eje se muestra en la figura 32-3.



**Figura 32-3.** Nueva configuración del eje para el banco de pruebas, unidades en [mm]. **Realizado por:** Guananga, D.; Pilco, K. 2020

Los valores de las deflexiones en el punto más crítico que nos brinda el software SAP 2000 para la nueva configuración del eje se puede observar en la figura 33-3



Figura 33 -3. Deformación del eje en el punto más crítico.

Realizado por: Guananga, D.; Pilco, K. 2020

De la figura 33-3 se obtiene:

$$\begin{split} U_2 &= 0,1041 \ mm \\ U_3 &= 0,0092 \ mm \\ \delta &= \sqrt{(U_2)^2 + (U_3)^2} \\ \delta &= \sqrt{(0,1041 \ mm)^2 + (0,0092 \ mm)^2} \\ \delta &= 0,1045 \ mm \\ \delta &< \gamma \\ 0,1045 &< 0,1299 \ \rightarrow Si \ cumple \end{split}$$

Con esta configuración del eje se cumple los requerimientos de rigidez por lo que esta iteración es aceptable y validada mediante los cálculos pertinentes.

#### 3.3.3.13 Análisis de velocidades críticas

La velocidad crítica de un eje es la velocidad a la cuál un eje se vuelve dinámicamente inestable y tiene altas probabilidades que se produzcan grandes vibraciones. Para los diseñadores el cálculo de las velocidades críticas se lo realiza por medio del método de Rayleight-Ritz y el método de Dunkerley.

### 3.3.3.14 Cálculo de la velocidad crítica de Rayleight-Ritz

La velocidad crítica de Rayleight-Ritz se calcula mediante la siguiente ecuación:

$$n_{c} = \frac{30}{\pi} \sqrt{\frac{g \left(W_{1} * \delta_{1} + W_{2} * \delta_{2} + \dots + W_{n} * \delta_{n}\right)}{W_{1} * \delta_{1}^{2} + W_{2} * \delta_{2}^{2} + \dots + W_{n} * \delta_{n}^{2}}}$$
(19)

Donde:

g: Gravedad,  $g = 9819 mm/s^2$ 

- $W_n$ : Pesos debido a cada componente (discos, poleas) [N]
- $\delta_n$ : Deformaciones debido a cada carga [mm]

Los datos necesarios para aplicar la ecuación de Rayleight-Ritz se listan en la tabla 23-3, datos que se obtuvieron con la ayuda del software SAP 2000

 Tabla 23-3: Datos de pesos y deformaciones que actúan en el eje para el cálculo de la velocidad crítica de Rayleight-Ritz

| Método Rayleigh Ritz |        |       |  |  |
|----------------------|--------|-------|--|--|
| Masa disco 1         | 33,53  | Ν     |  |  |
| Masa disco 2         | 33,53  | Ν     |  |  |
| Gravedad             | 9810   | mm/s2 |  |  |
| Deformación M1       | 0,0106 | mm    |  |  |
| Deformación M2       | 0,0098 | mm    |  |  |

Realizado por: Guananga, D.; Pilco, K. 2020

Al reemplazar los datos de la tabla 23-3 en la ecuación (19) se obtiene la velocidad crítica de Rayleight-Ritz:

$$n_c = \frac{30}{\pi} \sqrt{\frac{9810 (33,53 * 0,0106 + 33,52 * 0,0098)}{33,53 * (0,0106)^2 + 33,52 * (0,0098)^2}}$$
$$n_c = 9357,8 \, rpm$$

# 3.3.3.15 Cálculo de la velocidad crítica de Dunkerley

La velocidad crítica de Dunkerley se calcula mediante la siguiente ecuación:

$$\frac{1}{nc^2} = \frac{1}{n_1^2} + \frac{1}{n_2^2} + \dots + \frac{1}{n_n^2}$$
(20)

Donde:

$$n_1 = \frac{30}{\pi} \sqrt{\frac{g}{\delta_{11}}} \quad n_2 = \frac{30}{\pi} \sqrt{\frac{g}{\delta_{22}}} \quad n_n = \frac{30}{\pi} \sqrt{\frac{g}{\delta_{nn}}}$$

- g: Gravedad,  $g = 9819 mm/s^2$
- $\delta_n$ : Deformaciones debido a cada carga [mm]

Los datos de las deformaciones necesarias para aplicar la ecuación de Dunkerley se listan en la tabla 24-3, datos que se obtuvieron con la ayuda del software SAP 2000.

Tabla 24-3: Datos de deformaciones que actúan en el eje para el

| Método Dunkerley        |        |    |  |
|-------------------------|--------|----|--|
| Deformación M1          | 0,0069 | mm |  |
| Deformación M2          | 0,0069 | mm |  |
| Deformación peso propio | 0,0006 | mm |  |

cálculo de la velocidad crítica de Dunkerley.

Realizado por: Guananga, D.; Pilco, K. 2020

Con los datos de la tabla 24-3 se puede calcular las velocidades críticas de para cada peso de los elementos incluido el peso propio del eje:

$$n_{1} = \frac{30}{\pi} \sqrt{\frac{9810}{0,0069}}$$
$$n_{1} = 11386 rpm$$
$$n_{2} = \frac{30}{\pi} \sqrt{\frac{9810}{0,0069}}$$
$$n_{2} = 11386 rpm$$

$$n_p = \frac{30}{\pi} \sqrt{\frac{9810}{0,0006}}$$
$$n_p = 38613 \ rpm$$

Al reemplazar los valores obtenidos en la ecuación (20) se obtiene la velocidad crítica de Dunkerley:

$$\frac{1}{nc^2} = \frac{1}{(11386 \, rpm)^2} + \frac{1}{(11386 \, rpm)^2} + \frac{1}{(38613 \, rpm)^2}$$
$$n_c = 7881.8 \, rpm$$

# 3.3.3.16 Análisis de resonancia

Se dice que un eje entra en resonancia cuando su velocidad de operación es igual o próxima a su velocidad crítica lo que en consecuencia produce vibraciones fuertes y esfuerzos exagerados en los elementos de máquinas.

Se debe evitar trabajar a un 15% por encima de la velocidad crítica de Rayleight-Ritz y por debajo de la velocidad crítica de Dunkerley. En la tabla 25-3 se lista las velocidades Rayleight-Ritz aumentada un margen del 15 % y la velocidad crítica de Dunkerley disminuida un margen del 15%.

| Control de Velocidad |          |     |  |
|----------------------|----------|-----|--|
| V. Rayleight-Ritz    | 10761,43 | rpm |  |
| V. Dunkerley         | 6699,52  | rpm |  |
| Velocidad eje        | 3440     | rpm |  |

Tabla 25-3: Control de velocidades críticas del eje

Realizado por: Guananga, D.; Pilco, K. 2020

Como se puede observar de la tabla 25-3 la velocidad el eje esta fuera y por debajo del intervalo de las velocidades críticas de Rayleight-Ritz y Dunkerley, entonces se concluye que el eje no está en resonancia.

Finalmente, al comprobar que el eje cumple con todos los requerimientos como análisis estático, análisis a fatiga, control de rigidez, y control de resonancia se establece como definitiva la tercera iteración que nos da la siguiente configuración del eje:



**Figura 34 -3.** Configuración definitiva del eje para el banco de pruebas, unidades en [mm]. **Realizado por:** Guananga, D.; Pilco, K. 2020

# 3.3.3.17 Cálculo de la chaveta

La cuña se fabricará con un acero AISI 1006 laminado en frío con un  $S_y = 280 MPa$  y los datos necesarios para el cálculo se listan en la tabla 26-3.

| Diseño de la chaveta |         |     |  |
|----------------------|---------|-----|--|
| Torque               | 4620,00 | Nmm |  |
| Diámetro eje         | 24      | mm  |  |
| L                    | 35      | mm  |  |
| W                    | 6       | mm  |  |
| h                    | 6       | mm  |  |

| Tabla | 26-3: | Datos | de | la | chaveta | para | el | eje |
|-------|-------|-------|----|----|---------|------|----|-----|
|-------|-------|-------|----|----|---------|------|----|-----|

del banco de pruebas.

Realizado por: Guananga, D.; Pilco, K. 2020

De acuerdo al diámetro del eje en donde se ubica la chaveta que en este caso es de 24 mm se ha seleccionado la configuración de la chaveta que se muestra en la figura 35-3.



Figura 35 -3. Configuración de la chaveta para el eje del banco de pruebas Realizado por: Guananga, D.; Pilco, K. 2020

La chaveta se debe verificar a corte y a compresión. Para verificar la falla de la chaveta a corte se utiliza la siguiente ecuación:

$$\sigma = \frac{2T}{dwL} = \frac{S_{sy}}{n} \tag{21}$$

Donde:

T: Torque [Nmm]

- d: Diámetro del eje [mm]
- w: Ancho de la cuña [mm]
- *L*: Longitud de la cuña [mm]  $L = \frac{L}{2}$

 $S_{sy}$ : Límite elástico en cortante  $S_{sy} = \frac{S_y}{2}$ 

Al reemplazar los datos de la tabla 26-3 en la ecuación (21) se obtiene:

$$\sigma = \frac{2 * (4620 Nmm)}{(24 mm) * (6 mm) * (\frac{35}{2} mm)} = \frac{280 MPa}{2 n}$$
$$n = 38,18$$

Para verificar la falla de la chaveta a compresión se utiliza la siguiente ecuación:

$$\sigma = \frac{4T}{d h L} = \frac{S_y}{n} \tag{22}$$

Donde:

T: Torque [Nmm]

d: Diámetro del eje [mm]

- h: Altura de la cuña [mm]
- *L*: Longitud de la cuña [mm]  $L = \frac{L}{2}$
- $S_y$ : Límite elástico en compresión

Al reemplazar los datos de la tabla 26-3 en la ecuación (22) se obtiene:

$$\sigma = \frac{4 * (4620 Nmm)}{(24 mm) * (6 mm) * (\frac{35}{2} mm)} = \frac{280 MPa}{n}$$

n = 38,18

# 3.3.4 Selección de rodamientos

Se utilizará rodamientos de la marca SKF y para la selección se considera los siguientes parámetros.

- Diámetro del eje: 25 mm
- Horas de funcionamiento: 8000 h
- Velocidad de trabajo: 3440 rpm
- Carga radial: 0,258 KN
- Montaje con manguito de fijación
- Contaminación típica

Se ha seleccionado un rodamiento de bolas a rótula sobre un manguito de fijación (Ver Anexo A)

| Rodamiento 2206 EKTN9 |       |    |  |
|-----------------------|-------|----|--|
| С                     | 23,8  | KN |  |
| Со                    | 6,7   | KN |  |
| Pu                    | 0,35  | KN |  |
| Kr                    | 0,045 |    |  |

 Tabla 27-3:
 Datos del rodamiento SKF seleccionado

Realizado por: Guananga, D.; Pilco, K. 2020

### 3.3.4.1 Cálculo de la vida nominal básica del rodamiento

La vida nominal básica con una confiabilidad básica del 90% del rodamiento  $L_{10h}$  se calcula con la siguiente ecuación:

$$L_{10h} = \left(\frac{10^6}{60 n}\right) \left(\frac{C}{P}\right)^p \tag{23}$$

Donde:

- n: Velocidad de giro [rpm]
- C: Capacidad de carga básica dinámica [KN]
- P: Carga dinámica equivalente del rodamiento [KN]
- p: exponente de la ecuación de la vida p = 3 para rodamientos de bola

Fuente: (SKF, 2019b: p.452)

Como no existe carga axial, la carga dinámica equivalente del rodamiento, *P*, es igual a la carga radial dividido por dos:

$$P = \frac{0,291 \, KN}{2}$$
$$P = 0,146 \, KN$$

Al reemplazar los valores y datos en la ecuación (23) se obtiene:

$$L_{10h} = \left(\frac{10^{6}}{60 * (3440 rpm)}\right) \left(\frac{23,8 KN}{0,146 KN}\right)^{3}$$
$$L_{10h} = 30426503 \ horas$$
$$L_{10h} > 8000 \ horas \ \rightarrow Si \ cumple$$

# 3.3.4.2 Condición de lubricación del rodamiento

Cuando un rodamiento ha alcanzado su velocidad y temperatura de funcionamiento, la condición de lubricación del rodamiento es:

$$K = \frac{V}{V_1} \tag{24}$$

Donde:

K: Condición de lubricación del rodamiento.

V: Viscosidad real de funcionamiento del aceite o de la grasa  $\left[\frac{mm^2}{s}\right]$ 

 $V_1$ : Viscosidad nominal, en función del diámetro medio del rodamiento y la velocidad de giro[ $\frac{mm^2}{s}$ ]

La viscosidad real de funcionamiento V se determina a partir del grado de viscosidad según ISO del aceite o grasa y la temperatura de funcionamiento con la ayuda del gráfico 7-3



 Gráfico 7-3. Diagrama de la temperatura de viscosidad según los grados de viscosidad de la ISO (Aceites minerales, índice de viscosidad 95)
 Fuente: (SKF, 2019b: p.100)

Del gráfico 7-3 se obtiene:

$$V = 48 \frac{mm^2}{s}$$

La viscosidad nominal  $V_1$  se puede obtener con la ayuda del gráfico 8-3 utilizando el diámetro medio del rodamiento [mm] y la velocidad de giro [rpm]. El diámetro medio del rodamiento se calcula con la siguiente ecuación:

$$d_m = 0,5(d+D)$$
 (25)

Donde:

d: Diámetro del eje, d = 25 mm

D: Dimensión del rodamiento, D = 62 mm

Al reemplazar en la ecuación (25) se tiene:

$$d_m = 0.5 * (25 + 62) mm$$
  
 $d_m = 43.5 mm$ 



**Gráfico 8-3.** Cálculo de la viscosidad nominal *V*<sub>1</sub> **Fuente:** (SKF, 2019b: p.101)

Del gráfico 8-3 se obtiene:

$$V_1 = 12 \frac{mm^2}{s}$$

Al reemplazar los datos obtenido en la ecuación (24) se verifica la condición de lubricación, en donde mientras mayor sea el valor de K mejor será la condición de lubricación del rodamiento y su vida útil.

$$K = \frac{48 \frac{mm^2}{s}}{12 \frac{mm^2}{s}}$$
$$K = 4$$

Como K = 4, esto significa que la carga de contacto de rodadura es soportada por la película de lubricante.

De acuerdo al anexo B, cuando se tiene una contaminación típica, es decir, rodamientos sin sello integral, filtrado grueso, partículas de desgaste e ingreso de partículas desde el exterior, el factor de contaminación  $n_c$  es:

$$n_c = 0,2$$

# 3.3.4.4 Cálculo del factor de modificación de la vida útil aSKF

En primera instancia se calcula:

$$n_c \frac{P_u}{P} = 02 * \frac{0.35 \text{ KN}}{0.129 \text{ KN}}$$
  
 $n_c \frac{P_u}{P} = 0.543$ 

Con este dato recién calculado 0,543 y con K = 4 y con ayuda del gráfico 9-3 se obtiene el factor aSKF para el rodamiento.



Gráfico 9-3. Factor aSKF para los rodamientos

radiales de bolas.

Fuente: (SKF, 2019b: p.97)

Del gráfico 9-3 se obtiene que el factor de modificación de la vida útil aSKF es:

$$aSKF = 50$$

3.3.4.5 Cálculo de la vida normal SKF

Se calcula con la siguiente ecuación:

$$L_{10mh} = aSKF \cdot L_{10h} \tag{26}$$

Al reemplazar los datos que se obtuvieron anteriormente en los apartados 3.3.4.1 y 3.3.4.4 en la ecuación (26) se obtiene:

$$L_{10mh} = 50 * 30426503 horas$$
  
 $L_{10mh} = 1521325150 horas$ 

# 3.3.4.6 Cálculo de la carga mínima de cargas

Con el fin de lograr un funcionamiento satisfactorio los rodamientos deben estar siempre sometidos a una carga mínima determinada con la siguiente ecuación:

$$F_{rm} = K_r \left(\frac{Vn}{1000}\right)^2 \left(\frac{d_m}{100}\right)^2$$
(27)

Donde:

$$K_r = 0,045$$
$$V = 48 \frac{mm^2}{s}$$
$$n = 3440 rpm$$
$$d_m = 43,5 mm$$

Al reemplazar los valores en la ecuación (27) se obtiene:

$$F_{rm} = 0.045 * \left(\frac{48 * 3440}{1000}\right)^{\frac{2}{3}} * \left(\frac{43.5}{100}\right)^{2}$$
$$F_{rm} = 0.256 \ KN$$
$$0.256 \ KN < 0.258 \ KN \rightarrow Si \ cumple$$

#### 3.3.5 Selección de chumaceras bipartidas

Los soportes de pie SNL de SKF se utilizan con rodamientos de bolas a rótula y para la selección se considera los siguientes parámetros:

- Diámetro del eje: 25 mm
- Rodamiento: 2206 EKTN9

Como los rodamientos y los soportes de chumaceras son de la marca SKF al seguir las recomendaciones del catálogo SKF (Ver anexo C) se hace la siguiente selección:

| Selección de chumacera bipartida |  |  |
|----------------------------------|--|--|
| SNL 506-605                      |  |  |
| TSN 506 G                        |  |  |
| ASNH 506-605                     |  |  |
| H 306                            |  |  |
| FRB 6/62                         |  |  |
|                                  |  |  |

Tabla 28-3: Elementos de la chumacera seleccionada

9, p. 1)

Realizado por: Guananga, D.; Pilco, K. 2020

#### 3.3.6 Selección del acople flexible

Se utiliza un acople flexible de rejilla y para la selección se considera los siguientes parámetros:

- Potencia: 0,746 KW
- Velocidad de giro: 3440 rpm
- Diámetro del eje: 24 mm \_

#### 3.3.6.1 Cálculo del torque nominal del sistema

En primera instancia se calcula el torque del sistema con la siguiente ecuación:

$$T = \frac{P * 9550}{N} \tag{28}$$

Donde:

P: Potencia [KW]

N: Velocidad de giro [rpm]

Al reemplazar los datos en la ecuación (28) se tiene:

$$T = \frac{(0,746 \ KW) * 9550}{3440 \ rpm}$$
$$T = 2,07 \ Nm$$

# 3.3.6.2 Factor de servicio

Según el catálogo SKF (Anexo D) el factor de servicio para una aplicación de banco de pruebas es:

$$fs = 1$$

# 3.3.6.3 Selección del acople flexible de rejilla

Se calcula el torque del sistema y en base a este dato se selecciona un acople en el catálogo SKF cuyo torque sea mayor al calculado (ver anexo E).

$$C = fs * T$$
$$C = 1 * 2,07 Nm$$
$$C = 2,07$$

Entonces se seleccionó un acople flexible de rejilla 1020 TGH

# 3.4 Construcción, montaje y pruebas de funcionamiento del banco de pruebas

Una vez realizado el diseño del banco de pruebas se procede con su construcción, para ello se detalla a continuación las máquinas, herramientas y procesos que se llevaron a cabo para la construcción de los distintos elementos que conforma el banco de pruebas. Posteriormente se realizará el montaje y pruebas de funcionamiento con el fin de verificar que el mismo cumpla con los requerimientos establecidos en el diseño.

