

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA INGENIERÍA QUÍMICA

SIMULACIÓN DINAMICA Y COMPARACIÓN DE DOS SISTEMAS DE REFRIGERACION- ABSORCIÓN AMONIACO/AGUA Y AGUA/BROMURO DE LITIO

Trabajo de Titulación Tipo: Propuesta Tecnológica

Presentando para optar el grado académico de: INGENIERA QUÍMICA

AUTORA: ANA BELÉN CAMACHO BENALCÁZAR

Riobamba-Ecuador

2022

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA INGENIERÍA QUÍMICA

SIMULACIÓN DINAMICA Y COMPARACIÓN DE DOS SISTEMAS DE REFRIGERACION- ABSORCIÓN AMONIACO/AGUA Y AGUA/BROMURO DE LITIO

Trabajo de Titulación Tipo: Propuesta Tecnológica

Presentado para optar el grado académico de:

INGENIERA QUÍMICA

AUTORA: ANA BELÉN CAMACHO BENALCÁZAR **DIRECTOR:** Ing. ADRIÁN ALEJANDRO RODRIGUEZ PINOS MSc.

Riobamba – Ecuador 2022

© 2022, Ana Belén Camacho Benalcázar

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo cita bibliográfica del documento, siempre y cuando se reconozca el Derecho del Autor.

Yo, Ana Belén Camacho Benalcázar, declaro que el presente trabajo de titulación es de mi autoría y los resultados del mismo son auténticos. Los textos en el documento que provienen de otras fuentes están debidamente citados y referenciados.

Como autora asumo la responsabilidad legal y académica de los contenidos de este trabajo de titulación; el patrimonio intelectual pertenece a la Escuela Superior Politécnica de Chimborazo.

Riobamba, 11 de febrero del 2022

Ana Belén Camacho Benalcázar 080372103-4

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA DE INGENIERÍA QUÍMICA

El Tribunal del Trabajo de Titulación certifica que: El Trabajo de Titulación; Tipo: Propuesta Tecnológica. SIMULACIÓN DINAMICA Y COMPARACIÓN DE DOS SISTEMAS DE REFRIGERACION- ABSORCIÓN AMONIACO/AGUA Y AGUA/BROMURO DE LITIO, realizado por la señorita: ANA BELÉN CAMACHO BENALCÁZAR, ha sido minuciosamente revisado por los Miembros del Tribunal del Trabajo de Titulación, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal Autoriza su presentación.

FIRMA

Firmado digitalmente por ILIANA ELIZABETH CARRERA FLORES Fecha: 2022.02.21 12:11:01 -05'00'

ILIANA

FLORES

ELIZABETH CARRERA

FECHA

11/02/2022

Ing. Iliana Elizabeth Carrera Flores
PRESIDENTE DEL TRIBUNAL

Ing. Adrián Alejandro Rodríguez Pino MSc. DIRECTOR DE TRABAJO DE TITULACIÓN

Ing. Marco Raúl Chuiza Rojas MSc. MIEMBRO DEL TRIBUNAL

11/02/2022

11/02/2022

DEDICATORIA

El presente trabajo se lo dedico principalmente a Dios, quien, ha sido fuente de inspiración en algunas ocasiones, a mis padres, hermanas y tíos quien me han acompañado durante todos mis años de estudios universitaria motivándome a seguir adelante y con el cual he podido culminar mi carrera profesional.

Belén

AGRADECIMIENTO

Agradezco a Dios por permitirme llegar hoy aquí, a mis padres quien siempre me han respaldado y apoyado durante toda mi vida y en mi educación universitaria, a mis hermanas quien siempre; han estado atentas y a mis tías que han cuidado de mí y me han puesto en sus oraciones del día a día.

Sin duda agradecer por el gran apoyo al Ing. Adrián Rodríguez y al Ing. Marco Chuiza que siempre han estado pendiente a mi proyecto de titulación, muchas gracias.

Por otra parte, agradezco a la ESPOCH por volverse mi hogar, aportando conocimiento en sus estudiantes mediante mis maestros, a quienes también agradezco por lo enseñado y el apoyo brindado durante estos años, en tan valiosa institución.