# 3.4.1 Construcción del banco de pruebas

A continuación, se detalla las máquinas y herramientas utilizadas para la construcción del banco de pruebas:

| Máquinas              | Herramientas            |
|-----------------------|-------------------------|
| Torno                 | Machuelos               |
| Soldadora MIG         | Flexómetro              |
| Rectificadora         | Cuchillas para torno    |
| Fresadora universal   | Amoladora               |
| Taladro de pedestal   | Juego de llaves         |
| Limadora de precisión | Pistola de pintar       |
| Cortadora laser       | Calibrador o pie de rey |
| Cepilladora           | Disco de corte          |
| Cortadora con plasma  | Mortajador              |
|                       | Divisor                 |
|                       | Escuadra                |
|                       | Broca                   |

Tabla 29-3: Máquinas y herramientas utilizadas

Realizado por: Guananga, D.; Pilco, K. 2021

# 3.4.1.1 Materiales de construcción de los elementos del banco de pruebas

A continuación, se presenta los materiales utilizados para la construcción de cada una de las partes que conforma el banco de pruebas.

| Sistema                      | Elemento           | Descripción                                   | Cantidad | Material/Modelo   |  |
|------------------------------|--------------------|-----------------------------------------------|----------|-------------------|--|
|                              |                    | Plancha de acero                              | 1        | Acero estructural |  |
|                              |                    | 400x300x19 mm                                 | 1        | A36               |  |
|                              |                    | Plancha de acero                              | 1        | Acero estructural |  |
|                              |                    | 325x200x19 mm                                 | 1        | A36               |  |
|                              |                    | Perno hexagonal <sup>1</sup> / <sub>2</sub> " | 4        | Acero inovidable  |  |
|                              |                    | x 3 ½"                                        |          |                   |  |
| Sistema de                   | Base de alineación | Perno hexagonal <sup>1</sup> / <sub>2</sub> " | 4        | Acero inoxidable  |  |
| alineación                   | v desalineación    | x 1"                                          |          | Accio moxidable   |  |
| unnedelon                    | y desumederon      | Perno hexagonal                               | 4        | Acero inoxidable  |  |
|                              |                    | 3/8" x 1"                                     | -        |                   |  |
|                              |                    | Perno hexagonal                               | 4        | Acero inoxidable  |  |
|                              |                    | 7/16" x 3"                                    | ·        |                   |  |
|                              |                    | Cilindro base                                 |          |                   |  |
|                              |                    | $\emptyset_{int} = 12 mm y$                   | 4        | Acero al carbono  |  |
|                              |                    | $\emptyset_{ext} = 20 mm$                     |          |                   |  |
|                              | Motor eléctrico    | Motor eléctrico de                            | 1        | Siemens           |  |
| Sistema                      |                    | 1Hp                                           | 1        | Diemens           |  |
| motor o                      | Acople rígido      | Eje de acero Ø= 1                             | 1        | Acero estructural |  |
| conductor                    |                    | 1/4"                                          | -        | A36               |  |
|                              | Eie corto          | Eje de acero Ø= 1"                            | 1        | Acero inoxidable  |  |
|                              |                    | y L=120 mm                                    |          | AISI 304          |  |
|                              | Acople flexible    | Acople flexible                               | 1        | SKF               |  |
|                              |                    | metálico tipo rejilla                         |          |                   |  |
|                              | Eje largo          | Eje de acero Ø= 1-                            | 1        | Acero inoxidable  |  |
|                              |                    | 1/4" y L=700 mm                               |          | AISI 304          |  |
|                              |                    | Perfil redondo                                |          | Acero estructural |  |
| Sistema rotor<br>o conducido |                    | Ø=180 mm y                                    | 2        | A36               |  |
|                              | Discos de balanceo | e=3/4"                                        |          |                   |  |
|                              |                    | $\operatorname{Bocín} \emptyset_{int} =$      |          | Acero estructural |  |
|                              |                    | $25 mm y \emptyset_{ext} =$                   | 2        | A36               |  |
|                              |                    | 41 mm                                         |          |                   |  |
|                              | Rodamiento de      | 2206EKTN 9                                    | 2        | SKF               |  |
|                              | bolas a rótula     | 30x62x20 mm                                   |          |                   |  |

Tabla 30-3: Materiales de construcción del banco de pruebas
|             | Manguito de fijación   | H 306<br>25x30x45 mm        | 2 | SKF               |
|-------------|------------------------|-----------------------------|---|-------------------|
|             | Chumacera<br>bipartida | SNL 506-605<br>77x89x150 mm | 2 | SKF               |
| Cistanta da | Soporte para           | Plancha de acero            | 2 | Acero estructural |
| Sistema de  | chumacera              | e=19 mm                     | 2 | A36               |
| fijación    | Anillos de fijación    | FRB6/62                     | 4 | SKF               |
|             |                        | 6x62 mm                     |   |                   |
|             | Obturador              | $\emptyset_{int} = 25 mm y$ | 1 | Poliotilono       |
|             | Obturador              | $\emptyset_{ext} = 44,5 mm$ | 4 | rollettiello      |
| Sistema de  | Guarda de              | Dianaha da agrífica         | 2 | Aprílias          |
| seguridad   | protección             | Fiancha de actilico         | 2 | Actilico          |

Tabla 30-3 (Continuación): Materiales de construcción del banco de pruebas

# 3.4.1.2 Operaciones y tiempos de construcción del banco de pruebas

A continuación, se indica las operaciones que se realiza para la construcción de cada uno de los elementos que conforma el banco de pruebas. También, se especifica el tiempo empleado para la construcción y armado de cada componente.

| Sistema    | Componente     | NIO | Ononación          | Tiempo | Unidadaa | Tiempo      |
|------------|----------------|-----|--------------------|--------|----------|-------------|
| Sistema    | Componente     | 19  | (mi                |        | Uniuaues | total (min) |
|            |                | 1   | Toma de medidas    | 120    |          |             |
|            |                | 2   | Corte              | 80     |          |             |
| Sistema    | Base de        | 3   | Limado             | 1200   |          |             |
| de         | alineación y   | 4   | Ranurado           | 240    | 1        | 1750        |
| alineación | desalineación  | 5   | Perforado          | 40     |          |             |
|            |                | 6   | Pintado            | 40     |          |             |
|            |                | 7   | Armado             | 30     |          |             |
|            | Motor          | 8   | Fijación a la base | 20     | 1        | 20          |
| Sistomo    | eléctrico      | 0   | de alineación      | 20     | 1        | 20          |
| motor o    |                | 9   | Toma de medidas    | 10     |          |             |
| conductor  | A cople rígido | 10  | Corte              | 10     | 1        | 260         |
| conductor  | neopie rigido  | 11  | Torneado           | 100    |          | 200         |
|            |                | 12  | Fresado            | 140    |          |             |

Tabla 31-3: Operaciones y tiempos de construcción del banco de pruebas.

|                          |              | 13 | Toma de medidas   | 10  |   |     |
|--------------------------|--------------|----|-------------------|-----|---|-----|
|                          | Fie corto    | 14 | Corte             | 10  | 1 | 260 |
|                          | Lje cono     | 15 | Torneado          | 120 | 1 |     |
|                          |              | 16 | Fresado chavetero | 120 |   |     |
|                          | Aconle       | 17 | Toma de medidas   | 10  |   |     |
|                          | flevible     | 18 | Torneado          | 120 | 1 | 250 |
|                          | IICXIDIC     | 19 | Fresado           | 120 |   |     |
|                          |              | 20 | Toma de medidas   | 20  |   |     |
|                          |              | 21 | Corte             | 10  |   |     |
|                          | Discos de    | 22 | Torneado          | 150 |   |     |
|                          | balanceo     | 23 | Fresado de        | 150 | 2 | 840 |
|                          | Suruneeo     | 23 | agujeros          | 150 |   |     |
| Sistema                  |              | 24 | Machuelos         | 70  |   |     |
| rotor o                  |              | 25 | Pintado           | 20  |   |     |
| conducido                |              | 26 | Toma de medidas   | 20  |   |     |
|                          | Eje largo    | 27 | Corte             | 10  | 1 | 510 |
|                          |              | 28 | Torneado          | 360 | 1 |     |
|                          |              | 29 | Fresado chavetero | 120 |   |     |
|                          | Rodamiento   |    |                   |     |   |     |
|                          | de bolas a   | 30 | Armando           | 5   | 2 | 10  |
|                          | rótula       |    |                   |     |   |     |
|                          | Manguito de  | 31 | Armado            | 5   | 2 | 10  |
|                          | fijación     | 51 | 7 miliado         | 5   | 2 | 10  |
|                          | Chumacera    | 32 | Armado            | 5   | 2 | 10  |
|                          | bipartida    |    |                   | 6   | _ | 10  |
|                          |              | 33 | Toma de medidas   | 15  |   |     |
|                          |              | 34 | Corte             | 30  |   |     |
| Sistema                  | Sonorte nara | 35 | Cepillado         | 150 |   |     |
| de soporte<br>y fijación | chumacera    | 36 | Soldado           | 15  | 2 | 490 |
|                          | enumacera    | 37 | Taladrado de      | 15  |   |     |
|                          |              | 57 | agujeros          | 10  |   |     |
|                          |              | 38 | Pintado           | 20  |   |     |
|                          | Anillos de   | 39 | Armado            | 2   | 4 | 8   |
|                          | fijación     |    |                   | -   |   | Ŭ   |

Tabla 31-3 (Continuación): Operaciones y tiempos de construcción del banco de pruebas

|           |            | 40 | Toma de medidas | 10    |         |      |
|-----------|------------|----|-----------------|-------|---------|------|
|           | Obturador  | 41 | Corte           | 10    | 4       | 140  |
|           |            | 42 | Torneado        | 15    |         |      |
| Sistema   | Guardas de | 43 | Toma de medidas | 20    |         |      |
| de        | protección | 44 | Corte           | 30    | 2       | 220  |
| seguridad | protection | 45 | Armado          | 60    |         |      |
|           |            | •  |                 | Tiemp | o total | 4778 |

 Tabla 31-3 (Continuación):
 Operaciones y tiempos de construcción del banco de pruebas

El tiempo empleado para la construcción del banco de pruebas es de 4778 minutos que equivale a 79 horas con 38 minutos. Teniendo en cuenta que la jornada de trabajo corresponde a 8 horas diarias, misma que es desarrolla únicamente en días laborables. Por lo mencionado anteriormente se tiene que el tiempo de construcción es 9 días, 7 horas y 38 minutos.

#### 3.4.1.3 Flujograma de construcción

A continuación, se presenta el flujograma de construcción de cada uno de los sistemas que compone el banco de pruebas con el fin de observar de forma ordenada y distribuida su proceso de construcción. Además, se muestra un esquema de su modelado en SolidWorks acompañado de su construcción final.

#### Sistema de alineación

El sistema de alineación está conformado por una base de alineación y desalineación, misma que ha sido construida de acuerdo a los procesos de operación mencionados en la tabla 31-3. La figura 36-3 muestra el orden con el que se ha llevado cada una de las operaciones.



**Figura 36-3.** Flujograma utilizado en la construcción del sistema de alineación **Realizado por:** Guananga, D.; Pilco, K. 2020



**Figura 37-3.** Modelado y construcción del sistema de alineación. **Fuente:** Guananga, D.; Pilco, K. 2020

Sistema motor o conductor

El sistema motor o conductor está conformado por: motor eléctrico, acople rígido y un eje corto, este sistema es el encargado de transmitir el torque y potencia al eje rotor. La construcción se ha realizado acorde a los procesos de operación mencionados en la tabla 31-3, en el caso del motor eléctrico o cualquier otro componente adquirido comercialmente solo se considera los tiempos de armado. La figura 38-3 muestra el orden con él con el que se ha llevado cada una de las operaciones.



Figura 38-3. Flujograma utilizado en la construcción del sistema motor o

conductor Realizado por: Guananga, D.; Pilco, K. 2020



Figura 39-3. Modelado y construcción del sistema motor o conductor Fuente: Guananga, D.; Pilco, K. 2020

#### Sistema rotor o conducido

El sistema rotor o conducido ha sido construido de acuerdo a los procesos de operación mencionados en la tabla 31-3, en el caso del acople flexible este fue adquirido comercialmente sin embargo éste necesita ser maquinado para adaptarse a las dimensiones geométricas del banco de pruebas. La figura 40-3 muestra el orden con el que se ha llevado cada una de las operaciones.



Figura 40-3. Flujograma utilizado en la construcción del sistema motor o

conductor Realizado por: Guananga, D.; Pilco, K. 2020



Figura 41-3. Sistema motor o conductor Realizado por: Guananga, D.; Pilco, K. 2020



**Figura 42-3.** Construcción del sistema motor o conductor **Fuente:** Guananga, D.; Pilco, K. 2020

Sistema de soporte y fijación

El sistema de soporte y fijación ha sido construido de acuerdo a los procesos de operación mencionados en la tabla 31-3. La figura 43-3 muestra los componentes que conforman dicho sistema y el orden con el que se ha llevado cada una de las operaciones.



Figura 43-3. Flujograma utilizado en la construcción del sistema soporte y fijación

Realizado por: Guananga, D.; Pilco, K. 2020



Figura 44-3. Sistema soporte y fijación Realizado por: Guananga, D.; Pilco, K. 2020



**Figura 45-3.** Construcción del sistema soporte y fijación **Fuente:** Guananga, D.; Pilco, K. 2020

Sistema de seguridad

El sistema de seguridad ha sido construido de acuerdo a los procesos de operación mencionados en la tabla 31-3. La figura 46-3 muestra el orden con el que se ha llevado cada una de las operaciones.



**Figura 46 -3.** Flujograma utilizado en la construcción sistema de seguridad **Realizado por:** Guananga, D.; Pilco, K. 2020



Figura 47-3. Modelado sistema de seguridad Realizado por: Guananga, D.; Pilco, K. 2020



**Figura 48-3.** Construcción sistema de seguridad **Fuente:** Guananga, D.; Pilco, K. 2020

# 3.4.2 Montaje del banco de pruebas

A continuación, se muestra las operaciones realizadas para el montaje de cada uno de los sistemas que conforma el banco de pruebas, conjuntamente se indica el tiempo que toma realizar cada una de las operaciones.

| Sistema               | Operación                                                           | Símbolo      | Tiempo (min) |
|-----------------------|---------------------------------------------------------------------|--------------|--------------|
| Sistema de            | Montaje de la base de alineación                                    | M1           | 10           |
| alineación            | Ajuste de pernos                                                    | M2           | 10           |
| Sistema motor         | Montaje del motor eléctrico                                         | M3           | 10           |
| o conductor           | Montaje del acople rígido                                           | M4           | 5            |
| 0 conductor           | Montaje del eje corto                                               | M5           | 5            |
|                       | Montaje del acople flexible                                         | M6           | 10           |
| Sistema rotor         | Montaje de discos de balanceo sobre el eje<br>largo                 | M7           | 5            |
| o conducido           | Ajuste de tornillos prisioneros                                     | M8           | 5            |
| 0 conducido           | Montaje del rodamiento y manguito de fijación sobre el eje largo    | M9           | 10           |
|                       | Engrasar el rodamiento                                              | M10          | 10           |
|                       | Montaje de los soportes para chumaceras                             | M11          | 5            |
|                       | Montaje de chumaceras bipartida                                     | M12          | 5            |
|                       | Retirar la parte superior del soporte bipartido                     | M13          | 5            |
|                       | Colocar los obturadores sobre el eje largo                          | M14          | 10           |
| Sistema de            | Montaje del sistema rotor entre los dos soportes bipartidos         | M15          | 10           |
| soporte y<br>fijación | Colocación de los anillos de fijación a cada<br>lado del rodamiento | M16          | 5            |
|                       | Alinear cuidadosamente las bases de los soportes                    | M17          | 10           |
|                       | Ajustar los tornillos de fijación de los soportes                   | M18          | 5            |
|                       | Colocar la parte superior del soporte bipartido y ajustar           | M19          | 5            |
| Sistema de seguridad  | Montaje de las guardas de acrílico                                  | M20          | 10           |
|                       |                                                                     | Tiempo total | 150          |

 Tabla 32-3:
 Montaje del banco de pruebas

3.4.2.1 Flujograma de montaje

A continuación, se presenta el flujograma de montaje del banco de pruebas con el fin de observar su proceso de forma ordenada y distribuida.



**Figura 49-3.** Flujograma utilizado para el montaje del banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2020

#### 3.4.2.2 Tiempo total de construcción y montaje

En la tabla 33-3 se muestra el tiempo total empleado para la construcción y montaje del banco de pruebas.

| Proceso               | Tiempo (min) |
|-----------------------|--------------|
| Etapa de construcción | 4778         |
| Etapa de montaje      | 150          |
| Total                 | 4928         |

Tabla 33-3: Tiempo de montaje del banco de pruebas.

Realizado por: Guananga, D.; Pilco, K. 2021

El tiempo empleado para la construcción y montaje del banco de pruebas es de 4928 minutos que equivale a 82 horas con 8 minutos. Teniendo en cuenta que la jornada de trabajo corresponde a 8 horas diarias, misma que es desarrolla únicamente en días laborables. Por lo mencionado anteriormente tenemos que el tiempo de construcción y montaje es 10 días ,2 horas y 8 minutos.

#### 3.4.3 Protocolo de pruebas

Una vez finalizado el proceso de construcción y montaje se procede con la verificación de funcionamiento de los distintos sistemas que conforman el banco de pruebas. Para el presente se hacen pruebas con y sin alineamiento.



**Figura 50-3.** Puntos de medición banco de pruebas recomendado. **Fuente:** (SKF, 2020, p. 5)

# 3.4.3.1 Prueba de funcionamiento sin alineamiento

# Objetivo

- Observar los espectros de vibración que se produce durante el desalineamiento.

#### Personas a cargo

- Darío Javier Guananga Pujos
- Kleber Adrián Pilco García

#### Actividades

- Observar y verificar que todos los elementos montados se encuentren ajustados correctamente.
- Generar el desalineamiento utilizando la base del motor, tener en cuenta las tolerancias del acople utilizado.
- Conectar el tablero de control a una fuente de energía eléctrica y encender el equipo.
- Definir un valor de velocidad a la cual se desea que funciona el banco de pruebas para ello se ingresa un valor de frecuencia en el tablero de control.
- Medir el valor velocidad de rotación del eje utilizando un tacómetro.
- Tomar las medidas en los puntos señalados en la fig. 50-3 utilizando el colector de datos.
- Observar los espectros de vibración producto de la desalineación que se producen en los puntos medidos.

#### Entradas

- Energía eléctrica suministrada.
- Señal emitida por el variador de frecuencia a través del tablero de control.

#### Salidas

- Funcionamiento de los sistemas que conforman el equipo.
- Espectros generados por la desalineación.

- Se debe ajustar bien los elementos montados de no hacerlo contribuyen al aumento de vibración.
- No trabajar a velocidades altas cuando se trabaja con desalineaciones elevadas, puede causar daños en el acople y resto del equipo.

#### 3.4.3.2 Prueba de funcionamiento con alineamiento

#### Objetivo

- Observar los espectros de vibración que se produce con alineamiento.

#### Personas a cargo

- Darío Javier Guamanga Pujos
- Kleber Adrián Pilco García

#### Actividades

- Observar y verificar que todos los elementos montados se encuentren ajustados correctamente.
- Corregir la desalineación a través del uso de un equipo de alineación, en el presente se utilizó un alineador TKSA 11.
- Conectar el tablero de control a una fuente de energía eléctrica y encender el equipo.
- Definir un valor de velocidad a la cual se desea que funcione el banco de pruebas para ello se ingresa un valor de frecuencia en el tablero de control.
- Medir el valor velocidad de rotación del eje utilizando un tacómetro.
- Tomar las medidas en los puntos señalados en la fig.50-3 utilizando el colector de datos.
- Observar los espectros de vibración producto de la alineación que se producen en los puntos medidos.

#### Entradas

- Energía eléctrica suministrada.
- Señal emitida por el variador de frecuencia a través del tablero de control.

#### Salidas

- Funcionamiento de los sistemas que conforman el equipo.
- Espectros generados por la alineación.

#### Observaciones:

- El equipo una vez alineado puede trabajar a elevadas velocidades lo que permite obtener espectros de vibración a mayores frecuencias.

- La temperatura y ruido que genera el banco alineado es menor a cuando estaba desalineado.

# 3.5 Manual de operación y mantenimiento del banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamiento en acoples flexibles

#### 3.5.1 Manual de operación

Según García (2003), un manual de operación consta de las especificaciones de puesta en marcha, operaciones y medidas de seguridad que se debe cumplir para garantizar un adecuado uso y funcionamiento de la máquina. El banco de pruebas está diseñado para realizar el análisis y diagnóstico de principales problemas mecánicos causados por el desalineamiento en acople flexibles que se simula en el mismo banco.

#### 3.5.1.1 Características generales del banco de pruebas

- El banco de pruebas está en la capacidad de simular procesos mecánicos en forma individual como en conjunto, en donde se establecen áreas de medición, diagnóstico y funcionamiento con diferentes niveles de dificultad y desalineamientos.
- Para realizar el análisis y medición se utiliza un colector de espectros de vibración que permite recolectar cualquier defecto que se simula en el banco de pruebas.
- Esta diseñado y construido para un funcionamiento didáctico, pero simula eventos reales que se presentan en procesos industriales.
- Por su diseño permite la posibilidad de acoplar y montar otros elementos para formar un banco de pruebas más completo, que permite simular procesos más complejos como transmisión por bandas, engranajes, etc.

El banco de pruebas básicamente consta de tres partes principales que se detallan a continuación:

- Unidad de control: consta de la parte eléctrica, del control de la velocidad del motor eléctrico, accesorios y botoneras tanto de marcha y parada.
- Unidad motriz: consta del motor eléctrico, eje, acople flexible de rejilla, rodamientos y discos de desbalanceo
- Unidad de simulación (elementos de prueba): se refiere a todos los puntos de medición donde de coloca el colector de espectros de vibración como la chumacera en sus tres puntos de medición.

| Banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por |          |                                                      |                  |  |  |  |
|--------------------------------------------------------------------------|----------|------------------------------------------------------|------------------|--|--|--|
| desalineamientos en acoples flexibles                                    |          |                                                      |                  |  |  |  |
|                                                                          | Alto     |                                                      | 1,5 m            |  |  |  |
| Características generales                                                | Ancho    |                                                      | 1,3 m            |  |  |  |
|                                                                          | Largo    |                                                      | 1,5 m            |  |  |  |
|                                                                          | Peso     |                                                      | 350 kg           |  |  |  |
|                                                                          | Material | Mesa, soporte de chumacera, mesa<br>de desalineación | Acero A 36       |  |  |  |
|                                                                          |          | Eje                                                  | Acero inoxidable |  |  |  |
|                                                                          | Motor    |                                                      | 1 hp             |  |  |  |
| Características técnicas                                                 | Velocida | d                                                    | 3440 rpm         |  |  |  |
|                                                                          | Voltaje  |                                                      | 220 V            |  |  |  |

Tabla 34-3: Características del banco de pruebas.

Realizado por: Guananga, D.; Pilco, K. 2020

#### 3.5.1.2 Características específicas del banco de pruebas

El banco de pruebas requiere del cumplimiento de ciertos parámetros para su correcto funcionamiento, se debe:

- Leer minuciosamente el manual de operación y mantenimiento para que el banco de pruebas no presente ningún tipo de problemas.
- Ubicar el banco de pruebas sobre una superficie totalmente plana y lisa, para evitar un desnivel en la mesa universal de la máquina.
- Colocar el banco de pruebas en un lugar que cuente con las dimensiones mínimas de 3 m de alto, 3m de ancho y 4 m de largo.
- El estudiante o usuarios deben utilizar el equipo de protección sugerido que es; mandil, gafas de seguridad y lo más importante colocar las guardas de acrílico en los elementos móviles como discos de desbalanceo y poleas antes de la puesta en marcha del banco.
- Verificar que los soportes de las chumaceras, el acople flexible y los discos de desbalanceo se encuentren en su estado y posición óptima para comenzar con el ensayo.
- Verificar que el banco de pruebas esté libre de artículos extraños para evitar posibles alteraciones en su normal funcionamiento.
- El banco de pruebas debe operar en un ambiente protegido de factores externos como polvo y viento.
- Desalinear la posición del motor al modificar las perillas de la mesa de desalineación.

- Verificar que el banco de pruebas se encuentre conectado al suministro eléctrico.
- Encender el interruptor y esperar unos segundos para que el sistema de control se energice.
- Escoger la opción deseada de velocidad de la unidad motriz.
- Colocar el colector de datos o espectros de vibración en los tres puntos de la chumacera.
- Colocar el alineador de ejes en la unión del eje con el acople flexible de rejilla.
- Alinear con la ayuda de la mesa de desalineación o al colocar chapas calibradas en las bases del motor, esto según los datos que provee el alineador.
- En caso de episodios no deseados o de peligro presionar el botón de pare o emergencia.
- Una vez culminada la práctica de laboratorio apagar la unidad de control y asegurarse de dejar el banco de pruebas completamente limpio.

#### 3.5.1.3 Simulación de desalineamiento con el banco de pruebas

 Tabla 35-3:
 Parámetros para la práctica de desalineamiento

Simulación de desalineación con el banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles.



| 6. Chumacera bipartida | 2 |
|------------------------|---|
|                        |   |

Este ensayo está destinado a la identificación y análisis problemas de desalineamiento

de

Realizado por: Guananga, D.; Pilco, K. 2020

4. Soporte de chumacera

5. Acople flexible de rejilla

1

# 3.5.1.4 Alineación de ejes con el alineador SKF TKSA 11

| Alineació                                        | Alineación de ejes con el alineador SKS TKSA 11 |                                                                                                                  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                  |                                                 |                                                                                                                  |  |  |  |  |
| Elementos para la<br>alineación de ejes          | Cantidad                                        | Mediante el uso de la mesa de alineación y la cantidad de Shims que indique la aplicación del                    |  |  |  |  |
| 1. Alineador SKF TKSA 11                         | 1                                               | alineador se procede a realizar la práctica de<br>alineamiento. Esta práctica es la principal y más              |  |  |  |  |
| 2.Aplicación TKSA 11<br>instalada en el celular. | 1                                               | importante para el óptimo desarrollo de las demás, ya que los elementos como acople,                             |  |  |  |  |
| 3. Juego de Shims o chapas<br>calibradas         | 1                                               | chumaceras, deben estar correctamente<br>alineados. Para el correcto procedimiento de<br>alineación ver Anexo F. |  |  |  |  |

# Tabla 36-3: Alineación de los ejes del banco de pruebas

Realizado por: Guananga, D.; Pilco, K. 2020

# 3.5.2 Manual de mantenimiento

Es necesario programar actividades que se llevarán a cabo de forma periódica para que el banco de pruebas funcione en forma óptima, en la tabla 37-3 se lista las principales actividades a realizar para el mantenimiento preventivo de los elementos del banco de pruebas.

| Plan de mantenimiento preventivo del banco de pruebas para el diagnóstico de fallas en |                 |             |                                            |            |  |  |
|----------------------------------------------------------------------------------------|-----------------|-------------|--------------------------------------------|------------|--|--|
| sistemas m                                                                             | ecánicos por de | esalineamie | ntos en acoples flexible                   | es         |  |  |
| Actividad                                                                              | Recurso         | Tiempo      | Insumos y<br>herramientas                  | Frecuencia |  |  |
| Inspección visual del<br>banco en general                                              | 1 operador      | 10 min.     | Franela                                    | Diario     |  |  |
| Limpieza de estructura                                                                 | 1 operador      | 25 min.     | Franela y brocha                           | Diario     |  |  |
| Inspección y ajuste de<br>elementos de sujeción en<br>la mesa de desalineación         | 1 operador      | 20 min.     | Juego de llaves                            | Mensual    |  |  |
| Inspección y ajuste de<br>elementos de sujeción en<br>los apoyos de la<br>chumacera    | 1 operador      | 20 min.     | Juego de llaves                            | Semanal    |  |  |
| Inspección y ajuste en los<br>prisioneros de acople y<br>disco de desbalanceo          | 1 operador      | 10 min.     | Juego de llaves<br>hexagonales             | Semanal    |  |  |
| Inspección y ajuste de<br>manguitos de sujeción de<br>rodamientos                      | 1 operador      | 10 min.     | Martillo de goma y<br>destornillador plano | Mensual    |  |  |
| Lubricación de<br>rodamientos                                                          | 1 operador      | 15 min.     | Grasa y grasero                            | Mensual    |  |  |
| Revisar y ajustar el motor                                                             | 1 electricista  | 10 min.     | Juego de llaves                            | Anual      |  |  |
| Verificar y limpieza del<br>sistema eléctrico                                          | 1 operador      | 30 min.     | Inspección visual,<br>brocha               | Mensual    |  |  |
| Comprobación de<br>corrosión y polvo en<br>estructura                                  | 1 operador      | 15 min.     | Brocha, pintura<br>anticorrosiva           | Anual      |  |  |

**Tabla 37-3:** Actividades recomendadas para el mantenimiento preventivo del banco de pruebas

# 3.6 Análisis de costos del banco de pruebas

Para evaluar los gastos generados en la construcción del banco de pruebas se realiza un análisis de costos directos e indirectos como se muestra a continuación:

#### **3.6.1** *Costos directos*

Para el presente trabajo se considera como costos directos a los materiales utilizados en la construcción de los distintos elementos que conforman el banco de pruebas, elementos mecánicos, equipos y herramientas utilizadas, mano de obra y transporte.

# 3.6.1.1 Materiales

| Contiled | Description                                        |                       | Costo         | Costo total |
|----------|----------------------------------------------------|-----------------------|---------------|-------------|
| Cantidad | Descripcion                                        | Especification        | unitario (\$) | (\$)        |
| 1        | Plancha de acero                                   | Acero estructural A36 | 80            | 80          |
|          | 400x300x19 mm                                      |                       |               |             |
| 1        | Plancha de acero                                   | Acero estructural A36 | 42            | 42          |
|          | 325x200x19 mm                                      |                       |               |             |
| 4        | Perno hexagonal <sup>1</sup> / <sub>2</sub> " x 3  | Acero inoxidable      | 4             | 16          |
|          | 1/2"                                               |                       |               |             |
| 4        | Perno hexagonal <sup>1</sup> / <sub>2</sub> " x 1" | Acero inoxidable      | 3             | 12          |
| 4        | Perno hexagonal 3/8" x                             | Acero inoxidable      | 2,5           | 10          |
|          | 1"                                                 |                       |               |             |
| 4        | Perno hexagonal 7/16" x                            | Acero inoxidable      | 3             | 12          |
|          | 3"                                                 |                       |               |             |
| 2        | Perfil redondo Ø=180                               | Acero estructural A36 | 35            | 70          |
|          | mm y e=3/4"                                        |                       |               |             |
| 2        | Bocín $\emptyset_{int} = 25 mm$ y                  | Acero estructural A36 | 5             | 10          |
|          | $Ø_{ext} = 41 mm$                                  |                       |               |             |
| 2        | Plancha de acero e=19                              | Acero estructural A36 | 15            | 30          |
|          | mm                                                 |                       |               |             |
| 1        | Eje de acero $Ø = 1 - 1/4$ " y                     | Acero inoxidable AISI | 42            | 32          |
|          | L=700 mm                                           | 304                   |               |             |
| 1        | Eje de acero Ø= 1" y                               | Acero inoxidable AISI | 12            | 12          |
|          | L=120 mm                                           | 304                   |               |             |
|          |                                                    |                       |               |             |

 Tabla 38-3:
 Costos de materiales y elementos mecánicos

| 1        | Eje de acero $Ø = 1 \frac{1}{4}$ " | Acero estructural A36 | 20    | 20      |
|----------|------------------------------------|-----------------------|-------|---------|
| 2        | Plancha de acrílico                | Acrílico              | 30    | 60      |
| 2        | Chumaceras bipartidas              | Normalizado           | 255   | 510     |
|          | SNL 506-605                        |                       |       |         |
| 2        | Rodamiento de bolas a              | Normalizado           | 46,52 | 93,04   |
|          | rotula 2206 EKTN 9                 |                       |       |         |
| 4        | Anillos de                         | Normalizado           | 10,8  | 43,20   |
|          | posicionamiento                    |                       |       |         |
|          | FRB6/62                            |                       |       |         |
| 2        | Manguito H306                      | Normalizado           | 47,95 | 95,90   |
| 4        | Obturadores                        | Polietileno           | 5     | 20      |
| 4        | Cilindros base                     | Acero al carbono      | 5     | 20      |
| 1        | Pintura                            | Azul y amarilla       | 20    | 20      |
| 1        | Tiñer                              |                       | 2     | 2       |
| 1        | Endurecedor                        |                       | 3     | 3       |
| 2        | Grasa azul multiusos               |                       | 5,25  | 10,50   |
| 1        | Llave mixta 14 mm                  | Cromo-vanadio         | 1,20  | 1,20    |
| 1        | Llave mixta 16 mm                  | Cromo-vanadio         | 1,30  | 1,30    |
| 1        | Llave mixta 17 mm                  | Cromo-vanadio         | 1,40  | 1,40    |
| 1        | Llave mixta 19 mm                  | Cromo-vanadio         | 3,50  | 3,50    |
| 1        | Combo de caucho                    |                       | 3,50  | 3,50    |
| 1        | Plancha de caucho                  |                       | 30    | 30      |
| <u> </u> |                                    |                       | Total | 1264,54 |

Tabla 38-3 (Continuación): Costos de materiales y elementos mecánicos

# 3.6.1.2 Costo de máquinas y herramientas

| Máquinas              | Hora | Costo hora/USD | Valor total |
|-----------------------|------|----------------|-------------|
| Torno                 | 18   | 7              | 126         |
| Soldadora MIG         | 1    | 4              | 4           |
| Rectificadora         | 2    | 1,5            | 3           |
| Fresadora universal   | 17   | 7              | 119         |
| Taladro de pedestal   | 1    | 1,5            | 1,5         |
| Limadora de precisión | 20   | 2              | 40          |

Tabla 39-3: Costo de máquinas y herramientas utilizadas

| Cortadora con plasma | 2 | 10    | 20  |
|----------------------|---|-------|-----|
| Cortadora laser      | 1 | 10    | 10  |
| Cepilladora          | 3 | 2     | 6   |
| Machuelos            | 3 | 1,5   | 4,5 |
| Pistola de pintar    | 2 | 2     | 4   |
| Flexómetro           | 3 | 0,5   | 1,5 |
| Pie de rey           | 3 | 0,5   | 1,5 |
|                      |   | Total | 341 |

# Tabla 39-3 (Continuación): Costo de máquinas y herramientas utilizadas

Realizado por: Guananga, D.; Pilco, K. 2021

#### 3.6.1.3 Mano de obra

#### Tabla 40-3: Costos de mano de obra

| Cantidad | Descripción      | Días-hombre | USD/día | Costo total<br>(\$) |
|----------|------------------|-------------|---------|---------------------|
| 1        | Maestro mecánico | 10          | 30      | 300                 |
|          |                  |             | Total   | 300                 |

Realizado por: Guananga, D.; Pilco, K. 2021

#### 3.6.1.4 Costo total directo

| Descripción                      | Costo   |
|----------------------------------|---------|
| Materiales y elementos mecánicos | 1264,54 |
| Máquinas y herramientas          | 341     |
| Mano de obra                     | 300     |
| Transporte                       | 20      |
| Total                            | 1925,54 |

Tabla 41-3: Costos total directo

Realizado por: Guananga, D.; Pilco, K. 2021

# **3.6.2** *Costos indirectos*

Consideramos como costos indirectos a los costos ingenieriles como el diseño y selección de los elementos mecánicos e investigación que se realice a lo largo del diseño y construcción del equipo.

| Descripción  | Costo total USD (\$) |
|--------------|----------------------|
| Ingenieriles | 200                  |
| Utilidad     | 0                    |
| Total        | 200                  |

Tabla 42-3: Costos indirectos

# 3.6.3 Costo total

Como se puede apreciar en la tabla 43-3 el costo total del banco de pruebas es:

 Tabla 43-3:
 Costo total

| Descripción       | Costo total USD (\$) |
|-------------------|----------------------|
| Costos directos   | 1925,54              |
| Costos indirectos | 200                  |
| Total             | 2125,54              |

Realizado por: Guananga, D.; Pilco, K. 2021

# **CAPÍTULO IV**

# 4 **RESULTADOS**

#### 4.1 Pruebas de funcionamiento

Una vez finalizada la construcción y montaje del banco de pruebas se procede a realizar las pruebas de funcionamiento con y sin alineamiento.

# 4.1.1 *Objetivo*

Informar sobre los resultados obtenidos antes y después de la alineación realizada en el banco de pruebas, para su posterior análisis comparativo de espectros de vibración.

# 4.1.2 Alcance

- Especificaciones del equipo de medición.
- Alineación
- Toma de vibraciones
- Conclusiones
- Recomendaciones

# 4.1.3 Especificaciones del equipo de medición

- Equipo: SKF QuickCollect sensor
- Modelo: CMDT 390-K-SL
- Rango de temperatura de funcionamiento: -20 a +60 °C
- Velocidad global: 10 Hz a 1 kHz hasta 55 mm / s RMS
- Temperatura: Sensor de infrarrojos (IR) integrado. Capaz de medir fuera del rango de temperatura de funcionamiento, hasta 100 ° C durante períodos cortos (SKF, 2020, p.4).

#### 4.1.4 Alineación

La alineación fue realizada tomando en cuenta el manual de operación y funcionamiento del alineador de ejes SKF TKSA 11.



# Informe Alineación de Ejes 5KF

| ld. de máquina     | Fech |
|--------------------|------|
| práctica 16        | 9/2/ |
| Empresa            |      |
| ESPOCH             |      |
| Operador           |      |
| Pilco K_Guananga D |      |
| Notas              |      |





| Iolerancias        |                           |                        |
|--------------------|---------------------------|------------------------|
| Velocidad<br>(rpm) | Error angular<br>(mm/100) | Desplazamiento<br>(mm) |
| 3000-4000          | 0,06                      | 0,05                   |

Número de serie

19420146



|                              |         |   |         | Resu | ıltado                       |         |   |         |     |
|------------------------------|---------|---|---------|------|------------------------------|---------|---|---------|-----|
| Estado previo al<br>servicio | Vertica | l | Horizor | ntal | Estado posterior al servicio | Vertica | l | Horizon | tal |
| Ángulo (mm/100)              | -0,15   | X | 0,06    | X    | Ángulo (mm/100)              | -0,00   | 1 | -0,01   | 1   |
| Desplazamiento               | 0,06    | x | 0,07    | X    | Desplazamiento               | 0,02    | 1 | -0,02   | 1   |
| Patas delanteras             | -0,28   |   | 0,22    |      | Patas delanteras             | 0,01    |   | -0,04   |     |
| Patas traseras               | -0,43   |   | 0,28    |      | Patas traseras               | 0,01    |   | -0,05   |     |





Firma . . . . . . . . . . . . . . .

SKF TKSA 11

**Figura 1-4.** Informe de alineación de ejes SKF **Realizado por:** Guananga, D.; Pilco, K. 2021

# 4.1.5 Toma de vibraciones

Para la toma y recolección se datos se lo realiza en cuatro puntos del sistema: (1) chumacera lado libre, (2) chumacera lado del acople, (3) motor lado libre, (4) motor lado del acople. La figura 2-4 indica los puntos de medición para la toma de medidas, teniendo en cuenta las siguientes direcciones: Vertical o radial (V), Horizontal o tangencial (H) y Axial (A).



**Figura 2-4.** Puntos y direcciones de medición del banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2021

#### 4.1.5.1 Condiciones de operación

Para la práctica se ha considerado trabajar con 3 velocidades, mismas que son ingresadas a través de un tablero de control utilizando datos de frecuencia. Esta velocidad teórica disminuye debido a la carga a la cual está conectada, por tal razón se ha redondeado los valores de frecuencia para compensar dicha pérdida.

- Velocidad teórica: Calculada en base a la ecuación

$$f = \frac{3n}{172}$$

Donde:

- n: Velocidad que experimenta el rotor a la frecuencia f [rpm]
- Velocidad experimental: Calculada con la ayuda tacómetro.

| N° | Frecuencia | Frecuencia | Velocidad | Velocidad          |      | Velocidad    |          |
|----|------------|------------|-----------|--------------------|------|--------------|----------|
|    | (Hz)       | aproximada | teórica   | experimental (RPM) |      | experimental |          |
|    |            | (Hz)       | (RPM)     |                    |      |              | promedio |
|    |            |            |           |                    |      |              | (RPM)    |
| 1  | 26,16      | 27         | 1500      | 1490               | 1510 | 1515         | 1505     |
| 2  | 34,88      | 35         | 2000      | 1997               | 2005 | 2002         | 2001,33  |
| 3  | 43,6       | 44         | 2500      | 2520               | 2495 | 2502         | 2505,67  |

 Tabla 1-4:
 Valores de frecuencia y velocidad

Realizado por: Guananga, D.; Pilco, K. 2021

Los datos obtenidos se analizarán tomando en cuenta las recomendaciones de la norma ISO 2372 "Vibración mecánica de máquinas con velocidades de operación entre 10 y 200 rev/s. Bases para la especificación de estándares de evaluación".

La comparación de espectros de vibración se realiza a través de la carta ilustrada de diagnóstico de vibración más conocida como carta de Charlotte.

| Rangos de<br>velocidad rms<br>de severidad<br>de vibración | Severidad de las vibraciones para<br>distintas clases de máquinas |          |           |          |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------|----------|-----------|----------|--|--|
| mm/seg                                                     | Class I                                                           | Class II | Class III | Class IV |  |  |
| 0.19                                                       |                                                                   |          |           |          |  |  |
| 0.45<br>0.71                                               | А                                                                 |          |           |          |  |  |
| 1.12                                                       | В                                                                 | A        | Α         |          |  |  |
| 1.8<br>2.8                                                 |                                                                   | В        |           | А        |  |  |
| 4.5                                                        | С                                                                 | C        | В         | в        |  |  |
| 7.1                                                        | D                                                                 | 0        | C         | D        |  |  |
| 11.2                                                       | 2                                                                 | D        | <u> </u>  | С        |  |  |
| 18                                                         |                                                                   |          | D         |          |  |  |
| 28<br>45                                                   |                                                                   |          |           | D        |  |  |

Tabla 2-4: Rango de severidad vibratoria para máquinas normales.

Las letras A, B, C y D representan los grados de calidad de vibración de la máquina, que van desde: Buena (A), Satisfactoria (B), Insatisfactoria (C), inaceptables (D).

Clase I. Máquinas pequeñas con potencia menor a 15 Kilovatios

Clase II. Máquinas de tamaño mediano (es decir, motores eléctricos de 15 a 75 kilovatios y motores de 300 kilovatios sobre bases rígidamente montadas).

Clase III. Grandes motores primarios con potencia sobre los 300 kilovatios montados sobre cimientos rígidos y pesados.

Clase IV. Motores primarios grandes con potencia sobre los 300 kilovatios montados en estructuras ligeras y relativamente blandas.