Belén

TABLA DE CONTENIDOS

ÍNDICE DE TABLAS	ix
ÍNDICE DE FIGURAS	xi
ÍNDICE DE ECUACIONES	xii
ÍNDICE DE ANEXOS	xiii
ÍNDICE DE ABREVIATURAS	xiv
RESUMEN	XV
ABSTRACT	xvi

CAPÍTULO I

INTRODUCCIÓN	1
Antecedentes	1
Planteamiento del problema	1
Objetivos	2
Objetivo General	2
Objetivos Específicos	2
Justificación del proyecto	2
Alcance	4
	INTRODUCCIÓN Antecedentes Planteamiento del problema Objetivos Objetivos Objetivo General Objetivos Específicos Justificación del proyecto Alcance

CAPÍTULO II

MARCO TEÓRICO	5
Estado del arte	5
Antecedentes	5
Bases Teóricas	6
Sistema de refrigeración por absorción	6
Características de los fluidos	7
Sistemas de refrigeración por absorción en el País	8
Columna de separación gas-liquido	8
Condensador de aire	9
Calentador	9
DWSIM - Chemical Process Simulator	9
Características	. 10
	MARCO TEÓRICO Estado del arte Antecedentes Bases Teóricas Bases Teóricas Sistema de refrigeración por absorción Características de los fluidos Sistemas de refrigeración por absorción en el País Columna de separación gas-liquido Condensador de aire Calentador DWSIM - Chemical Process Simulator Características

2.2.5.2.	Interfaz plataforma DWSIM	
2.3.	Simulación Dinámica	
2.4.	Análisis de estudio económico y energético	
2.4.1.	Modelo de absorción del Sistema de Refrigeración	
2.4.1.1.	Análisis energético del sistema	13
2.4.1.2.	Análisis del estudio económico	14
2.4.2.	Diagrama de Flujo de la simulación estable en DWSIM	19
2.4.3.	Matlab	
2.4.3.1.	Simulink	
2.4.3.2.	Controlador PID	

CAPÍTULO III

3.	METODOLOGÍA	25
3.1.	Descripción del proceso	26
3.2.	Justificación de la mezcla seleccionada	27
3.3.	Establecimiento de parámetros	27
3.3.1.	Operacionalización de variables simulación amoniaco/agua	29
3.3.1.1.	Selección de variables	29
3.3.1.2.	Operación de variable	29
3.3.2.	Operacionalización de variables simulación agua/bromuro de litio	30
3.3.2.1.	Selección de variables	30
3.3.2.2.	Operación de variables	30
3.3.3.	Validación de la simulación amoniaco/agua	31
3.3.3.1.	Parámetros operacionales de la simulación dinámica en Matlab amoniaco/agua	31
3.3.4.	Validación de la simulación agua/bromuro de litio	32
3.3.4.1.	Parámetros operacionales de la simulación dinámico agua/bromuro de litio	32
3.3.4.2.	Ecuación empleada en MATLAB	32

CAPÍTULO IV

4.	GESTIÓN DEL PROYECTO	
4.1.	Presupuesto	
4.2.	Recursos materiales	
4.3.	Resultados	
4.3.1.	Sistema de refrigeración por absorción amoniaco/agua	

4.3.1.1.	Cálculo del coeficiente de eficiencia energética	39
4.3.1.2.	Calor en el evaporador	40
4.3.1.3.	Calor en el rectificador	40
4.3.1.4.	Trabajo de la bomba	41
4.3.1.5.	Coeficiente de eficiencia energética	42
4.3.2.	Análisis de los datos generados en DWSIM	43
4.3.2.1.	Análisis económico y energético sistema de refrigeración por absorción NH3/H2O.	46
4.3.2.2.	Aplicaciones de sistema de refrigeración por absorción amoniaco/agua	51
4.3.2.3.	Análisis de grafica en Matlab	51
4.3.3.	Sistema de refrigeración por absorción agua/bromuro de litio	54
4.3.3.1.	Cálculo del coeficiente de eficiencia energética	57
4.3.3.2.	Calor en el evaporador	58
4.3.3.3.	Calor en el rectificador	58
4.3.3.4.	Trabajo de la bomba	60
4.3.3.5.	Coeficiente de eficiencia energética	60
4.3.4.	Análisis de los datos generados en DWSIM	61
4.3.4.1.	Análisis económico y energético sistema de refrigeración por absorción H2O/LiBr.	64
4.3.4.2.	Aplicaciones de sistema de refrigeración por absorción agua/bromuro de litio	69
4.3.4.3.	Análisis de grafica en Matlab	69
4.3.5.	Costos de la operación en base a 8 horas de operación	72
CONCL	USIONES	75
RECOM	IENDACIONES	76
GLOSA	RIO	
BIBLIO	GRAFÍA	