Fuente: (ASME, 2014)

#### 4.1.5.2 Análisis comparativo de los espectros de vibraciones



**Tabla 3-4:** Lista ilustrada de diagnóstico de vibraciones

Fuente: (Technical Associates of Charlotte, 1996, p.1)



4.1.5.3 Análisis comparativo de los espectros de vibraciones en las chumaceras lado libre

**Gráfico 1-4.** Chumacera lado libre desalineado a 2500 rpm **Realizado por:** Guananga, D.; Pilco, K. 2021



**Gráfico 2-4.** Chumacera lado libre alineado a 2500 rpm **Realizado por:** Guananga, D.; Pilco, K. 2021

- Al comparar los espectros de vibración obtenidos en el ensayo, en la chumacera del lado libre con los espectros de la carta de Charlotte de la tabla 3-4, se puede observar la presencia de una desalineación paralela en la posición axial, al presentarse el pico 2X mayor que el pico 1X y el pico 3X disminuye severamente. La diferencia de altura entre el pico 1x y 2x dependerá del tipo de acople que se utilice en nuestro caso corresponde a un acople flexible tipo de rejilla.
- En la posición radial se puede observar la presencia de un desalineamiento angular debido a que el pico 1X es mayor al pico 2X, igualmente el pico 3X domina a 2X, de acuerdo a la carta la carta de Charlotte esto está relacionado con problemas en el acoplamiento.
- En la posición tangencial se puede observar la presencia de un desalineamiento angular debido a que el pico 1X es ligeramente mayor al pico 2X, mientras que el pico 3X domina tanto a 1X como 2X, esto según la carta la carta de Charlotte está relacionado con problemas en el acoplamiento.
- Se ha identificado varias fuentes de problemas tanto en las chumaceras como en el acople, mismos que serán corregidos en la alineación. Como se puede observar los nuevos espectros obtenidos en el gráfico 2-4, se observa que los picos de vibración en cada frecuencia mantienen la misma forma que las del gráfico 1-4, pero disminuyen considerablemente en amplitud de tal forma que los nuevos valores están dentro de los rangos permisibles de acuerdo a la norma ISO 2372 lo que evidencia que al realizar la alineación se corrigen los problemas y anomalías que pueda generar la vibración.



**Gráfico 3-4.** Chumacera lado del acople desalineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021



**Gráfico 4-4.** Chumacera lado del acople alineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021

- Al comparar los espectros de vibración obtenidos en el ensayo en la chumacera lado del acople con los espectros de la carta de Charlotte de la tabla 3-4, se puede observar la presencia de una desalineación paralela en la posición axial, al presentarse el pico 2X mayor que el pico 1X y el pico 3X disminuye severamente.
- En la posición radial se puede observar problemas relativos a un eje flexionado al presentarse una vibración dominante en el pico 1X de acuerdo a la carta de Charlotte esto se debe a una flexión cerca del centro del eje, esto ocurre debido a que se utilizó rodamientos de bolas a rótula mismos que permiten deformación en los apoyos de la chumacera.
- En la posición tangencial se puede observar la presencia de una desalineación paralela, al presentarse el pico 2X mayor que el pico 1X, la altura relativa entre el pico 1X y 2X dependerá del tipo de acople.
- Se ha identificado varias fuentes de problemas tanto en las chumaceras como en el acople mismos que serán corregidos en la alineación. Como se puede los nuevos espectros obtenidos en el gráfico 4-4, se observa que los picos de vibración en cada frecuencia disminuyen considerablemente en amplitud de tal forma que los nuevos valores están dentro de los rangos permisibles de acuerdo a la norma ISO 2372 lo que evidencia que al realizar la alineación se corrigen todos los problemas y anomalías.



**Gráfico 5-4.** Motor lado libre desalineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021



**Gráfico 6-4.** Motor lado libre alineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021

- En el motor lado libre al comparar los espectros de vibración que se obtuvo en el ensayo con los espectros que brinda la carta de Charlotte de la tabla 3-4, se puede observar la presencia de una desalineación paralela en la posición radial, al presentarse el pico 2X mayor que el pico 1X y el pico 3X disminuye severamente, la altura relativa entre el pico 1X y 2X dependerá del tipo de acople.
- En la posición tangencial se puede observar la presencia de una desalineación paralela, al presentarse el pico 2X mayor que el pico 1X.
- Se ha identificado varias fuentes de problemas en el acople que serán corregidos en la alineación; se puede observar los nuevos espectros obtenidos en el gráfico 6-4, en el cual se observa que los picos de vibración en cada frecuencia disminuyen considerablemente en amplitud de tal forma que los nuevos valores están dentro de los rangos permisibles

de acuerdo a la norma ISO 2372 lo que evidencia que al realizar la alineación se corrigen todos los problemas y anomalías.



**Gráfico 7-4.** Motor lado acople desalineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021



**Gráfico 8-4.** Motor lado acople alineado a 2500 rpm. **Realizado por:** Guananga, D.; Pilco, K. 2021
Observaciones:

- En el motor lado del acople al comparar los espectros de vibración que se obtuvo en el ensayo con los espectros que brinda la carta de Charlotte de la tabla 3-4, se puede observar la presencia de una desalineación paralela en la posición axial, al presentarse el pico 2X mayor que el pico 1X y el pico 3X disminuye severamente, la altura relativa entre el pico 1X y 2X dependerá del tipo de acople.
- En la posición radial se puede observar la presencia de una desalineación paralela, al presentarse el pico 2X mayor que el pico 1X.
- En la posición tangencial se puede observar la presencia de una desalineación paralela, al presentarse el pico 2X mayor que el pico 1X.
- Se ha identificado varias fuentes de problemas en el acople que serán corregidos en la alineación. Como se puede observar los nuevos espectros obtenidos en el gráfico 8-4 los picos de vibración en cada frecuencia disminuyen considerablemente en amplitud de tal forma que los nuevos valores caen dentro de los rangos permisibles de acuerdo a la norma ISO 2372 lo que evidencia que al realizar la alineación se corrigen todos los problemas y anomalías.

#### 4.1.5.7 *Ensayos a diferentes velocidades con y sin alineamiento en chumacera y motor.*

|           | 1500 RPM            |                              |                     |                              |                     |  |  |  |  |  |  |  |  |
|-----------|---------------------|------------------------------|---------------------|------------------------------|---------------------|--|--|--|--|--|--|--|--|
|           | Desali              | ineado                       | Alin                | eado                         | Condición de cambio |  |  |  |  |  |  |  |  |
| monitoreo | Velocidad<br>(mm/s) | Severidad<br>de<br>vibración | Velocidad<br>(mm/s) | Severidad<br>de<br>vibración | (%)                 |  |  |  |  |  |  |  |  |
| 1V        | 1,623               | В                            | 0,633               | А                            | 61,00               |  |  |  |  |  |  |  |  |
| 1H        | 2,752               | С                            | 1,73                | В                            | 37,14               |  |  |  |  |  |  |  |  |
| 1A        | 2,302               | С                            | 1,135               | В                            | 50,70               |  |  |  |  |  |  |  |  |
| 2V        | 1,756               | В                            | 1,027               | В                            | 41,51               |  |  |  |  |  |  |  |  |
| 2H        | 3,296               | С                            | 1,063               | В                            | 67,75               |  |  |  |  |  |  |  |  |
| 2A        | 1,043               | В                            | 0,945               | В                            | 9,40                |  |  |  |  |  |  |  |  |
| Motor     |                     |                              |                     |                              |                     |  |  |  |  |  |  |  |  |
| 1V        | 1,707               | В                            | 0,725               | В                            | 57,53               |  |  |  |  |  |  |  |  |
| 1H        | 2,667               | С                            | 1,191               | В                            | 55,34               |  |  |  |  |  |  |  |  |
| 2V        | 1,4                 | В                            | 0,787               | В                            | 43,79               |  |  |  |  |  |  |  |  |
| 2H        | 1,249               | В                            | 1,039               | В                            | 16,81               |  |  |  |  |  |  |  |  |
| 2A        | 0,973               | В                            | 0,521               | Α                            | 46,45               |  |  |  |  |  |  |  |  |

 Tabla 4-4:
 Valores generales de velocidad antes y después del alineamiento.

| 2000 RPM |       |   |          |   |        |  |  |  |  |  |  |  |
|----------|-------|---|----------|---|--------|--|--|--|--|--|--|--|
| 1V       | 1,618 | В | 1,318    | В | 18,54  |  |  |  |  |  |  |  |
| 1H       | 2,518 | С | 1,124    | В | 55,36  |  |  |  |  |  |  |  |
| 1A       | 2,13  | С | 1,386    | В | 34,93  |  |  |  |  |  |  |  |
| 2V       | 2,476 | С | 1,232    | В | 50,24  |  |  |  |  |  |  |  |
| 2H       | 4,229 | С | 1,858    | С | 56,07  |  |  |  |  |  |  |  |
| 2A       | 1,803 | С | 0,906    | В | 49,75  |  |  |  |  |  |  |  |
| Motor    |       |   |          |   |        |  |  |  |  |  |  |  |
| 1V       | 2,156 | С | 1,229    | В | 43,00  |  |  |  |  |  |  |  |
| 1H       | 3,796 | С | 1,212    | В | 68,07  |  |  |  |  |  |  |  |
| 2V       | 2,381 | С | 0,848    | В | 64,38  |  |  |  |  |  |  |  |
| 2H       | 1,06  | В | 0,702    | В | 33,77  |  |  |  |  |  |  |  |
| 2A       | 2,36  | С | 0,588    | А | 75,08  |  |  |  |  |  |  |  |
|          |       |   | 2500 RPM |   |        |  |  |  |  |  |  |  |
| 1V       | 2,118 | С | 1,03     | В | 48,63  |  |  |  |  |  |  |  |
| 1H       | 5,919 | D | 0,933    | В | 15,76  |  |  |  |  |  |  |  |
| 1A       | 2,941 | С | 1,85     | С | 62,90  |  |  |  |  |  |  |  |
| 2V       | 2,252 | С | 1,201    | В | 53,33  |  |  |  |  |  |  |  |
| 2H       | 6,011 | D | 1,62     | В | 26,95  |  |  |  |  |  |  |  |
| 2A       | 2,299 | С | 1,117    | В | 48,59  |  |  |  |  |  |  |  |
| Motor    |       |   |          |   |        |  |  |  |  |  |  |  |
| 1V       | 4,416 | С | 1,63     | В | 36,911 |  |  |  |  |  |  |  |
| 1H       | 3,871 | С | 1,477    | В | 38,156 |  |  |  |  |  |  |  |
| 2V       | 1,742 | В | 0,877    | В | 50,344 |  |  |  |  |  |  |  |
| 2H       | 3,426 | С | 0,633    | Α | 18,476 |  |  |  |  |  |  |  |
| 2A       | 3,513 | С | 1,266    | В | 36,038 |  |  |  |  |  |  |  |

Tabla 4-4 (Continuación): Valores generales de velocidad antes y después del alineamiento

Realizado por: Guananga, D.; Pilco, K. 2021

|                          |                  | 1500 RPM        |                     |
|--------------------------|------------------|-----------------|---------------------|
| Posición de              | Desalineado      | Alineado        | Condición de cambio |
| Posicion de<br>monitoreo | Temperatura (°C) | Temperatura(°C) | (%)                 |
| 1V                       | 39,6             | 28              | 29,29               |
| 1H                       | 39,4             | 33              | 16,24               |
| 1A                       | 28,3             | 25              | 11,66               |
| 2V                       | 34,2             | 32,1            | 6,14                |
| 2H                       | 35,5             | 30,3            | 14,65               |

**Tabla 5-4:** Valores de temperatura.

| 2A    | 28   | 25,2     | 10,00 |
|-------|------|----------|-------|
| Motor |      |          |       |
| 1V    | 23,1 | 20,3     | 12,12 |
| 1H    | 21,7 | 18,9     | 12,90 |
| 2V    | 25,7 | 21,7     | 15,56 |
| 2H    | 26,2 | 23,6     | 9,92  |
| 2A    | 25,5 | 22,5     | 11,76 |
|       |      | 2000 RPM |       |
| 1V    | 45   | 36,4     | 19,11 |
| 1H    | 48,1 | 41,2     | 14,35 |
| 1A    | 31,1 | 25,5     | 18,01 |
| 2V    | 39,7 | 36,9     | 7,05  |
| 2H    | 40,6 | 37,2     | 8,37  |
| 2A    | 29,1 | 26,8     | 7,90  |
| Motor |      |          |       |
| 1V    | 22,3 | 20,9     | 6,28  |
| 1H    | 21,5 | 20,3     | 5,58  |
| 2V    | 26,2 | 25,2     | 3,82  |
| 2H    | 26   | 23,8     | 8,46  |
| 2A    | 26,4 | 23,2     | 12,12 |
|       |      | 2500 RPM |       |
| 1V    | 51,7 | 39,7     | 23,21 |
| 1H    | 55,1 | 43       | 21,96 |
| 1A    | 33,1 | 25,9     | 21,75 |
| 2V    | 46,6 | 40,1     | 13,95 |
| 2H    | 46,6 | 38,4     | 17,60 |
| 2A    | 30,2 | 29,4     | 2,65  |
| Motor |      |          |       |
| 1V    | 22,3 | 21,6     | 3,14  |
| 1H    | 21,5 | 19,9     | 7,44  |
| 2V    | 26,5 | 24,2     | 8,68  |
| 2H    | 27,1 | 25,7     | 5,17  |
| 2A    | 28,6 | 25,4     | 11,19 |

 Tabla 5-4 (Continuación):
 Valores de temperatura.

Realizado por: Guananga, D.; Pilco, K. 2021

#### CONCLUSIONES

- Durante la revisión del estado del arte de fallas en sistemas mecánicos debido a desalineamiento en acoples flexibles se pudo identificar los principales problemas causados por la desalineación, su espectro de vibración característico y como esta se ve influenciado dependiendo de la velocidad a la cual se encuentre operando el equipo.
- Mediante la utilización de la Función de despliegue de la calidad QFD nos permitió identificar los principales requerimientos desde el punto de vista del usuario como son: fácil alineación y toma de datos, permita realizar múltiples configuraciones. De igual forma se identificó las principales características técnicas que debe cumplir el banco de pruebas desde un punto de vista técnico las cuales son: una estructura base adecuada, selección correcta de elementos mecánicos, sistema de toma de datos.
- Para asegurar una construcción optima y segura del banco de pruebas se realizó flujogramas de construcción en la cual se especifica los materiales y operaciones de construcción que debe tener cada una de las partes que conforma el banco de pruebas. Mismo que tuvo una duración de 9 días laborables, 7 horas y 38 minutos. Para el montaje de igual manera se realizó un flujograma de montaje en el que se indica las operaciones a seguir el cual tuvo una duración de 2h y 30 min.
- Como se puede observar en la tabla 4-4 en base a la norma ISO 2372 la severidad de las vibraciones aumenta conforme incrementa la velocidad de rotación llegando a calidades de vibración insatisfactoria e inaceptable. Una vez realizada la alineación la calidad de vibración mejora considerablemente en la mayoría de puntos; obteniendo una calidad buena y satisfactoria. Estas condiciones de cambio van des un máximo de 75,08% hasta un mínimo de 9,40%.
- Al igual que la severidad de la vibración la temperatura también se ve afectada conforme incrementa la velocidad de rotación, estos cambios son mayores en los puntos medidos en las chumaceras; esta temperatura disminuye una vez realizado la alineación. Estas condiciones de cambio van des un máximo de 29,29% hasta un mínimo de 2,65%.
- De acuerdo a la tabla 4-4 analizando los valores de velocidad RMS a 1500, 2000 y 2500 rpm en el punto 1 (chumacera lado libre del acople), las posiciones tangenciales son los puntos donde se registra un elevado valor de severidad, siguiéndole la posición axial y finalmente la posición radial. En el punto 2 (chumacera lado del acople) se registra algo similar una

severidad mayor en la posición tangencial seguida por la posición radial y finalmente la posición axial, sin embargo, a 2500 rpm presenta un ligero cambio se registra una severidad mayor en la posición tangencial seguida por la posición axial y finalmente la posición radial. En el punto 3 (motor lado libre) la severidad registrada cambia dependiendo de la velocidad, a 1500 y 2000 rpm las posiciones tangenciales son los puntos donde se registra un elevado valor de severidad, siguiéndole la posición radial, sin embargo, a 2500 rpm es, al contrario. En el punto 4 (motor lado del acople) cada velocidad de operación registra un punto diferente de concentración de severidad de vibración. Concluyendo que los puntos de concentración de vibraciones pueden cambiar conforme aumenta la velocidad de operación.

- Conforme aumenta la velocidad de rotación las amplitudes de los espectros son más grandes de tal forma que los valores globales de velocidad RMS son mayores a 2500 rpm con un valor de velocidad RMS de 5,92 mm/s, siguiéndole a 2000 rpm con un valor de 3,79 mm/s y finalmente a 1500 rpm con un valor de 3,29 mm/s.
- Los espectros de vibración analizados nos muestran el estado en el que se encuentra el equipo, en el presente se identificó espectros con problemas de desalineación angular, paralela y eje doblado.
- Para garantizar el uso correcto y manipulación del banco de pruebas se elaboró una guía de laboratorio denominada "Diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración", en la cual se indica cada uno de los pasos a seguir mismos que servirán para la correcta obtención, análisis y procesamiento de datos. Además, se incluyen las normas a utilizar (ISO 2372, Carta ilustrada de diagnóstico de vibraciones) y una guía para la correcta manipulación de los instrumentos utilizados (alineador de ejes TKSA 11 y Colector de datos CMDT 390).

#### RECOMENDACIONES

- Debido a que los espectros de vibración se ven influenciado enormemente dependiendo del tipo de acople y material, se recomienda realizar el mismo ensayo utilizando otros tipos de acoples flexibles para identificar como varían sus espectros de vibración, temperatura y ruido a diferentes velocidades de operación.
- Actualmente se puede realizar toma de medidas de velocidad, aceleración y temperatura para el análisis de vibración, sin embargo, en un futuro se puede implementar otras técnicas para el análisis de vibraciones como análisis de forma de onda, orbitas o técnicas complementarias como termografías. Logrando así tener una perspectiva más amplia de los análisis de vibración que se pueden realizar en equipos rotatorios.
- Cuando el equipo se encuentra desalineado se recomienda no realizar el ensayo a altas velocidades ya que genera una alta vibración pudiendo generar daños irreversibles en los elementos del banco de pruebas. Una vez alineado el equipo se puede realizar el ensayo a altas velocidades para observar de mejor manera el espectro de vibración.

#### **GLOSARIO**

**Análisis de vibraciones:** El análisis de vibraciones se refiere al proceso de medir los niveles de vibración y las frecuencias de la maquinaria industrial y utilizar esa información para determinar la "salud" de la máquina y sus componentes (VibrAlign,sf)

**Desalineación angular:** Se produce cuando la línea central de los dos ejes motriz y conducido forman un ángulo entre sí (Fernandez, 2020).

**Desalineación paralela:** En una desalineación paralela la línea central del eje de las dos máquinas es paralela entre sí y tiene un desplazamiento (Ezzat Moustafa, 2017, p.17).

**Desalineación mixta:** Es la más común de las situaciones, la línea central del eje de las dos máquinas tiene la desalineación paralela y angular de los dos tipos anteriores (DMC, 2019).

**Espectro de vibración:** Un espectro de vibraciones FFT (Transformada rápida de Fourier) es una herramienta increíblemente útil para el análisis de vibraciones de maquinaria. Si existe un problema de maquinaria, los espectros de FFT brindan información para ayudar a determinar la fuente y la causa del problema y, con la tendencia, cuánto tiempo hasta que el problema se vuelve crítico (Mais, 2002, p.3).

**Severidad de vibración:** Un procedimiento común para monitorear el desequilibrio de las máquinas rotativas es medir la velocidad de vibración (severidad de la vibración). Es una medida del contenido energético de la vibración emitida. Las razones del desequilibrio pueden ser, por ejemplo, tornillos sueltos, componentes doblados, cojinetes desgastados con demasiado espacio libre o suciedad en los ventiladores. A menudo, varios de estos efectos se incrementan entre sí (Weber, 2002, p.8).

**Velocidad RMS:** El valor RMS es la medida de amplitud más relevante, porque toma en cuenta el historial de tiempo de la onda y da un valor de amplitud que está directamente relacionado con el contenido de energía y, por lo tanto, las capacidades destructivas de la vibración (ASME, 2014).

#### BIBLIOGRAFÍA

**ASME.** *Análisis vibracional en equipos rotativos y mantenimiento predictivo* [en línea]. ASME International, 2014. [Consulta: 10 diciembre 2020]. Disponible en: http://cursos.asmevirtual.org/index.php/cursos/temario/8.

**BAVISKAR, Jay.** ¿Qué son los acoplamientos? / Tipos de acoplamientos y su aplicación [en línea]. 2018. [Consulta: 10 diciembre 2020]. Disponible en: https://mechstuff.com/what-are-different-types-of-couplings/.

**BUDYNAS, Richard G; & NISBETT, Keith J.** *Diseño en Ingeniería Mecánica de Shigley.* 8 va ed. Ciudad de México-México: McGRAW-HILL, 2008. ISBN 9780874216561, pp. 275-1038.

**DIPAC.** *Ejes acero inoxidable* [en línea]. 2006. [Consulta: 15 diciembre 2020]. Disponible en: http://www.dipacmanta.com/ejes/acero-inoxidable-aisi.

**DMC.** *Ejes de alineación* [en línea]. 2019. [Consulta: 9 diciembre 2020]. Disponible en: https://www.dmc.pt/es/alinhamento-de-veios/.

**DYNAMOX.** *Desalineación del eje y su contribución a fallas mecánicas* [en línea]. 2018. [Consulta: 10 diciembre 2020]. Disponible en: https://dynamox.net/es/desalineacion-del-eje-fallas-mecanicas/.

EDIBON. Diagnóstico de Máquinas [en línea]. Madrid-España, 2020. [Consulta: 20 diciembre 2020]. Disponible en: https://www.edibon.com/EQUIPOS/MDU/MDU\_ES.pdf?fbclid=IwAR37omFniWCDxDrRWS Fj--AXMeLmiZ0NNb3YCfcPnggeyWTNXCjvJomoe90.

**ELY, Mark & VIETSCH, Karl.** *La importancia de la alineación del eje* [en línea]. 2011. [Consulta: 9 diciembre 2020]. Disponible en: https://www.flowcontrolnetwork.com/maintenance-safety/article/15555626/the-importance-ofshaft-alignment.

EZZAT MOUSTAFA, Essam Bahgat. Mechanical fault diagnosis part 2 [en línea]. 2017.[Consulta:14 noviembre2020].Disponibleen:https://www.kau.edu.sa/Files/0057850/Subjects/mechanical fault diagnosis part 2.pdf.

**FAIRES, V. M**. *Diseño de elementos de máquinas*. 4ta ed. Barcelona-España: Montaner y Simón SA, 1995, pp. 383-384.

**FERNANDEZ, Alfonso.** *Desalineación* [en línea]. 2020. [Consulta: 9 diciembre 2020]. Disponible en: https://power-mi.com/es/content/desalineación.

GARCÍA HERNANDEZ, Juan Carlos. Diseño de Tutor para Análisis de Vibraciones Mecánicas [en línea] (Trabajo de titulación). (Pregrado) Universidad de los Andes, Bogota, Colombia. 2003. pp. 16-17. [Consulta: 10 enero 2021]. Disponible en: https://repositorio.uniandes.edu.co/bitstream/handle/1992/21101/u246043.pdf?sequence=1&isA llowed=y.

GONZÁLEZ, Héctor; et al. "Diseño de un banco de pruebas de desalineamiento y desbalanceomecánico". Scientia Et Technica [en línea], 2005, (Colombia) 2(28), pp. 101-106. [Consulta: 18diciembre2020].ISSN0122-1701.Disponibleen:https://revistas.utp.edu.co/index.php/revistaciencia/article/view/6827.

GUNT HAMBURG. Sistema de diagnóstico de máquinas, unidad básica.[en línea]. 2020.[Consulta:20diciembre2020].Disponibleen:https://www.gunt.de/index.php?option=com\_gunt&task=gunt.list.category&product\_id=1022&lang=es&Itemid=150&fbclid=IwAR09WFfBu6tvTWyqJHqDF1cWuWQShOmM4hhlDbR1n0twPOp2vXzLSjUVRJU.

 LUDECA. A Practical Guide to Shaft Alignment [en línea]. Prüftechnik, 2002. [Consulta: 15

 noviembre
 2020].
 Disponible
 en:

 https://www.plantservices.com/assets/knowledge\_centers/ludeca/assets/A\_Practical\_Guide\_to\_

 Shaft\_Alignment.pdf.

MAIS, Jason. *Spectrum Analysis* [en línea]. *SKF*, 2002. [Consulta: 20 febrero 2021]. Disponible en: https://www.skf.com/binaries/pub12/Images/0901d1968024acef-CM5118-EN-Spectrum-Analysis\_tcm\_12-113997.pdf.

**MECH4STUDY.** *Tipos de acoplamientos* [en línea]. 2018. [Consulta: 8 diciembre 2020]. Disponible en: https://www.mech4study.com/2018/10/what-is-coupling-what-are-main-types-of-couplings.html.

**MORENO RODRÍGUEZ, Diana Xiomara, & MARTÍNEZ MUÑOZ, Juan Sebastían.** Diseño y desarrollo de un sistema de control para una máquina de balanceo utilizando análisis de vibraciones [en línea] (Trabajo de titulación). (Pregrado) Universidad Tegnológica de Pereira, Pereira, Colombia. 2015. pp. 11-14. [Consulta: 18 enero 2021]. Disponible en: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/5492/6203M843.pdf?sequence=1&i sAllowed=y.

**MOTT, Robert L.** *Diseño de elementos de máquinas*. 4ta ed. Atlacomulco-México: Pearson Education, 2006. ISBN 970-26-0812-0, pp. 513-517.

**OLARTE, William; et al.** "Análisis de vibraciones: Una herramienta clave en el mantenimientopredictivo". Scientia Et Technica [en línea], 2010, (Colombia) 16(45), pp. 219-222. [Consulta: 12diciembre2020].ISSN0122-1701.Disponibleen:https://www.redalyc.org/pdf/849/84917249040.pdf.

**PAREDES LÓPEZ, Pedro Manuel**. Modelado, simulación e implementación de módulo de ensayos vibracionales para detección de fallas en maquinaria rotativa para instrucción universitaria [en línea] (Trabajo de titulación). (Pregrado) Universidad César Vallejo, Trujillo, Peru. 2018. pp. 44-45. [Consulta: 28 diciembre 2020]. Disponible en: http://repositorio.ucv.edu.pe/handle/20.500.12692/35224.

PIOTROWSKI, John. *Shaft Alignment Handbook*. 3rd ed. New York-USA: CRC Press, 2006. ISBN 1-57444-721-1, pp. 343-347.

**RIBA ROMEVA, Carles.** Diseño concurrente [en línea]. Barcelona-España: Edicions UPC,2002.[Consulta:20enero2021]. Disponibleen:https://upcommons.upc.edu/bitstream/handle/2099.3/36754/9788498800746.pdf?sequence=1&isAllowed=y.

SÁNCHEZ, Heller; et al. "Metodología para el balanceo de rotores empleando un analizador de vibraciones". *Revista UIS Ingenierías* [en línea], 2017, (Colombia) 17(2), pp. 291-308. [Consulta: 10 enero 2021]. ISSN 16574583. Disponible en: https://www.redalyc.org/jatsRepo/5537/553756965026/html/index.html.

SIEMENS. El portafolio de motores eléctricos más amplio del mundos [en línea]. SIEMENSServices,2019.[Consulta:10diciembre2020].Disponibleen:

https://cutt.ly/PortafolioMotoresSiemens.

**SKF.** *Soportes de pie SNL* [en línea]. 2009. [Consulta: 20 diciembre 2020]. Disponible en: https://www.skf.com/binaries/pub42/Images/0901d196801106cb-6112\_ES\_tcm\_42-494474.pdf.

**SKF.** *SKF Couplings* [en línea]. 2018. [Consulta: 10 diciembre 2020]. Disponible en: https://www.skf.com/binaries/pub20/Images/0901d196806fd7be-SKF-Couplings---15822\_2-EN\_tcm\_20-317965.pdf.

SKF. *Instrucciones de uso de TKSA 11* [en línea]. 2019a. [Consulta: 1 febrero 2021]. Disponible en: https://www.skf.com/binaries/pub12/Images/0901d196803dd4fb-MP5433\_tcm\_12-248116.pdf#cid-248116.

**SKF.** *Rodamientos* [en línea]. 2019b. [Consulta: 20 diciembre 2020]. Disponible en: https://www.skf.com/binaries/pub42/Images/0901d1968097689a-Rolling-bearings---17000\_1-ES\_tcm\_42-121486.pdf.

**SKF.** *SKF QuickCollect sensor* [en línea]. 2020. [Consulta: 5 febrero 2021]. Disponible en: https://servicesandsolutions.promo.skf.com/acton/attachment/26359/f-709d72d7-3d7a-46a6-8871-c30052d0a591/1/-/-/-/17198\_3 EN - SKF QuickCollect sensor\_Low.pdf?cm\_mmc=Act-On Software-\_-Landing Page-\_-SKF QuickCollect and Enlight ProCollect-\_-Download the.

**TECHNICAL ASSOCIATES OF CHARLOTTE.** *Lista Ilustrada De Diagnóstico De Vibraciones* [en línea]. 1996. [Consulta: 15 febrero 2021]. Disponible en: https://www.technicalassociates.net/spanish-wall-chart.html.

**TORRES CUEVA, Ariel Alexis**. Estudio del desalineamiento entre máquinas acopladas y análisis de su respuesta vibratoria [en línea] (Trabajo de titulación). (Pregrado) Universidad del Bío-Bío, Concepción, Chile. 2013. pp. 18-21. [Consulta: 20 enero 2021]. Disponible en: http://repobib.ubiobio.cl/jspui/bitstream/123456789/415/1/Torres\_Cuevas\_Ariel\_Alexis.pdf.

**UNE.** *Tipos de acoplamientos de transmisión de potencia rígidos vs flexibles* [en línea]. sf. [Consulta: 6 enero 2021]. Disponible en: https://eganagroup.com/une/tipos-de-acoplamientos-de-transmision-de-potencia/.

VIBRALIGN. Análisis de vibraciones [en línea]. sf. [Consulta: 25 febrero 2021]. Disponible en:

https://vibralign.com/resources/concepts/vibration-analysis/.

**WEBER, Manfred.** *Vibration severity meter VM12* [en línea]. 2002. [Consulta: 20 febrero 2021]. Disponible en: https://www.mmf.de/manual/vm12mane.pdf.

# ANEXO A: CATÁLOGO DE RODAMIENTOS DE BOLAS A RÓTULA SKF

# 4.1 Rodamientos de bolas a rótula d 25-45 mm





| Dimen | isiones p      | principales    | Capacida<br>básica   | d de carga                 | Carga<br>límite de       | Velocidade<br>Velocidad | nominales Masa            |                      | Designaciones<br>Rodamiento con                                          |                                             |
|-------|----------------|----------------|----------------------|----------------------------|--------------------------|-------------------------|---------------------------|----------------------|--------------------------------------------------------------------------|---------------------------------------------|
| d     | D              | В              | dinámica<br>C        | estática<br>C <sub>0</sub> | fatiga<br>P <sub>u</sub> | de<br>referencia        | límite                    |                      | agujero cilíndrico                                                       | agujero cónico                              |
| mm    |                |                | kN                   |                            | kN                       | r. p. m.                |                           | kg                   | 2                                                                        |                                             |
| 25    | 52<br>52<br>52 | 15<br>18<br>18 | 14,3<br>14,3<br>16,8 | 4<br>4<br>4,4              | 0,21<br>0,21<br>0,23     | 28 000<br>-<br>26 000   | 18 000<br>9 000<br>18 000 | 0,14<br>0,16<br>0,16 | <ul> <li>1205 ETN9</li> <li>2205 E-2R51TN9</li> <li>2205 ETN9</li> </ul> | 1205 EKTN9<br>2205 E-2R51KTN9<br>2205 EKTN9 |
|       | 62<br>62<br>62 | 17<br>24<br>24 | 19<br>19<br>27       | 5,4<br>5,4<br>7,1          | 0,28<br>0,28<br>0,37     | 22 000<br>-<br>22 000   | 15 000<br>7 500<br>16 000 | 0,26<br>0,34<br>0,34 | <ul> <li>1305 ETN9</li> <li>2305 E-2R51TN9</li> <li>2305 ETN9</li> </ul> | 1305 EKTN9<br>2305 E-2R51KTN<br>2305 EKTN9  |
| 30    | 62<br>62<br>62 | 16<br>20<br>20 | 15,6<br>15,6<br>23,8 | 4,65<br>4,65<br>6,7        | 0,24<br>0,24<br>0,35     | 24 000<br><br>22 000    | 15 000<br>7 500<br>15 000 | 0,22<br>0.26<br>0,26 | <ul> <li>1206 ETN9</li> <li>2206 E-2R51TN9</li> <li>2206 ETN9</li> </ul> | 1206 EKTN9<br>2206 E-2R51KTN<br>2206 EKTN9  |
|       | 72<br>72<br>72 | 19<br>27<br>27 | 22,5<br>22,5<br>31,2 | 6,8<br>6,8<br>8,8          | 0,36<br>0,36<br>0,45     | 19 000<br>-<br>18 000   | 13 000<br>6 700<br>13 000 | 0,39<br>0,51<br>0,5  | <ul> <li>1306 ETN9</li> <li>2306 E-2R51TN9</li> <li>2306</li> </ul>      | 1306 EKTN9<br>2306 E-2R51KTN<br>2306 K      |
| 35    | 72<br>72<br>72 | 17<br>23<br>23 | 19<br>19<br>30,2     | 6<br>6<br>8,8              | 0,31<br>0,31<br>0,455    | 20 000<br>-<br>18 000   | 13 000<br>6 300<br>12 000 | 0,32<br>0,41<br>0,4  | <ul> <li>1207 ETN9</li> <li>2207 E-2RS1TN9</li> <li>2207 ETN9</li> </ul> | 1207 EKTN9<br>2207 E-2R51KTN<br>2207 EKTN9  |
|       | 80<br>80<br>80 | 21<br>31<br>31 | 26,5<br>26,5<br>39,7 | 8,5<br>8,5<br>11,2         | 0,43<br>0,43<br>0,59     | 16 000<br>-<br>16 000   | 11 000<br>5 600<br>12 000 | 0,51<br>0,7<br>0,68  | <ul> <li>1307 ETN9</li> <li>2307 E-2R51TN9</li> <li>2307 ETN9</li> </ul> | 1307 EKTN9<br>2307 E-2R51KTN<br>2307 EKTN9  |
| 40    | 80<br>80<br>80 | 18<br>23<br>23 | 19,9<br>19,9<br>31,9 | 6,95<br>6,95<br>10         | 0,36<br>0,36<br>0,51     | 18 000<br>-<br>16 000   | 11 000<br>5 600<br>11 000 | 0,42<br>0,5<br>0,51  | • 1208 ETN9 • 2208 E-2R51TN9 • 2208 ETN9 •                               | 1208 EKTN9<br>2208 E-2R51KTN<br>2208 EKTN9  |
|       | 90<br>90<br>90 | 23<br>33<br>33 | 33,8<br>33,8<br>54   | 11,2<br>11,2<br>16         | 0,57<br>0,57<br>0,82     | 14 000<br>-<br>14 000   | 9 500<br>5 000<br>10 000  | 0,68<br>0,96<br>0,93 | <ul> <li>1308 ETN9</li> <li>2308 E-2RS1TN9</li> <li>2308 ETN9</li> </ul> | 1308 EKTN9<br>2308 E-2R51KTN<br>2308 EKTN9  |
| 45    | 85<br>85<br>85 | 19<br>23<br>23 | 22,9<br>22,9<br>32,5 | 7,8<br>7,8<br>10.6         | 0,4<br>0,4<br>0.54       | 17 000<br>-<br>15 000   | 11 000<br>5 300<br>10 000 | 0,47<br>0,53<br>0.55 | <ul> <li>1209 ETN9</li> <li>2209 E-2RS1TN9</li> <li>2209 ETN9</li> </ul> | 1209 EKTN9<br>2209 E-2R51KTN<br>2209 EKTN9  |

# DATOS DEL CÁLCULO

| Capacidad de carga dinámica básica | C              | 23.8 kN     |
|------------------------------------|----------------|-------------|
| Capacidad de carga estática básica | Co             | 6.7 kN      |
| Carga límite de fatiga             | Pu             | 0.35 kN     |
| Velocidad de referencia            |                | 22000 r/min |
| Velocidad límite                   |                | 15000 r/min |
| Desalineación angular admisible    | α              | 2.5 °       |
| Factor de cálculo                  | k <sub>r</sub> | 0.045       |
| Factor de cálculo                  | e              | 0.33        |
| Factor de cálculo                  | Y <sub>0</sub> | 2           |
| Factor de cálculo                  | Yı             | 1.9         |
| Factor de cálculo                  | Y <sub>2</sub> | 3           |

# ANEXO B: FACTOR DE CONTAMINACIÓN DEL RODAMIENTO

|                                                                                                                                                                                                                                              |                                                                         | Tabla                                 | <u>a 6</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|------------|
| Valores orientativos para el factor $\eta_c$ para distintos niveles de contaminación                                                                                                                                                         |                                                                         |                                       |            |
| Condiciones                                                                                                                                                                                                                                  | Factor η <sub>c</sub> 1)<br>para rodamientos co<br>d <sub>m</sub> < 100 | n diámetro<br>d <sub>m</sub> ≥ 100 mm |            |
| Limpieza extrema<br>• Tamaño de las partículas del orden del espesor de la película de lubricante<br>• Condiciones de laboratorio                                                                                                            | 1                                                                       | 1                                     | niento     |
| <ul> <li>Gran limpieza</li> <li>Aceite lubricante con filtración muy fina</li> <li>Condiciones típicas: rodamientos sellados lubricados con grasa de por vida</li> </ul>                                                                     | 0,8 0,6                                                                 | 0,9 0,8                               | el rodar   |
| <ul> <li>Limpieza normal</li> <li>Aceite lubricante con filtración fina</li> <li>Condiciones típicas: rodamientos con placas de protección lubricados con grasa de por vida</li> </ul>                                                       | 0,6 0,5                                                                 | 0,8 0,6                               | Tamaño d   |
| <ul> <li>Contaminación ligera</li> <li>Condiciones típicas: rodamientos sin sello integral, filtrado grueso, partículas de desgaste y leve ingreso de contaminantes</li> </ul>                                                               | 0,5 0,3                                                                 | 0,6 0,4                               | 8.3        |
| <ul> <li>Contaminación típica</li> <li>Condiciones típicas: rodamientos sin sello integral, filtrado grueso, partículas de desgaste e ingreso de partículas desde el exterior</li> </ul>                                                     | 0,3 0,1                                                                 | 0,4 0,2                               |            |
| <ul> <li>Contaminación severa</li> <li>Condiciones típicas: altos niveles de contaminación debido a desgaste excesivo o sellos ineficaces</li> <li>Disposición de los rodamientos con sellos ineficaces o dañados</li> </ul>                 | 0,10                                                                    | 0,1 0                                 |            |
| <ul> <li>Contaminación muy severa</li> <li>Condiciones típicas: niveles de contaminación tan severas que los valores de<br/>n<sub>c</sub> están fuera de escala, lo que reduce significativamente la vida útil del<br/>rodamiento</li> </ul> | 0                                                                       | 0                                     |            |
|                                                                                                                                                                                                                                              |                                                                         |                                       |            |
|                                                                                                                                                                                                                                              |                                                                         |                                       |            |
|                                                                                                                                                                                                                                              |                                                                         |                                       |            |

## ANEXO C: CATÁLOGO DE SOPORTES DE CHUMACERAS BIPARTIDAS SKF

Soportes de pie SNL para rodamientos sobre un manguito de fijación, ejes métricos d<sub>a</sub> 20 – 35 mm







Obturaciones de doble labio, diseño G<sup>1)</sup> Obturaciones laberínticas, diseño S