ANEXOS

ÍNDICE DE TABLAS

Tabla 1-2:	Características Amoniaco / Agua	7
Tabla 2-2:	Características Agua / Bromuro de litio	8
Tabla 3-2:	Características de DWSIM	10
Tabla 4-2:	Costo del colector y tanque de almacenamiento	15
Tabla 5-2:	Costos del condensador y evaporador	16
Tabla 6-2:	Costos varios	16
Tabla 7-2:	Costos de Elementos Químicos	17
Tabla 8-2:	Costos de Mano de Obra	17
Tabla 9-2:	Costos Indirectos	17
Tabla 10-2:	Costo Total del Equipo	18
Tabla 1-3:	Características Físico-Química de la mezcla	27
Tabla 2-3:	Parámetros de diseño óptimos para la simulación dinámica NH3/H2O	28
Tabla 3-3.	Parámetros de diseño óptimos para la simulación dinámica H2O/LiBr	28
Tabla 4-3:	Variables de operación establecidas en el sistema de destilación	29
Tabla 5-3:	Variables de operación establecidas en el sistema de destilación	30
Tabla 6-3:	Rango de valores para las variables del proceso	31
Tabla 7-3.	Rango de valores para las variables del proceso	32
Tabla 1-4:	Cronograma de actividades	34
Tabla 2-4:	Presupuesto del proyecto	35
Tabla 3-4:	Corriente a la salida del separador solución fuerte (refrigerante)	36
Tabla 4-4:	Corriente a la salida del separador solución débil (absorbente)	37
Tabla 5-4:	Corriente de refrigerante (a) en el enfriador	37
Tabla 6-4:	Corriente de absorbente (f) en el enfriador	37
Tabla 7-4:	Corriente de refrigerante (c) en el calentador	38
Tabla 8-4:	Corriente en la salida del mezclador (g)	38
Tabla 9-4:	Corriente de salida del proceso (h)	38
Tabla 10-4:	Validación de la simulación	39
Tabla 11-4:	Base de datos del equipo de refrigeración por absorción amoniaco/agua	43
Tabla 12-4:	Análisis energético (Amoniaco/Agua)	46
Tabla 13-4:	Consumo total de energía NH3 /H20	48
Tabla 14-4:	Porcentaje de obtención de Refrigerante y SIn débil en función de T y P	50
Tabla 15-4:	Datos obtenidos en la grafica	51
Tabla 16-4:	Corriente a la salida del separador solución fuerte (refrigerante)	54

Tabla 17-4:	Corriente de refrigerante (a) en el enfriador	55
Tabla 18-4:	Corriente de absorbente (f) el enfriador	55
Tabla 19-4:	Corriente de refrigerante (c) en el calentador	56
Tabla 20-4:	Corriente del mezclador (g)	56
Tabla 21-4:	Corriente de salida del proceso (h)	56
Tabla 22-4:	Validación de la simulación	57
Tabla 23-4:	Datos operacionales del equipo de refrigeración por absorción H2O/LiBr	61
Tabla 24-4:	Análisis económico (Agua/Bromuro de litio)	64
Tabla 25-4:	Consumo total de energía H20/LiBr	66
Tabla 26-5:	Porcentaje de obtención de Refrigerante y SIn débil en función de T y P	68
Tabla 27-4:	Datos obtenidos en la grafica	70

ÍNDICE DE FIGURAS

Figura 1-2:	Ciclo de Refrigeración por absorción	. 7
Figura 2-2:	Interfaz DWSIM-sistema de refrigeración por absorción amoniaco/agua	11
Figura 3-2:	Interfaz DWSIM-sistema de refrigeración por absorción agua/bromuro de litio	12
Figura 4-2:	Análisis económico	15
Figura 5-2:	Diagrama de flujo del proceso	19
Figura 6-2:	Diagrama en bloques de un controlador PID.	22
Figura 7-2:	Controlador P	22
Figura 8-2:	Controlador PI	23
Figura 9-2:	Controlador PID	23
Figura 10-2:	Controlador PID	24
Figura 1-4:	Sistema del sistema de refrigeración por absorción amoniaco/agua	36
Figura 2-4:	Grafica obtenida en Simulink Tiempo Vs Qevap amoniaco/agua	53
Figura 3-4:	Sistema del sistema de refrigeración por absorción agua/bromuro de litio	54
Figura 4-4:	Grafica obtenida en Simulink Tiempo Vs Qevap agua/bromuro de litio	72