Obturaciones de taconita, diseño ND

| Eje | Sopo | orte<br>ension | es  |                | Masa Designaciones |     |     | -  |    |    |      |                                                                                        |                                                                |                                                                              |
|-----|------|----------------|-----|----------------|--------------------|-----|-----|----|----|----|------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| da  | A    | A1             | н   | H <sub>1</sub> | H <sub>2</sub>     | J   | L   | N  | N1 | G  |      | Soporte                                                                                | Obturaciones                                                   | lapa laterai                                                                 |
| mm  | mm   |                |     |                |                    |     |     |    |    |    | kg   | -                                                                                      |                                                                |                                                                              |
| 20  | 67   | 46             | 74  | 40             | 19                 | 130 | 165 | 20 | 15 | 12 | 1,45 | SNL 505<br>SNL 505<br>SNL 505<br>SNL 505<br>SNL 505<br>SNL 505                         | TSN 505 G<br>TSN 505 A<br>TSN 505 C<br>TSN 505 S<br>TSN 505 ND | ASNH 505<br>ASNH 505<br>ASNH 505<br>ASNH 505<br>ASNH 505<br>ASNH 505         |
|     | 77   | 52             | 89  | 50             | 22                 | 150 | 185 | 20 | 15 | 12 | 2,00 | SNL 506-605<br>SNL 506-605<br>SNL 506-605<br>SNL 506-605<br>SNL 506-605<br>SNL 506-605 | TSN 605 G<br>TSN 605 A<br>TSN 605 C<br>TSN 605 S<br>TSN 605 ND | ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605 |
| 25  | 77   | 52             | 89  | 50             | 22                 | 150 | 185 | 20 | 15 | 12 | 2.00 | SNL 506-605<br>SNL 506-605<br>SNL 506-605<br>SNL 506-605<br>SNL 506-605                | TSN 506 G<br>TSN 506 A<br>TSN 506 C<br>TSN 506 S<br>TSN 506 ND | ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605<br>ASNH 506-605 |
|     | 82   | 52             | 93  | 50             | 22                 | 150 | 185 | 20 | 15 | 12 | 2,20 | SNL 507-606<br>SNL 507-606<br>SNL 507-606<br>SNL 507-606<br>SNL 507-606                | TSN 606 G<br>TSN 606 A<br>TSN 606 C<br>TSN 606 S<br>TSN 606 ND | ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606 |
| 30  | 82   | 52             | 93  | 50             | 22                 | 150 | 185 | 20 | 15 | 12 | 2,20 | SNL 507-606<br>SNL 507-606<br>SNL 507-606<br>SNL 507-606<br>SNL 507-606                | TSN 507 L<br>TSN 507 A<br>TSN 507 C<br>TSN 507 S<br>TSN 507 ND | ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606<br>ASNH 507-606 |
|     | 85   | 60             | 108 | 60             | 25                 | 170 | 205 | 20 | 15 | 12 | 2,90 | SNL 508-607<br>SNL 508-607<br>SNL 508-607<br>SNL 508-607<br>SNL 508-607                | TSN 607 G<br>TSN 607 A<br>TSN 607 C<br>TSN 607 S<br>TSN 607 ND | ASNH 508-607<br>ASNH 508-607<br>ASNH 508-607<br>ASNH 508-607<br>ASNH 508-607 |







| Eje<br>da | Eje Asiento Anchura<br>del roda- entre<br>miento obturaciones<br>d <sub>a</sub> C <sub>a</sub> D <sub>a</sub> A <sub>2</sub> A <sub>3</sub> |    | ura<br>P<br>raciones<br>A <sub>3</sub> | Rodamientos apropiados y o<br>Rodamiento de bolas a rótula<br>Rodamiento de rodillos<br>a rótula | omponente<br>Manguito<br>de fijación | s asoclados<br>Anillos de<br>fijación<br>2 por<br>soporte | Rodamiento de bolas a rótula<br>Rodamiento de rodillos a rótula<br>Rodamiento de rodillos a rótula obturado<br>Rodamiento de rodillos toroidales CARB | Manguito<br>de fijación | Anillos de<br>fijación<br>2 por<br>soporte |                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|--------------------------|
| mm        | mm                                                                                                                                          |    | mm                                     |                                                                                                  | н.                                   |                                                           |                                                                                                                                                       |                         |                                            |                          |
| 20        | 25                                                                                                                                          | 52 | 80                                     | 125                                                                                              | 1205 EKTN9                           | H 205<br>-                                                | FRB 5/52                                                                                                                                              | 2205 EKTN9<br>22205 EK  | H 305<br>H 305                             | FRB 3.5/52<br>FRB 3.5/52 |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | C 2205 KTN9             | H 305 E                                    | -<br>FRB 3.5/52          |
|           | 32                                                                                                                                          | 62 | 89                                     | 135                                                                                              | 1305 EKTN9                           | H 305<br>-                                                | FRB 7.5/62                                                                                                                                            | Ξ                       | 2                                          | 2                        |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | 5                       | 2                                          | 5                        |
| 25        | 32                                                                                                                                          | 62 | 89                                     | 135                                                                                              | 1206 EKTN9                           | H 206                                                     | FRB 8/62                                                                                                                                              | 2206 EKTN9<br>22206 EK  | H 306<br>H 306                             | FRB 6/62<br>FRB 6/62     |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | -<br>С 2206 КТN9        | –<br>H 306 E                               | _<br>FRB 6/62            |
|           | 34                                                                                                                                          | 72 | 94                                     | 140                                                                                              | 1306 EKTN9<br>21306 CCK              | H 306<br>H 306                                            | FRB 7.5/72<br>FRB 7.5/72                                                                                                                              | 2306 K                  | H 2306                                     | FRB 3.5/72               |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | 2<br>7                  | -                                          | -                        |
| 30        | 34                                                                                                                                          | 72 | 94                                     | 145                                                                                              | 1207 EKTN9                           | H 207                                                     | FR <mark>B 8.5/72</mark>                                                                                                                              | 2207 EKTN9<br>22207 EK  | H 307<br>H 307                             | FRB 5.5/72<br>FRB 5.5/72 |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | C 2207 KTN9             | H 307 E                                    | -<br>FRB 5.5/72          |
|           | 39                                                                                                                                          | 80 | 97                                     | 145                                                                                              | 1307 EKTN9<br>21307 CCK              | H 307<br>H 307                                            | FRB 9/80<br>FRB 9/80                                                                                                                                  | 2307 EKTN9              | H 2307<br>-                                | FRB 4/80<br>-            |
|           |                                                                                                                                             |    |                                        |                                                                                                  |                                      |                                                           |                                                                                                                                                       | -                       | -                                          | -                        |

#### ANEXO D: FACTOR DE SERVICIO DE ACOPLES SKF

|                                |                                           |                                     |                                           | Table 9 |
|--------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|---------|
| Service factors for chain goa  | r and grid coupli                         | age by application                  |                                           |         |
| Service factors for chain, gea | r and grid coupin                         | ngs by application                  |                                           |         |
| Application                    | Electric motor<br>with standard<br>torque | Application                         | Electric motor<br>with standard<br>torque |         |
| Aerator                        | 2,0                                       | Man lifts                           | Not approved                              |         |
| Agitators                      |                                           | Mills (rotary type)                 | a and a second                            |         |
| Vertical and horizontal        | 1.0                                       | Ball or pebble                      | 2,0                                       |         |
| Screw, propeller, paddle       | 1,5                                       | Rod or tube                         | 2,0                                       |         |
| Barge haul puller              |                                           | Metal forming machines              |                                           |         |
| Blowers                        |                                           | Dryer and cooler                    | 1,75                                      |         |
| Centrifugal                    | 1,0                                       | Continuous caster                   | 1,75                                      |         |
| Lobe or vane                   | 1,25                                      | Draw bench carriage                 | 2,0                                       |         |
| Car dumpers                    | 2,5                                       | and main drive                      |                                           |         |
| Carpullers                     | 1,5                                       | Extruder                            | 2.0                                       |         |
| Clarifier or classifer         | 1,0                                       | Forming machine and                 | 2,0                                       |         |
| Clay working machines          |                                           | forming mills                       |                                           |         |
| Brick press                    | 1,/5                                      | Satters                             | 1,0                                       |         |
| Pugmili                        | 1,/5                                      | wire drawing or nattening           | 1,75                                      |         |
| Briquette machine              | 1,/5                                      | wire winder                         | 15                                        |         |
| Controlunal                    | 4.0                                       | Conters and Unconters               | 1,5                                       |         |
| Detanu John er vann            | 4.25                                      | Mixels (see agriators)              | 1.75                                      |         |
| Potaci, comm                   | 10                                        | Mullor                              | 15                                        |         |
| Pociprocating                  | 1,0                                       | Proce printing                      | 15                                        |         |
| Direct connected               | Contact SKE                               | Pig mill                            | 1.75                                      |         |
| Without flywheel               | Contact SKE                               | Pulverizers                         | and the                                   |         |
| With flywheel and gear between |                                           | Hammermill and hon                  | 175                                       |         |
| compressor and prime mover     |                                           | Roller                              | 15                                        |         |
| 1 cylinder, single acting      | 3.0                                       | Pumps                               |                                           |         |
| 1 cylinder, double acting      | 3.0                                       | Boiler feed                         | 1.5                                       |         |
| 2 cylinders, single acting     | 3,0                                       | Centrifugal                         |                                           |         |
| 2 cylinders, double acting     | 3.0                                       | Constant speed                      | 1,0                                       |         |
| 3 cylinders, single acting     | 3,0                                       | Frequent speed changes              | 1,25                                      |         |
| 3 cylinders, double acting     | 2,0                                       | under load                          |                                           |         |
| 4 or more cylinders,           | 1,75                                      | Descaling, with accumulators        | 1,25                                      |         |
| single acting                  | 1000                                      | Gear, rotary, or vane               | 1,25                                      |         |
| 4 or more cylinders,           | 1,75                                      | Reciprocating, plunger, piston      |                                           |         |
| double acting                  |                                           | 1 cylinder, single or double acting | 3,0                                       |         |
| Feeder                         | 101753                                    |                                     |                                           |         |
| Apron, belt, disc, screw       | 1,0                                       |                                     |                                           |         |
| Recipirucating                 | 2.5                                       |                                     |                                           |         |

## ANEXO E: CATÁLOGO DE ACOPLES FLEXIBLES DE REJILLA SKF

Horizontal split cover



| Size     | Power per<br>100 r/min | Rated<br>torque | Speed | Bore | eter | Dimens | ons  |      |      |               |   |      | Gap       |        |      | Lubricant<br>weight | Coupling weight<br>without bore |
|----------|------------------------|-----------------|-------|------|------|--------|------|------|------|---------------|---|------|-----------|--------|------|---------------------|---------------------------------|
|          |                        |                 | Max.  | Min. | Max. | А      | В    | С    | D    | 3 <b>1</b> .2 | F | S    | G<br>Min, | Normal | Max. |                     |                                 |
| -        | кW                     | Nm              | nimin | шт   |      |        |      |      |      |               |   |      | mm        |        |      | kg                  |                                 |
| 1020 TGH | 0,54                   | 52              | 4 500 | 13   | 28   | 101,6  | 98,2 | 47,5 | 39,7 | 66            |   | 39,1 | 1,5       | 3      | 4,5  | 0,027               | 1,9                             |

### Grid couplings with taper bushing option



| Size                 | Taper bushing designation                  | Bushing torque<br>capacity <sup>1]</sup> | Bore diameter range |           | Reduced hub length | Hub length reduction | Hub diameter |
|----------------------|--------------------------------------------|------------------------------------------|---------------------|-----------|--------------------|----------------------|--------------|
|                      |                                            |                                          | Min.                | Max.      | Ci                 |                      | D            |
| 2                    | 172)                                       | Nm                                       | mm                  |           | mm                 | mm                   | mm           |
| 1020<br>1030<br>1040 | Not available<br>PHF TB1108<br>PHF TB 1108 | 147<br>147                               | -<br>13<br>13       | 25<br>_25 | 45<br>45           | <br>2,5<br>5,8       | 49,2<br>57,2 |

### ANEXO F: GUÍA DE LABORATORIO

ESCUELA SUPERIOR POLITÉCNICA DEL CHIMBORAZO VICERRECTORADO ACADÉMICO DIRECCIÓN DE DESARROLLO ACADÉMICO



### FACULTAD: MECÁNICA

**CARRERA:** MECÁNICA

GUÍA DE PRACTICAS DE LABORATORIO DE DISEÑO DE ELEMENTOS DE MÁQUINAS

CODIGO DE LA ASIGNATURA

LUGAR DONDE SE REALIZA LA PRÁCTICA:

# DIAGNÓSTICO DE FALLAS EN SISTEMAS MECÁNICOS POR DESALINEAMIENTOS EN ACOPLES FLEXIBLES MEDIANTE ANÁLISIS COMPARATIVO DE ESPECTROS DE VIBRACIÓN

**FECHA:** aaaa-mm-dd (debe coincidir con la planificación de la asignatura)

#### 1. OBJETIVO:

#### GENERAL

Diagnosticar fallas en sistemas mecánicos por desalineamiento en acoples flexibles mediante análisis comparativo de espectros de vibración.

#### ESPECÍFICOS

- Familiarizar al estudiante con temas relacionados a la vibración producida por la desalineación y alineación de ejes.
- Reconocer las partes del banco de pruebas e identificar la función que desempeñan cada una de las mismas.
- Aprender a alinear ejes de forma correcta.
- Comparar espectros de vibración que se producen con desalineamiento y posteriormente con alineamiento.
- Diagnosticar las fallas a través de la comparación de espectros de vibración obtenidos en el ensayo con tablas de diagnóstico de vibraciones (Carta de Charlotte).

### 2. INSTRODUCCIÓN

La desalineación es una de las principales fuentes de vibración que puede provocar daños graves e irreversibles en la máquina. Un análisis comparativo de espectros de vibración ayudara a detectar las fallas existentes en el equipo y corregirlas de manera inmediata ayudando a salvaguardar la vida útil de los equipos.

#### Banco de pruebas:

El banco de pruebas para el diagnóstico de fallas en sistemas mecánicos por desalineamientos en acoples flexibles mediante análisis comparativo de espectros de vibración, basa su fuente de

potencia en un motor trifásico de 1Hp. Unido al motor existe un eje corto al cual se le transmitirá el movimiento; este eje esta unido al motor por medio de un acople rígido; al extremo del eje corto se une un eje largo a través de un acople flexible tipo rejilla; solidario al eje largo, se tiene dos discos que deberán estar completamente balanceados, estos discos llevan una serie de orificios los cuales estarán roscados para poder adicionar o quitar masa por medio de unos tornillos opresores con el fin de poder desbalancear la máquina; estos discos van unidos al eje por medio de tornillos tipo prisionero (González, Cardona y Monroy, 2005, p. 101).

El motor se encuentra sobre una base misma que permite generar la desalineación entre ejes, el sistema estará soportado sobre una base ranurada de desplazamiento en forma de T invertida para desplazar los soportes según el caso a medir.



Tabla 1: Partes del banco de pruebas

| Tabla 1: Partes del banco de prue | bas (Continuación) |
|-----------------------------------|--------------------|
|-----------------------------------|--------------------|

| 9  | 2 | Guardas de protección                     |
|----|---|-------------------------------------------|
| 10 | 2 | Conjunto chumacera bipartida y rodamiento |
| 11 | 1 | Eje largo                                 |

Realizado por: Guananga, D.; Pilco, K. 2020

#### **3. PROCEDIMIENTO:**

Para el desarrollo de la práctica se indica el siguiente procedimiento:

- 1. Reconocer el equipo e instrumentos necesarios para la práctica.
- 2. Observar y verificar que todos los elementos montados se encuentren ajustados correctamente.

#### Tabla 2: Capacidad de desalineación del acople



Fuente: (SKF, 2018)

Realizado por: Guananga, D.; Pilco, K. 2020

- 3. Generar el desalineamiento utilizando la base de motor, tener en cuenta la capacidad de desalineación del acople utilizado.
- 4. Conectar el tablero de control "Variador de frecuencia SINAMICS V20" a una fuente de energía eléctrica y encender el equipo.
- 5. Definir un valor de velocidad a la cual se desea que funcione el banco de pruebas; para ello ingresamos un valor de frecuencia en el tablero de control (Ver ecuación 1).
- 6. Medir y verificar el valor de velocidad de rotación del eje utilizando un tacómetro.
- 7. Tomar las medidas en los puntos señalados en la fig.1 utilizando el colector de datos.
- Observar y guardar los espectros de vibración producto de la desalineación que se producen en los puntos medidos. Se deberá registrar valores de temperatura, velocidad RMS con su respectivo espectro de vibración.

- 9. Si desea analizar el espectro de vibración a otra velocidad pare el motor y repita nuevamente los pasos del 5 al 8.
- 10. Una vez tomada las medidas en todos los puntos apagar el equipo.
- 11. Corregir la desalineación a través del uso de un equipo de alineación, en el presente se utilizará un alineador TKSA 11 (Ver tabla 3).
- 12. Una vez alineado el equipo repetir nuevamente los pasos del 4 al 10.
- 13. Analizar e interpretar los datos registrados.

Nota: Cuando el equipo esta desalineado se recomienda no trabajar a altas velocidades ya que la vibración puede ser muy elevada causando daño en el acople y demás componentes del banco de pruebas. Una vez realizada la alineación el equipo puede trabajar a altas velocidades normalmente.

#### 4. ACTIVIDADES POR DESARROLLAR

#### 4.1 Observaciones y recomendaciones de instrumentos y equipos

#### EPP: Equipos de protección personal

- 1. Mandil
- 2. Guantes
- 3. Zapatos de seguridad

#### **Equipos y herramientas:**

Equipos:

- Banco de pruebas
- Tablero de control "Variador de frecuencia SINAMICS V20"
- Alineador de ejes SKF TKSA 11
- Colector de datos SKF QuickCollect CMDT 390-K-SL
- Tacómetro

#### Herramientas:

- Juego de llaves combinadas
- Juego de hexagonales
- Juego de chapas calibradas calibradas

#### 4.2 Manejo de instrumentos y equipos

#### 4.2.1. Manejo del banco de pruebas

Para la toma y recolección se datos se lo realiza en cuatro puntos del sistema: (1) chumacera lado libre, (2) chumacera lado del acople, (3) motor lado libre, (4) motor lado del acople. La figura 1 indica los puntos de medición para la toma de medidas, teniendo en cuenta las siguientes direcciones: Vertical o radial (V), Horizontal o tangencial (H) y Axial (A).



**Figura 1.** Puntos y direcciones de medición del banco de pruebas **Realizado por:** Guananga, D.; Pilco, K. 2021

La práctica se la puede realizar a una o a las velocidades que se desee el operario, mismas son ingresadas a través de un tablero de control "Variador de frecuencia SINAMICS V20" utilizando datos de frecuencia. Esta velocidad teórica disminuye debido a la carga a la cual está conectada, por tal razón se recomienda redondear los valores de frecuencia para compensar dicha pérdida.

- Velocidad teórica: Calculada en base a la ecuación

$$f = \frac{3n}{172} \tag{1}$$
 Donde:

n: Velocidad que experimenta el rotor a la frecuencia f [rpm]

- Velocidad experimental: Medida con ayuda del tacómetro

4.2.2. Manejo del alineador de ejes SKF TKSA 11

# Tabla 3: Manual de operación del alineador de ejes TKSA 11

| 1. Monte el soporte en V en el lado fijo del                        |  |
|---------------------------------------------------------------------|--|
| equipo por lo general es el equipo conducido, ejemplo el eje largo. |  |
| 2. Enganche la cadena en el anclaje del                             |  |
| soporte en V desde el interior (para                                |  |
| diámetros <40mm caso contrario desde el                             |  |
| exterior) y ajuste la cadena firmemente con                         |  |
| la perilla de sujeción                                              |  |
| 3. Acoplar el otro soporte en V en el eje                           |  |
| móvil del equipo por lo general el eje                              |  |
| conductor, ejemplo eje corto.                                       |  |
| 4. Coloque la barra más corta entre los ejes                        |  |
| del soporte del eje, ajuste la posición sobre                       |  |
| las varillas, en la posición más baja                               |  |
|                                                                     |  |
| 5. Monte la unidad de medición sobre las                            |  |
| varillas del lado móvil                                             |  |
| 6. Ajuste la distancia entre los sensores de                        |  |
| proximidad y la barra de referencia                                 |  |
| aproximadamente a 3 mm. Utilizar otra                               |  |
| barra como referencia.                                              |  |

#### Tabla 3: Manual de operación del alineador de ejes TKSA 11 (Continuación)

7. Descargue e instale en su celular la aplicación "SKF TKSA 11"

8. Encienda el bluetooth y abra la aplicación en su teléfono; diríjase al menú configuración e ingrese la información requerida como: compañía, logotipo y vincule el teléfono con el alineador.

9. Haga clic en el signo "+" para iniciar una nueva alineación e ingrese los valores solicitados. La tolerancia dependerá de la velocidad de la placa del motor.

10. Verificar que la distancia entre el sensor de proximidad inductivo y la barra de referencia se encuentre dentro del rango 3 (+0,5; -0,5) mm, caso contrario corregir inmediatamente.

11. A continuación, se realizará la toma de medidas en tres posiciones (9,12,3), haciendo analogía a las manecillas del reloj. La pantalla del móvil lo guiara de forma didáctica.

12. Gire los ejes hasta el triángulo de bordes verdes y registrar la medida en las tres posiciones antes mencionadas.







#### Tabla 3: Manual de operación del alineador de ejes TKSA 11 (Continuación)

13. Una vez registrados las tres posiciones se indicará los resultados de desalineación existente en el equipo. Aparecerán tres botones: Remeasure (repetir la medición), Done (Aceptar los resultados y generar el informe) y Alinear.

14. Para corregir la desalineación presionar el botón alinear, a continuación, se desplegará una ventana indicando el valor de chapas calibradas que debe colocar en las patas del motor para corregir la desalineación. De igual forma le indicara el desplazamiento que se debe realizar en la posición horizontal.

15. Verificar la alineación nuevamente tomando las medidas igual al paso 11.

16. Una vez verificado que el equipo ha sido alineado presionar el botón done y genere su informe de alineación caso contrario repita el proceso.