ÍNDICE DE ECUACIONES

Ecuación 1-2:	Flujo de generador en el periodo de refrigeración	13
Ecuación 2-2:	Flujo d calor del rectificador	13
Ecuación 3-2:	Calor disipado en el condensador	13
Ecuación 4-2:	Calor en el evaporador	13
Ecuación 5-2:	Flujo de calor disipado por el absorbente	13
Ecuación 6-2:	Coeficiente de rendimiento del ciclo	13
Ecuación 7-2:	Carga térmica generada por transmisión a través de par	14
Ecuación 8-2:	Ecuación utilizada en Matlab	33
Ecuación 1-4:	Coeficiente de eficiencia energética	39
Ecuación 2-4:	Calor en el evaporador	40
Ecuación 3-4:	Calor en el rectificador	40
Ecuación 4-4:	Calor en el rectificador 1	40
Ecuación 5-4:	Trabajo de la bomba(i)	41
Ecuación 6-4:	Potencia del generador en 8h	46
Ecuación 7-4:	Coste	46
Ecuación 8-4:	Trabajo de la bomba(ii)	60
Ecuación 9-4:	Ecuacion termodinamica	64
Ecuación 10-4:	Costo de la operación en base a 8 h	72
Ecuación 11-4:	Costo por efecto del consumo de agua	73
Ecuación 12-4:	Consumo de energía	73
Ecuación 13-4:	Costo total del proceso	74

ÍNDICE DE ANEXOS

- ANEXO A: PROPIEDADES DE ALGUNOS COMBUSTIBLES E HIDROCARBUROS COMUNES
- ANEXO B: ARTICULO CIENTÍFICO A
- ANEXO C: ARTICULO CIENTÍFICO B
- ANEXO D: ARTICULO CIENTIFICO C

ÍNDICE DE ABREVIATURAS

Q_{ref}	Calor de refrigeración total
Q _{ref1}	Calor de refrigeración del condensador en la parte superior de la torre
Q_{ref2}	Calor de refrigeración del condensador en la parte inferior de la torre
Q _{ref3}	Calor de refrigeración del condensador
ΔT	Variación de temperatura
Α	Área de expansión
С	Celsius
C1	Costo por efecto del consumo de agua
C2	Costo por efecto del consumo de energía eléctrica
СОР	Coeficiente de rendimiento energético
Ср	Capacidad calorífica
СТ	Costo total por operación de la planta
CW	Consumo de agua en el proceso
E1	Energía consumida en la bomba, kW
E2	Energía consumida en la torre de absorción, kW
E3	Energía consumida en el calentador, kW
F	Corriente de Flujo
Н	Hora
Kg	Kilogramo
Kg/h	Kilogramo/hora
Kmol	Kilomol
Kmol/h	Kilomol por hora
Кра	Kilopascales
\mathbf{M}_{1}	Masa de agua en el evaporador
m ³ /h	Metro cubico por hora
mm	Milímetro
Q	Calor total de transmisión a través de las paredes
Qeva	Calor de evaporación
Qref	Calor de refrigeración
Т	Tiempo de operación
U	Coeficiente global de transferencia de calor
W	Trabajo de la bomba
Χ	Fracción molar

RESUMEN

Se realizaron 2 simulaciones de sistemas de refrigeración amoniaco/ agua y agua/bromuro de litio comparándolas entre sí, donde la temperatura y la fracción molar de los compuestos y agua en la alimentación, la relación de reflujo, temperatura, la presión, el tiempo empleado, el flujo molar fueron condiciones importantes a tomar en cuenta para realizar estas simulaciones, el rango del error es de 1,40% respecto al calor y flujos de entrada y salida. El coeficiente de rendimiento a las condiciones establecidos obtenidos mediante cálculos matemáticos son los siguientes: para el amoniaco/ agua un coeficiente de rendimiento (COP) de 0,29 y el agua/ bromuro de litio un COP de 0,15 en condiciones estables; esto ya confirma que existe una margen razonable entre los valores predichos y los datos reales. Y, confirmando con la bibliografía el sistema amoniaco/agua tiene un mayor rendimiento; empleando un tiempo 25 minutos dichas simulaciones dinámicas aumentan en función del tiempo los ciclos amoniaco/agua y con mayor potencia de los ciclos agua/bromuro de litio. En cuanto a lo económico se obtuvo un coste de 0,238 dólares por KWh en la simulación amoniaco/ agua y un coste de 0,060 dólares por KWh en la simulación agua/bromuro de litio. El sistema alcanza rápidamente un estado estable dados los parámetros operativos para dicha especificación, en la varianza entre una simulación dinámica y estable no es mucha, sus valores varían por 2% de error, en la simulación de amoniaco/agua el error es menor, a los 19,2 minutos la temperatura y presión se convierten estables, contra la simulación agua/bromuro de litio a 17 minutos se vuelve estable. Se recomienda utilizar un paquete termodinámico de acuerdo con los fluidos que se utilice.