V-Angle -0.53 mm/100 V-Offset 0.41 mm 副曲 e 0.49 r m/100 1-Offset -0,37 mm C TK5A 11 KSA 11 Horizontal H-Angle 0,48 mm/100 Shim Both Sides H-Offset -0,36 mm 1 1.06 2.65 0.96 2.39 TKSA 11 Position 12 V-Angle 0.02 mm/100 V-Offset -0,02 mm Angle 0,00 mm/100 H-Offset -0,00 mm

Fuente: (SKF, 2019a: pp.93-110) Realizado por: Guananga, D.; Pilco, K. 2020

Tabla 4: Partes del alineador de ejes SKF TKSA 11



Realizado por: Guananga, D.; Pilco, K. 2020

#### 4.2.3. Manejo del colector de datos SKF QuickCollect CMDT 390-K-SL

A continuación, se indican los pasos principales para la correcta manipulación del colector de datos si necesita de mayor información revisar la hoja técnica del equipo.

| Pa | rtes                                              |             | 234 |
|----|---------------------------------------------------|-------------|-----|
| 5  | Botón de encendido: enciende y apaga el sensor.   |             |     |
| 6  | LED de batería: (verde, rojo) indica el estado de | 6           |     |
|    | carga de la batería                               |             |     |
| 7  | LED de comunicación: (verde, rojo) indica si el   |             |     |
|    | sensor está conectado a una aplicación. También   |             |     |
|    | indica cuándo hay actualizaciones de firmware en  |             | SKF |
|    | curso.                                            |             |     |
| 8  | LED de verificación de uso general: (verde, rojo, |             |     |
|    | ámbar) indica condiciones de error                |             |     |
|    |                                                   |             |     |
|    |                                                   | 1. AV. (3.1 |     |

Fuente: (SKF, 2020, p.5)

Realizado por: Guananga, D.; Pilco, K. 2020

Procedimiento:

1. Descargue e instale en el celular la aplicación "SKF PULSE"

- 2. Encender y vincular el colector de datos a través del bluetooth mediante la aplicación antes instalada.
- 3. Posicionar el colector de datos en los puntos indicados en la fig. 1 para la toma de medidas
- 4. Guarde y registre los valores obtenidos para su posterior análisis

#### 4.2.4 Toma y recolección de datos

A partir de la tabla propuesta, recolectar los datos solicitados

| N° | Frecuencia<br>(Hz) | Frecuencia<br>aproximada<br>(Hz) | Velocidad<br>teórica<br>(RPM) | experi | Velocidad<br>experimental (RPM)<br>(RPM) |  | Velocidad<br>experimental<br>promedio<br>(RPM) |
|----|--------------------|----------------------------------|-------------------------------|--------|------------------------------------------|--|------------------------------------------------|
| 1  |                    |                                  |                               |        |                                          |  |                                                |
| 2  |                    |                                  |                               |        |                                          |  |                                                |
| 3  |                    |                                  |                               |        |                                          |  |                                                |

Tabla 6: Valores de frecuencia y velocidad

Realizado por: Guananga, D.; Pilco, K. 2021

| Tabla 7: Valo | ores generales      | de velocidad                 | RMS antes y         | después del a                | lineamiento         |
|---------------|---------------------|------------------------------|---------------------|------------------------------|---------------------|
|               |                     | Veloci                       | dad R               | PM                           |                     |
| De sisión de  | Desali              | neado                        | Aline               | eado                         | Condición de cambio |
| monitoreo     | Velocidad<br>(mm/s) | Severidad<br>de<br>vibración | Velocidad<br>(mm/s) | Severidad<br>de<br>vibración | (%)                 |
| 1V            |                     |                              |                     |                              |                     |
| 1H            |                     |                              |                     |                              |                     |
| 1A            |                     |                              |                     |                              |                     |
| 2V            |                     |                              |                     |                              |                     |
| 2H            |                     |                              |                     |                              |                     |
| 2A            |                     |                              |                     |                              |                     |
| Motor         |                     |                              |                     |                              |                     |
| 1V            |                     |                              |                     |                              |                     |
| 1H            |                     |                              |                     |                              |                     |
| 2V            |                     |                              |                     |                              |                     |
| 2H            |                     |                              |                     |                              |                     |
| 2A            |                     |                              |                     |                              |                     |

|       | Veloci | dad R | PM |  |
|-------|--------|-------|----|--|
| 1V    |        |       |    |  |
| 1H    |        |       |    |  |
| 1A    |        |       |    |  |
| 2V    |        |       |    |  |
| 2H    |        |       |    |  |
| 2A    |        |       |    |  |
| Motor |        |       |    |  |
| 1V    |        |       |    |  |
| 1H    |        |       |    |  |
| 2V    |        |       |    |  |
| 2H    |        |       |    |  |
| 2A    |        |       |    |  |
|       | Veloci | dad R | PM |  |
| 1V    |        |       |    |  |
| 1H    |        |       |    |  |
| 1A    |        |       |    |  |
| 2V    |        |       |    |  |
| 2H    |        |       |    |  |
| 2A    |        |       |    |  |
| Motor |        |       |    |  |
| 1V    |        |       |    |  |
| 1H    |        |       |    |  |
| 2V    |        |       |    |  |
| 2H    |        |       |    |  |
| 2A    |        |       |    |  |

 Tabla 7: Valores generales de velocidad RMS antes y después del alineamiento (Continuación)

Realizado por: Guananga, D.; Pilco, K. 2021

| Tabla 8: | Valores de temp | oeratura |
|----------|-----------------|----------|
|----------|-----------------|----------|

|             | Velo             | ocidad RPM      |                     |
|-------------|------------------|-----------------|---------------------|
| Decición do | Desalineado      | Alineado        | Condición de cambio |
| monitoreo   | Temperatura (°C) | Temperatura(°C) | (%)                 |
| 1V          |                  |                 |                     |
| 1H          |                  |                 |                     |
| 1A          |                  |                 |                     |
| 2V          |                  |                 |                     |
| 2H          |                  |                 |                     |
| 2A          |                  |                 |                     |

| Motor |      |            |  |
|-------|------|------------|--|
| 1V    |      |            |  |
| 1H    |      |            |  |
| 2V    |      |            |  |
| 2H    |      |            |  |
| 2A    |      |            |  |
|       | Velo | ocidad RPM |  |
| 1V    |      |            |  |
| 1H    |      |            |  |
| 1A    |      |            |  |
| 2V    |      |            |  |
| 2H    |      |            |  |
| 2A    |      |            |  |
| Motor |      |            |  |
| 1V    |      |            |  |
| 1H    |      |            |  |
| 2V    |      |            |  |
| 2H    |      |            |  |
| 2A    |      |            |  |
|       | Velo | ocidad RPM |  |
| 1V    |      |            |  |
| 1H    |      |            |  |
| 1A    |      |            |  |
| 2V    |      |            |  |
| 2H    |      |            |  |
| 2A    |      |            |  |
| Motor |      |            |  |
| 1V    |      |            |  |
| 1H    |      |            |  |
| 2V    |      |            |  |
| 2H    |      |            |  |
| 2A    |      |            |  |

Tabla 8: Valores de temperatura (Continuación)

Realizado por: Guananga, D.; Pilco, K. 2021

#### 4.3 Análisis y procesamiento de datos

Los datos obtenidos se analizarán tomando en cuenta las recomendaciones de la norma ISO 2372 "Vibración mecánica de máquinas con velocidades de operación entre 10 y 200 rev/s. Bases para la especificación de estándares de evaluación". La comparación de espectros de vibración se realiza a través de la carta ilustrada de diagnóstico de vibración más conocida como carta de Charlotte.

| Rangos de<br>velocidad rms<br>de severidad<br>de vibración | Severidad de las vibraciones para<br>distintas clases de máquinas |          |           |          |
|------------------------------------------------------------|-------------------------------------------------------------------|----------|-----------|----------|
| mm/seg                                                     | Class I                                                           | Class II | Class III | Class IV |
| 0.19                                                       |                                                                   |          |           |          |
| 0.45<br>0.71                                               | А                                                                 | •        |           |          |
| 1.12                                                       | D                                                                 | A        | •         |          |
| 1.8                                                        | ם                                                                 | P        | A         |          |
| 2.8                                                        | C                                                                 | D        | R         | A        |
| 4.5                                                        | 0                                                                 | C        | D         | в        |
| 7.1                                                        | D                                                                 | 0        | C         |          |
| 11.2                                                       | 5                                                                 | D        | 0         | C        |
| 18                                                         |                                                                   | D        | р         |          |
| 28                                                         |                                                                   |          | D         |          |
| 45                                                         |                                                                   |          |           | U        |

Tabla 9: Rango de severidad vibratoria para máquinas normales

Las letras A, B, C y D representan los grados de calidad de vibración de la máquina, que van

desde: Buena (A), Satisfactoria (B), Insatisfactoria (C), inaceptables (D).

Clase I. Máquinas pequeñas con potencia menor a 15 Kilovatios

Clase II. Máquinas de tamaño mediano (es decir, motores eléctricos de 15 a 75 kilovatios y motores de 300 kilovatios sobre bases rígidamente montadas).

Clase III. Grandes motores primarios con potencia sobre los 300 kilovatios montados sobre cimientos rígidos y pesados.

Clase IV. Motores primarios grandes con potencia sobre los 300 kilovatios montados en estructuras ligeras y relativamente blandas.

Fuente: (ASME, 2014)





Fuente: (Technical Associates of Charlotte, 1996, p. 1)

Una vez recolectado los datos, analice y grafique el espectro de vibración donde se pueda evidenciar mejor la forma del espectro, por lo general es aquel que se encuentra a mayor velocidad de rotación del eje.

#### 4.3.1 Analice y responda

¿Considera que la velocidad de operación influye en el espectro y la temperatura registrados?

¿Como influye la alineación de ejes en la obtención de los espectros de vibración? ¿Disminuyo la severidad de vibración en los puntos registrados?

 ¿Aparte de la desalineación de ejes que otros factores considera que contribuyen a la generación de vibraciones?

¿Qué problemas pudo diagnosticar en el análisis de espectros de vibración?

### 5. CONCLUSIONES

|      | ••• | ••• | ••••    | ••• | <br>    | ••• | ••• | <br>••••    | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••  | <br>••• |     | •••  |      | ••• | •••  |      | •••  |     | <br>••• | ••• | •••••     |
|------|-----|-----|---------|-----|---------|-----|-----|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|-----|------|------|-----|------|------|------|-----|---------|-----|-----------|
|      | ••• | ••• | • • • • | ••• | <br>    | ••• | ••• | <br>•••     | ••• |     |     | ••• | ••• | ••• | ••• | ••• | ••• | •••• | <br>••• | ••• | •••• |      |     | •••• |      | •••  |     | <br>••• |     | •••••     |
|      | ••• |     | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• |     |     | ••• |     | ••• | ••• | ••• | ••• | •••  | <br>••• | ••• | •••  | •••• |     | •••  |      | •••• |     | <br>••• | ••• | •••••     |
|      | ••• |     | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• |     |     | ••• |     | ••• | ••• | ••• | ••• | •••  | <br>••• | ••• | •••  | •••• |     | •••  |      | •••• |     | <br>••• | ••• | •••••     |
|      | ••• |     | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• |     |     | ••• |     | ••• | ••• | ••• | ••• | •••  | <br>••• | ••• | •••  |      |     | •••  |      | •••• |     | <br>••• | ••• | •••••     |
|      | ••• |     | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• |     |     | ••• |     | ••• |     | ••• | ••• | •••  | <br>••• | ••• | •••  |      |     | •••  |      | •••• |     | <br>••• | ••• | •••••     |
|      | ••• | ••• | ••••    | ••• | <br>    | ••• | ••• | <br>••••    | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••  | <br>••• |     | •••  |      | ••• | •••  | •••• | •••  |     | <br>••• | ••• | •••••     |
|      | ••• |     | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• |     |     | ••• |     | ••• |     | ••• | ••• | •••  | <br>••• | ••• | •••  | •••• |     | •••  |      | •••• |     | <br>••• | ••• | •••••     |
|      | ••• | ••• | ••••    | ••• | <br>    | ••• | ••• | <br>        | ••• | ••• |     | ••• | ••• | ••• | ••• | ••• | ••• | •••  | <br>••• |     | •••  |      | ••• | •••  |      | •••  |     | <br>••• | ••• | •••••     |
| •••• |     | ••• | • • • • | ••• | <br>••• | ••• | ••• | <br>• • • • | ••• |     |     | ••• |     |     |     | ••• | ••• | •••  | <br>••• |     | •••  |      | ••• | •••• |      | •••• | ••• | <br>••• | ••• | • • • • • |

#### 6. **RECOMENDACIONES**

.....

|       |                           | ••••• |       | ••••• | <br>•••••                                   |       |
|-------|---------------------------|-------|-------|-------|---------------------------------------------|-------|
|       |                           | ••••• |       | ••••• | <br>                                        |       |
|       |                           |       |       |       | <br>                                        |       |
|       |                           |       |       |       |                                             |       |
| ••••• | • • • • • • • • • • • • • | ••••• |       | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |       |
| ••••• | • • • • • • • • • • • •   | ••••• | ••••• | ••••• | <br>• • • • • • • • • • • • • • • • • •     | ••••• |

Elaborado por:

\_\_\_\_\_

# NOMBRE Y FIRMA DEL/LOS PROFESORES DE LA ASIGNATURA

**Revisado por:** 

-----

NOMBRE Y FIRMA DEL DIRECTOR DE CARRERA/ COORDINADOR ACADÉMICO DE SEDE




| 4                     | Perno hexagonal             | 14      | ISO 4017              | AISI 304            | 28                                                                                   | M10x1,5x           | x30 mm                                                 | 0,0037                                                          | Catálo                                     | go               | 1        |    |  |
|-----------------------|-----------------------------|---------|-----------------------|---------------------|--------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|------------------|----------|----|--|
| 2                     | Soporte chumace             | era     |                       | ASTM A36            | 27                                                                                   | Plancha 19mm       |                                                        | 3,46                                                            | Cortado-S                                  | oldado           | 1        |    |  |
| 4                     | Perno hexagonal             | 13      | ISO 4017              | AISI 304            | 26                                                                                   | M12x1,75           | x40 mm                                                 | 0,0068                                                          | Catálo                                     | go               | 1        |    |  |
| 4                     | Arandela                    |         | ISO 7089              | SAE 5               | 25                                                                                   | M1                 | 2                                                      | 0,002                                                           | Catálo                                     | go               | <b> </b> |    |  |
| 4                     | Obturador                   |         |                       | Polietileno         | 24                                                                                   | Diám. 44           | 1,5 mm                                                 | 0,0065                                                          | Corta                                      | do               | 1        |    |  |
| 2                     | Tuerca de fijació           | ón      | ISO 2982-2            | Acero               | 23                                                                                   | KM                 | 16                                                     | 0,039                                                           | Catálo                                     | go               | 1        |    |  |
| 2                     | Arandela de fijaci          | ión     | ISO 2982-2            | Acero               | 22                                                                                   | MB                 | 6                                                      | 0,008                                                           | Catálo                                     | go               | 1        |    |  |
| 4                     | Anillo de fijació           | ón      | ISO 2982-2            | Acero               | 21                                                                                   | FRB 6              | 5/ 62                                                  |                                                                 | Catálo                                     | go               | 1        |    |  |
| 2                     | Manguito de fijac           | ción    | ISO 2982-1            | Acero               | 20                                                                                   | Н 30               | 06                                                     | 0,11                                                            | Catálogo                                   |                  | 1        |    |  |
| 2                     | Rodamiento de bol<br>rotula | las a   | ISO 15                | Acero               | 19                                                                                   | 2206 EKTN9         |                                                        | 0,26                                                            | Catálogo                                   |                  | D        |    |  |
| 4                     | Perno chumacer              | ra      | ISO 2982-1            | Acero               | 18                                                                                   | M10x1,5x           | x40 mm                                                 |                                                                 | Catálo                                     | go               | 1        |    |  |
| 2                     | Tapa inferior               |         | ISO 2982-1            | Fundición           | 17                                                                                   | SNL 506            | 6-605                                                  | 1                                                               | Catálo                                     | go               | 1        |    |  |
| 2                     | Tapa superior               |         | ISO 2982-1            | Fundición           | 16                                                                                   | SNL 50             | 6-605                                                  | 1                                                               | Catálogo                                   |                  |          |    |  |
| 4                     | Perno flange                |         | DIN 6921              | Acero A2            | 15                                                                                   | M6x1,0x            | 20 mm                                                  | 0,0012                                                          | Catálo                                     | ogo              |          |    |  |
| 2                     | Guardas de protec           | ción    | INEN 2045             | Acrílico            | 14                                                                                   | Plancha            | 4 mm                                                   | 0,58                                                            | Cortado                                    |                  |          |    |  |
| 2                     | Disco de balance            | eo      |                       | ASTM A36            | 13                                                                                   | Diám. 180          | x19 mm                                                 | 3,55                                                            | Torneado-Perforad                          |                  |          |    |  |
| 2                     | Prisionero                  |         | ISO 4029              | AISI 304            | 12                                                                                   | M8x1,25x12 mm      |                                                        | 0,004                                                           | Catálogo                                   |                  |          |    |  |
| 1                     | Eje largo                   |         |                       | AISI 304            | 11                                                                                   | Diám. 31,75x700 mm |                                                        | 3,071                                                           | Torneado-Fresado                           |                  | 1        |    |  |
| 1                     | Acople flexible de r        | rejilla | AGMA                  | Acero               | 10                                                                                   | 1020 TGH           |                                                        | 1,9                                                             | Catálogo                                   |                  |          |    |  |
| 1                     | Eje corto                   |         |                       | AISI 304            | 9                                                                                    | Diám. 31,75        | 5x110 mm                                               | 0,47                                                            | Torneado-Fresado                           |                  | 1        |    |  |
| 3                     | Chaveta paralel             | la      | DIN-6885/1            | AISI 1006           | 8                                                                                    | 6x6x35             | 5 mm                                                   |                                                                 | Catálogo                                   |                  | E        |    |  |
| 1                     | Acople rígido               |         |                       | ASTM A36            | 7                                                                                    | Diám. 4            | 5 mm                                                   | nm 0,76 Tornea                                                  |                                            | Fresado          |          |    |  |
| 4                     | Perno hexagonal             | 12      | ASTM F593             | AISI 304            | 6                                                                                    | UNC 3/8-1          | 6x7/8 in                                               |                                                                 | Catálo                                     | go               | 1        |    |  |
| 1                     | Motor eléctrico             | o       | IEC-NEMA              |                     | 5                                                                                    | 1LE0142-0DA        | 26-4AA4-Z                                              | 14 Catálog                                                      |                                            | go               |          |    |  |
| 1                     | Base motor                  |         |                       | ASTM A36            | 4                                                                                    | Plancha            | 19 mm                                                  | 28,28                                                           | Catálo                                     | go               | 1        |    |  |
| 4                     | Cilindro base               |         |                       | ASTM A36            | 3                                                                                    | Diám .2            | 2 mm                                                   | 0,025                                                           | Tornea                                     | ıdo              | 1        |    |  |
| 4                     | Perno hexagonal             | 11      | ISO 4017              | AISI 304            | 2                                                                                    | M10x1,5x55 mm      |                                                        | M10x1,5x55 mm                                                   |                                            | 0,006            | Catálo   | go |  |
| 1                     | Estructura base ran         | urada   |                       | ASTM A36            | 1                                                                                    | 750x150            | )0 mm                                                  | 93,95 Cortado-S                                                 |                                            | oldado           |          |    |  |
| N° de<br>Pieza        | Denominaciór                | n       | N° de<br>Norma/Dibujo | Material            | N° de<br>orden                                                                       | N° d<br>Modelo/Sem | lel<br>1iproducto                                      | Peso<br>Kg/Pieza                                                | Observac                                   | ciones           | F        |    |  |
| <sup>1°</sup> . Lámir | na: Nº. Hojas:              | Sustitu | ıción:                | Codificación:       | :                                                                                    |                    |                                                        | ESP                                                             | ОСН                                        |                  |          |    |  |
| Z de l                | 4 2 de 2                    | edu ec  |                       | FM-EIM-BPL          | )D-2021                                                                              |                    | FACL                                                   | JLTAD D                                                         | E MECÁ                                     | NICA             |          |    |  |
| eléfonos              | : 0988207053                | cuu.ce  |                       | Denominacio         | и.<br>Т                                                                              |                    | ESCUEL#                                                | ۹ DE INGE                                                       | INIERÍA M                                  | ECÁNI            | CA       |    |  |
| atos                  | Nombre                      | Firma   | Fecha                 | Banco<br>nara de    | de pr<br>esbala                                                                      | uebas<br>nceo v    | Peso [Kg]                                              | Tolerancia                                                      | Escala                                     | Registr          | .0       |    |  |
| royectó               | Sr. Guananga Darío          |         | 2021/01/20            | desa                | lineac                                                                               | ción               | 162,66                                                 | ±0.3 [mm]                                                       | 1:5                                        | $\in \mathbb{C}$ | 5        |    |  |
| ibujó                 | Sr. Pilco Kleber            |         | 2021/01/20            |                     |                                                                                      |                    |                                                        |                                                                 |                                            | 1                |          |    |  |
| levisó                | Ing. Escobar M.             | AH to   | 2021/07/21            | Materiales:<br>SEGÚ | N DISEÍ                                                                              | ŇO                 | ESTE DOCUME<br>INTELECTUAL<br>CUALQUIER U<br>O PARCIAL | INTO ES PROPIEI<br>EXCLUSIVA DE:<br>JSO Y REPROD<br>NO AUTORIZA | DAD<br>A.S. Y J.T.<br>JUCCIÓN TOTAI<br>ADA |                  | A and    |    |  |
| probó                 | Ing. Orna J.                |         | 2021/07/21            | Nombre de a         | e de archivo:<br>constituye violación DE Los<br>DERECHOS DEL AUTOR PENADA POR LA LEY |                    |                                                        |                                                                 |                                            | a con            | A        |    |  |

















0

5



### **Tolerancias:**

| Diámetro | Simbología | Valor máximo | Valor |
|----------|------------|--------------|-------|
| 25       | H7         | 25,021       |       |
| 41       | S7         | 40,966       | 40    |
| 41       | h6         | 41           | 40    |

#### Notas Generales:

-Todas las medidas estan en mm salvo se indique lolo contrario. -Escala 1:2 a menos que se indique lo contrario. -Calidad superficial N7.