Palabrasclave:<REFRIGERACIÓN>,<ABSORCIÓN>,<DWSIM</th>(SOFTWARE)>,<BROMURO DE LITIO>,<AMONIACO>,<MATLAB(SOFTWARE)>,< AGUA>.

LEONARDO FABIO MEDINA MEDINA NUSTE NUSTE Firmado digitalmente por LEONARDO FABIO MEDINA MEDINA NUSTE Fecha: 2021.10.13 09:33:54 -05'00'

ABSTRACT

Two simulations of ammonia / water and water / lithium bromide refrigeration systems were carried out comparing them, where the temperature and the mole fraction of the compounds and water in the feed, the reflux ratio, temperature, pressure, the time used, the molar flow were important conditions to take into account to carry out these simulations, the error range is 1.40% with respect to heat and inlet and outlet flows. The coefficient of performance at the established conditions obtained through mathematical calculations are the following: for ammonia / water a coefficient of performance (COP) of 0.29 and water / lithium bromide a COP of 0.15 under stable conditions; this already confirms that there is a reasonable margin between the predicted values and the actual data. And, confirming with the bibliography the ammonia / water system has a higher performance; using a time of 25 minutes, these dynamic simulations increase the ammonia / water cycles as a function of time and, with greater power, the water / lithium bromide cycles. Economically, a cost of \$ 0.238 per KWh was obtained in the ammonia / water simulation and a cost of \$ 0.060 per KWh in the water / lithium bromide simulation. The system quickly reaches a stable state given the operational parameters for that specification, in the variance between a dynamic and stable simulation it is not much, its values vary by 2% error, in the ammonia / water simulation the error is less, at 19.2 minutes the temperature and pressure become stable, against the simulation water / lithium bromide at 17 minutes seconds it becomes stable. It is recommended to use a thermodynamic pack according to the fluids used.

Keywords: <COOLING>, <ABSORPTION>, <DWSIM (SOFTWARE)>, <LITHIUM BROMIDE>, <AMMONIA>, <MATLAB (SOFTWARE)>, <WATER>.

CAPÍTULO I

1. INTRODUCCIÓN

1.1. Antecedentes

La necesidad de generar frio o bien producir hielo, existe a partir de tiempo remotos, los cuales emergen por la necesidad de conservar los alimentos bajo ciertas temperaturas, para este objetivo se han desarrollado por medio del tiempo procedimientos que permiten hacer este objetivo. Uno de los precedentes que presentan la enorme necesidad de conservar los alimentos es que ya durante el siglo XVIII en Inglaterra, se enterraban las láminas de hielo llena de sal y cubierta de franela hasta el verano y a comienzos del XIX comenzaron a utilizarse cajas de hielo que se guardaban en los sótanos. La historia nos remonta hasta el siglo XVIII una vez que se hicieron los primeros estudios de las mezclas frigoríficas, debidos al árabe Ibn Abi Usayaba. La etapa empírico toma importación las primeras pruebas que se hacen con la intención de conseguir temperaturas bastante frías, los primeros experimentos se realizaban con éter en vacío en la Universidad de Glasgow por William Cullen en 1748. En 1802 con finalidad de enfriar un gas al expandirlo se aplican las leyes de compresibilidad de gases de Joseph Louis Gay-Lussac (basadas en las teorías de Robert Boyle). En 1810 se publica un escrito por u n de Estados Unidos Oliver Evans, sobre ciclos de producción de frio por compresión y extensión de líquidos volátiles (Viswanathan et al, 2012, p.38).