-Proceso de pintado por soplete (Amarillo).

|   | 1                             | Cubo                        |                           |                       |            | AST        | 'M A36                   |          |
|---|-------------------------------|-----------------------------|---------------------------|-----------------------|------------|------------|--------------------------|----------|
|   | 1                             | Disco de balanceo           |                           |                       |            | AST        | °M A36                   |          |
|   | N° de<br>Pieza                | N° de<br>Pieza Denominación |                           | N° de<br>Norma/Dibujo |            | o Ma       | nterial                  |          |
|   | <b>Nº. Lámina:</b><br>9 de 14 |                             | N°. Hojas:<br>1           |                       | Sustitució | n:         | Codificació<br>FM-EIM-BP | бі<br>РГ |
|   | Email:<br>Teléfor             | kleber<br>10s: 09           | r.pilco@espoo<br>88207053 | ch.                   | edu.ec     |            | Denomina                 | ci       |
|   | Datos No                      |                             | ombre                     | Firma F               |            | Fecha      | Disco                    | )        |
|   | Proyec                        | Proyectó Sr. Guananga Darí  |                           | ío                    |            | 2021/01/20 |                          |          |
|   | Dibujó                        | Dibujó Sr. Pilco Kleber     |                           |                       |            | 2021/01/20 |                          |          |
|   | Revisó                        | Ing                         | g.Escobar M.              | č                     | Hoff force | 2021/07/21 | Materiales               | :<br>A   |
| _ | Aprob                         | ó Ing                       | g. Orna J.                |                       |            | 2021/07/21 | Nombre de<br>Dis         | e<br>e   |



|   | 1 | 2 | 3 | 4 | 5                                                                    |
|---|---|---|---|---|----------------------------------------------------------------------|
| A |   |   |   | 8 |                                                                      |
| В |   | 3 |   |   |                                                                      |
| С | 9 |   |   |   |                                                                      |
| D |   |   |   |   | 2<br>1<br>6<br>1                                                     |
| E |   |   |   | 7 | 1<br>1<br>1<br>2<br>2<br>N° de<br>Pieza<br>N°. Lám                   |
| F | 1 | 2 | 3 | 4 | 11 de<br>Email:<br>Teléfond<br>Datos<br>Proyecto<br>Dibujó<br>Revisó |

|     |              | 0                  |                              |                | 1                     |                                |                    |                                              |                     | 0                          |        | _                |
|-----|--------------|--------------------|------------------------------|----------------|-----------------------|--------------------------------|--------------------|----------------------------------------------|---------------------|----------------------------|--------|------------------|
|     |              | M                  |                              |                |                       |                                |                    |                                              |                     |                            |        | A                |
|     |              |                    |                              |                |                       |                                |                    |                                              |                     |                            |        | В                |
|     |              |                    |                              |                |                       |                                |                    |                                              |                     |                            |        | С                |
|     |              |                    |                              |                |                       |                                |                    |                                              |                     |                            |        | D                |
|     | NTN IN       | EN 2045            | Acrílico                     | 9              | Lámina de             | 4 mm                           | 0,                 | .0067                                        | (                   | Cortado-Dol                | olado  |                  |
|     | NTN IN       | EN 2045            | Acrílico                     | 8              | Lámina de             | 4 mm                           | 0                  | ,136                                         |                     | Cortado-Dol                | olado  |                  |
|     | NTN IN       | EN 2045            | Acrílico                     | 7              | Ø=2,2 r               | nm                             | 0,                 | 0001                                         |                     | Cortado                    | )      |                  |
|     | NTN IN       | EN 2045            | Acrílico                     | 6              | Lámina de             | 2 mm                           | 0,                 | 8000                                         |                     | Cortado                    | )      |                  |
|     | NTN IN       | EN 2045<br>EN 2045 | Acrílico                     | 5<br>4         | Lámina de 2           | 2 mm                           | 0,                 | 0010                                         |                     | Cortado                    | )<br>\ | $\left  \right $ |
|     | NTN IN       | EN 2045            | Acrílico                     | 3              | Lámina de             | 4 mm                           | 0                  | 0054                                         |                     | Cortado                    | )      | -                |
|     | NTN IN       | EN 2045            | Acrílico                     | 2              | Lámina de             | 8 mm                           | (                  | 0,03                                         | 0                   | Cortado-Perf               | orado  | E                |
|     | NTN IN       | EN 2045            | Acrílico                     | 1              | Lámina de             | 4 mm                           | 0                  | ,162                                         |                     | Cortado                    | )      | 1                |
|     | N°<br>Norma/ | de<br>/Dibujo      | Material                     | N° de<br>orden | N° del Mo<br>Semiprod | delo/<br>lucto                 | l<br>Kg            | Peso<br>/Pieza                               |                     | Observacio                 | ones   |                  |
| Τ   | Sustitució   | n:                 | Codificación:                |                |                       |                                |                    | ES                                           | SP                  | ОСН                        |        | <u> </u>         |
| 1.e | edu.ec       |                    | FM-EIM-BPDD-<br>Denominación | -2021          |                       | FA                             |                    |                                              |                     |                            |        |                  |
| Т   | Firma        | Fecha              | Gua                          | rda do         | e                     | Peso [k                        | cl/                | Toleran                                      | cia                 | Escala                     | Regist | ro               |
| +   |              | 2021/01/20         | prot                         | tecciór        | 1                     | - 555 [1                       | 61                 |                                              |                     |                            |        | 5                |
| +   |              | 2021/01/20         |                              |                |                       | 0,5                            | 8                  | ±0.3 [m                                      | ım]                 | 1:2.5                      |        | $\mathbb{Y}$     |
|     | Alt tore     | 2021/07/21         | Materiales:                  | lice           |                       | ESTE DO                        | CUME<br>TUAL       | NTO ES PR                                    | OPIEI<br>A DE:      | DAD<br>A.S. Y J.T.         |        | (a)              |
| 2   | 101 Jour     | 2021/07/21         | Nombre de ar                 | chivo:         | .,                    | O PARCL<br>CONSTITU<br>DERECHO | ALN<br>UYEV<br>DSD | IOU Y REI<br>NO AUTO<br>IOLACIÓN<br>EL AUTOR | DRIZA<br>DE<br>PENA | DA<br>LOS<br>DA POR LA LEY |        |                  |
| 1   |              | 2021/07/21         | Guarda d                     | le protecc     | ción.sldprt           |                                |                    |                                              | A                   |                            | 1000   | 1                |

|                                                                            |                                                                                                                                                                                                                       |                                                            | U                                                                                                                  |                                                                                                                                                            |                                                                              | 1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           | 0                                                                                                                            |                            |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                            |                                                                                                                                                                                                                       |                                                            | M                                                                                                                  |                                                                                                                                                            |                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                              | Α                          |
|                                                                            |                                                                                                                                                                                                                       |                                                            |                                                                                                                    |                                                                                                                                                            |                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                              | В                          |
|                                                                            |                                                                                                                                                                                                                       |                                                            |                                                                                                                    |                                                                                                                                                            |                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                              | С                          |
|                                                                            |                                                                                                                                                                                                                       |                                                            |                                                                                                                    |                                                                                                                                                            |                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                              | D                          |
| 1                                                                          | Seguro                                                                                                                                                                                                                | NTN IN                                                     | EN 2045                                                                                                            | Acrílico                                                                                                                                                   | 9                                                                            | Lámina de                                                                                                      | 4 mm (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,0067                                                                                                                                                                                     | Cortado-Dob                                                                                                                  | lado                       |
| 1                                                                          | Cuvierta superior                                                                                                                                                                                                     | NTN IN                                                     | EN 2045                                                                                                            | Acrílico                                                                                                                                                   | 8                                                                            | Lámina de                                                                                                      | 4 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,136                                                                                                                                                                                     | Cortado-Dob                                                                                                                  | lado                       |
| 1                                                                          | Pasador                                                                                                                                                                                                               | NTN IN                                                     | EN 2045                                                                                                            | Acrílico                                                                                                                                                   | 7                                                                            | Ø=2,2 n                                                                                                        | nm (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0001                                                                                                                                                                                     | 01 Cortado                                                                                                                   |                            |
| 1                                                                          | Visagra p2                                                                                                                                                                                                            | NTN IN                                                     | EN 2045                                                                                                            | Acrílico                                                                                                                                                   | 6                                                                            | Lámina de                                                                                                      | 2 mm 0,0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           | Cortado                                                                                                                      |                            |
| 1                                                                          | Visagra p1                                                                                                                                                                                                            | NTN IN                                                     |                                                                                                                    |                                                                                                                                                            |                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                              |                            |
|                                                                            |                                                                                                                                                                                                                       |                                                            | EN 2045                                                                                                            | Acrílico                                                                                                                                                   | 5                                                                            | Lámina de 2                                                                                                    | 2 mm (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,0010                                                                                                                                                                                     | Cortado                                                                                                                      |                            |
| 1                                                                          | Parte posterior                                                                                                                                                                                                       | NTN IN                                                     | EN 2045<br>EN 2045                                                                                                 | Acrílico<br>Acrílico                                                                                                                                       | 5<br>4                                                                       | Lámina de 2<br>Lámina de 4                                                                                     | 2 mm (<br>4 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0010<br>0,047                                                                                                                                                                           | Cortado<br>Cortado                                                                                                           |                            |
| 1                                                                          | Parte posterior<br>Refuerzo                                                                                                                                                                                           | NTN IN<br>NTN IN                                           | EN 2045<br>EN 2045<br>EN 2045                                                                                      | Acrílico<br>Acrílico<br>Acrílico                                                                                                                           | 5<br>4<br>3                                                                  | Lámina de 2<br>Lámina de 4<br>Lámina de 4                                                                      | 2 mm ()<br>4 mm ()<br>4 mm ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,0010<br>0,047<br>0,0054                                                                                                                                                                 | Cortado<br>Cortado<br>Cortado                                                                                                |                            |
| 1<br>1<br>2                                                                | Parte posterior<br>Refuerzo<br>Base guarda                                                                                                                                                                            | NTN IN<br>NTN IN<br>NTN IN                                 | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045                                                                           | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico                                                                                                               | 5<br>4<br>3<br>2                                                             | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4                                                       | 2 mm ()<br>4 mm ()<br>4 mm ()<br>8 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0010<br>0,047<br>0,0054<br>0,03                                                                                                                                                         | Cortado<br>Cortado<br>Cortado<br>Cortado-Perfo                                                                               | Drado E                    |
| 1<br>1<br>2<br>2                                                           | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral                                                                                                                                                           | NTN IN<br>NTN IN<br>NTN IN<br>NTN IN                       | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045                                                                | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico                                                                                                   | 5<br>4<br>3<br>2<br>1                                                        | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4                                        | 2 mm ()<br>4 mm ()<br>4 mm ()<br>8 mm ()<br>4 mm ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162                                                                                                                                                | Cortado<br>Cortado<br>Cortado<br>Cortado-Perfe<br>Cortado                                                                    | Drado E                    |
| 1<br>1<br>2<br>N° de<br>Pieza                                              | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación                                                                                                                                           | NTN IN<br>NTN IN<br>NTN IN<br>NTN IN<br>NTN IN<br>Norma    | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>de<br>/Dibujo                                    | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Material                                                                                       | 5<br>4<br>3<br>2<br>1<br><b>N° de</b><br>orden                               | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod               | 2 mm ()<br>4 mm ()<br>4 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>delo/ K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza                                                                                                                             | Cortado<br>Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br><b>Observacio</b>                                               | prado E                    |
| 1<br>2<br>2<br>N° de<br>Pieza<br>N°. Lán                                   | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>iina: N°. Hojas:<br>14 2 de 3                                                                                                          | NTN IN NTN IN NTN IN NTN IN NTN IN NTN IN Sustitució       | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>Che<br>/Dibujo                                              | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br><b>Material</b><br><b>Codificación:</b><br>FM-EIM-BPDD                                         | 5<br>4<br>3<br>2<br>1<br><b>N° de orden</b><br>-2021                         | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod               | 2 mm ()<br>4 mm ()<br>4 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>delo/<br>ucto K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP                                                                                                                      | Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br>Observacio                                                                 | orado E                    |
| 1<br>2<br>2<br>N° de<br>Pieza<br>N°. Lán<br>11 de<br>Email:<br>Teléfon     | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>iina: N°. Hojas:<br>14 2 de 3<br>kleber.pilco@espoch.<br>os: 0988207053                                                                | NTN IN NTN IN NTN IN NTN IN NTN IN NOrma Sustitució        | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>C de<br>//Dibujo<br>n:                                      | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br><b>Material</b><br><b>Codificación:</b><br>FM-EIM-BPDD<br><b>Denominaciór</b>                  | 5<br>4<br>3<br>2<br>1<br><b>N° de</b><br>orden<br>-2021                      | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br><b>Nº del Mo</b><br><b>Semiprod</b> | 2 mm ()<br>4 mm ()<br>8 mm ()<br>8 mm ()<br>4 mm ()<br>5 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>5 mm ()<br>7 mm ( | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP<br>ULTAD E<br>A DE INGE                                                                                              | Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br>Observacio<br>OCH<br>DE MECÁ<br>ENIERÍA M                                  | nes E                      |
| 112Nº de<br>PiezaNº. Lám<br>11 deEmail:<br>TeléfoneDatos                   | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>nina: N°. Hojas:<br>2 de 3<br>kleber.pilco@espoch.<br>os: 0988207053<br>Nombre                                                         | NTN IN NTN IN NTN IN NTN IN NTN IN NO Sustitució           | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>C de<br>/Dibujo<br>n:<br>Fecha                              | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Material<br>Codificación:<br>FM-EIM-BPDD<br>Denominaciór<br>Gua                                | 5<br>4<br>3<br>2<br>1<br>N° de<br>orden<br>-2021<br>::                       | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod               | 2 mm ()<br>4 mm ()<br>8 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>5 K<br>FAC<br>ESCUEL<br>Peso [ <i>Kg</i> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP<br>ULTAD E<br>A DE INGE<br>Tolerancia                                                                                | Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br>Observacio<br>Observacio<br>OCH<br>DE MECÁ<br>ENIERÍA M<br>Escala          | nes<br>ECÁNICA<br>Registro |
| 112Nº de<br>PiezaNº. Lám<br>11 deEmail:<br>TeléfonDatosProyect             | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>N°. Hojas:<br>2 de 3<br>kleber.pilco@espoch.<br>os: 0988207053<br>Nombre<br>ó Sr. Guananga Darío                                       | NTN IN NTN IN NTN IN NTN IN NTN IN Sustitució edu.ec Firma | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>C de<br>//Dibujo<br>n:<br>Fecha<br>2021/01/20               | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Material<br>Codificación:<br>FM-EIM-BPDD<br>Denominación<br>Gua<br>prot                        | 5<br>4<br>3<br>2<br>1<br>N° de<br>orden<br>-2021<br>::<br>urda de            | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod               | 2 mm ()<br>4 mm ()<br>8 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>5 K K<br>ESCUEL<br>Peso [Kg]<br>0,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP<br>ULTAD E<br>A DE INGE<br>Tolerancia<br>±0.3 [mm]                                                                   | Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br>Observacio<br>OCCH<br>DE MECÁ<br>ENIERÍA M<br>Escala<br>1:2.5              | nes<br>ECÁNICA<br>Registro |
| 112Nº de<br>PiezaNº. Lán<br>11 deEmail:<br>Teléfon<br>DatosProyectDibujó   | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>iina: N°. Hojas:<br>2 de 3<br>kleber.pilco@espoch.<br>os: 0988207053<br>Nombre<br>ó Sr. Guananga Darío<br>Sr. Pilco Kleber             | NTN IN NTN IN NTN IN NTN IN NTN IN Sustitució              | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>C de<br>//Dibujo<br>n:<br>Fecha<br>2021/01/20<br>2021/01/20 | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Material<br>Codificación:<br>FM-EIM-BPDD<br>Denominación<br>Gua<br>prot                        | 5<br>4<br>3<br>2<br>1<br>N° de<br>orden<br>-2021<br>::<br>urda de            | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod               | 2 mm ()<br>4 mm ()<br>8 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>5 8 ()<br>FAC()<br>ESCUEL<br>Peso [ <i>Kg</i> ]<br>0,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP<br>ULTAD E<br>A DE INGE<br>Tolerancia<br>±0.3 [mm]                                                                   | Cortado<br>Cortado<br>Cortado-Perfo<br>Cortado<br>Observacio<br>OCH<br>DE MECÁ<br>ENIERÍA M<br>Escala<br>1:2.5               | nes<br>ECÁNICA<br>Registro |
| 112Nº de<br>PiezaNº. Lám<br>11 deEmail:<br>TeléfonDatosProyectDibujóRevisó | Parte posterior<br>Refuerzo<br>Base guarda<br>Parte lateral<br>Denominación<br>N°. Hojas:<br>2 de 3<br>kleber.pilco@espoch.<br>os: 0988207053<br>Nombre<br>ó Sr. Guananga Darío<br>Sr. Pilco Kleber<br>Ing.Escobar M. | NTN IN NTN IN NTN IN NTN IN NTN IN NO Sustitució           | EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>EN 2045<br>C de<br>/Dibujo<br>n:<br>Fecha<br>2021/01/20<br>2021/07/21  | Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Acrílico<br>Material<br>Codificación:<br>FM-EIM-BPDD<br>Denominación<br>Gua<br>prot<br>Materiales:<br>Acrí | 5<br>4<br>3<br>2<br>1<br>N° de<br>orden<br>-2021<br>a:<br>urda de<br>tección | Lámina de 2<br>Lámina de 4<br>Lámina de 4<br>Lámina de 4<br>N° del Mo<br>Semiprod                              | 2 mm ()<br>4 mm ()<br>4 mm ()<br>8 mm ()<br>8 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>4 mm ()<br>5 mm ()<br>5 mm ()<br><b>FAC</b><br><b>ESCUEL</b><br><b>Peso</b> [ <i>Kg</i> ]<br>0,58<br>ESTE DOCUM<br>NTELECTUAL<br>CUALQUIER ()<br>0 PARCIAL<br>CONSTITUYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0010<br>0,047<br>0,0054<br>0,03<br>0,162<br>Peso<br>g/Pieza<br>ESP<br>JLTAD E<br>A DE INGE<br>±0.3 [mm]<br>ENTO ES PROPIE<br>EXCLUSIVA DE<br>USO Y REPROT<br>NO AUTORIZ<br>VIOLACIÓN DI | Cortado<br>Cortado<br>Cortado-Perfe<br>Cortado<br>Observacio<br>Observacio<br>OCH<br>DE MECÁ<br>ENIERÍA M<br>Escala<br>1:2.5 | nes<br>ECÁNICA<br>Registro |









# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO



## DIRECCIÓN DE BIBLIOTECAS Y RECURSOS DEL APRENDIZAJE

### UNIDAD DE PROCESOS TÉCNICOS

REVISIÓN DE NORMAS TÉCNICAS, RESUMEN Y BIBLIOGRAFÍA

**Fecha de entrega:** 02 / 09 / 2021

INFORMACIÓN DEL AUTOR/A (S)

Nombres – Apellidos: DARÍO JAVIER GUANANGA PUJOS KLEBER ADRIÁN PILCO GARCÍA

INFORMACIÓN INSTITUCIONAL

Facultad: MECÁNICA

Carrera: MECÁNICA

Título a optar: INGENIERO MECÁNICO

f. Analista de Biblioteca responsable: Lcdo. Holger Ramos, MSc.





1514-DBRA-UPT-2021