1.2. Planteamiento del problema

La necesidad de un cambio extremo en el rumbo de las políticas del sector eléctrico es ineludible para retomar el valor en el aumento de energías renovables no convencionales hacia regiones rurales que no disponen de la electricidad, además el enorme problema que crea la dependencia de combustibles fósiles ha provocado actualmente una mayor contaminación. ¿Se debe pensar en nuevos sistemas que promuevan la utilización eficiente de energías limpias enfocadas a la refrigeración doméstica? Actualmente el desarrollo tecnológico de sistemas que utilicen fuentes de energía amigables con el medio ambiente ha llevado a minimizar el consumo de combustibles fósiles, por lo cual se ha optado en hacer proyectos en regiones recluidas que requieran energía eléctrica con la utilización de un sistema de captación solar para aplicaciones como la conservación de alimentos. El primordial beneficio de esta clase de energías se debería a el decrecimiento del efecto ambiental, las cuales aportan el 6,4 % de energía total y representan el 0,6 % de la potencia eléctrica construida en el territorio conforme con la Organización Latinoamericana de Energía (OLADE) y el Consejo de Electricidad (CONELEC), el Ecuador preserva una intensa dependencia al petróleo, un recurso contaminante y que cada vez se vuelve más poco en el mundo. Por lo tanto, esta clase de sistemas beneficiaria a regiones rurales del Ecuador para la producción de frio mediante la energía solar, siendo más económica y ecológica respecto a otro tipo de fuentes. Conforme el problema descrito, en este trabajo se hace hincapié en el desarrollo de simular de forma dinámica un sistema de refrigeración por absorción de 2 diferentes químicos a fin de conocer el rendimiento energético y económico en el programa DWSIM.

1.3. Objetivos

1.3.1.Objetivo General

Simular de manera dinámica dos sistemas de refrigeración por absorción amoniaco/agua y agua/bromuro de litio y compararlos

1.3.2. Objetivos Específicos

- Simulación estacionaria, simulación dinámica y análisis económico y energético de un sistema por refrigeración amoniaco/agua.
- Simulación estacionaria, simulación dinámica y análisis económico y energético de un sistema por refrigeración agua/bromuro de litio.
- Realizar un análisis económico energético para la aplicación de estos sistemas en diferentes tipos de industrias.

1.4. Justificación del proyecto

El proceso de refrigeración por absorción tanto del amoniaco/agua y agua/bromuro de litio, muestra diversas ventajas ante otros procesos de refrigeración por compresión. La obra del equipo del proceso de refrigeración por absorción es más costosa, sin embargo, este resulta más productivo en el aspecto medioambiental y energético. Por esa razón, se ha optado por simular y validar un sistema de refrigeración por absorción amoniaco/agua y agua/ bromuro de litio. Por medio del programa DWSIM que posibilite comprobar su eficiencia frente al sistema usual y equiparar los resultados con los valores calculados en artículos de relevancia. Sin embargo, la simulación de procesos industriales se muestra como un instrumento tecnológico de monumental efecto que posibilita reproducir virtualmente los procesos y aprender su comportamiento, así como para el diseño, desarrollo, estudio y mejora técnica de los mismos.

Tal el Ingeniero Químico está preparado para manipular softwares especializados y producir modelos capaces que permitan simular y aprender las cambiantes que intervienen en los procesos químicos, donde va a poder hacer mejoras con un bajo precio y sin la necesidad de interactuar con el proceso real, paralelamente, permitiendo extrapolarlo después en plantas piloto con más estabilidad. Varios de aquellos sistemas de refrigeración operan bajo ciclos de compresión a vapor, aun cuando esta tecnología haya tenido gigantes desarrollos en los últimos tiempos, aun muestra inconvenientes de tipo ambiental primordialmente involucrados con la utilización de electricidad la cual es generada en monumental porcentaje por fuentes no renovables; la utilización de refrigerantes que generan impacto invernadero que deterioran la capa de ozono. Es por esto que en los últimos 40 años se han retomado los estudios de sistemas que hagan impacto frigorífico y sean más amigables con el ambiente como los sistemas de refrigeración por absorción, esto debido primordialmente a la crisis del petróleo en la década de los 70 y después en los años 90 por la inquietud de las emisiones de refrigerantes halogenados a la atmosfera.

1.5. Alcance

Este proyecto está vinculado a la línea de investigación de procesos tecnológicos, artesanales e industriales de la Escuela Superior Politécnica de Chimborazo y en específico con la empresa ESSENCE que se enfoca en la elaboración de proyectos de ingeniería de sistemas de acondicionado, el cual tiene como propósito el desarrollo de proyectos de investigación científica y tecnológica, en el ámbito del desarrollo sostenible del medio ambiente, y el mejoramiento de la calidad de vida de la sociedad.

Según con los aspectos técnico-económicos, este tipo de investigación es factible para el desarrollo. Contando con los conocimientos requeridos para realizar este tipo de investigación y en cuanto a los recursos es importante mencionar, que la universidad ha permitido el uso de las herramientas tecnológicas lo suficiente para el buen desarrollo investigativo. La investigación nos ayudara a ampliar los conocimientos de las herramientas tecnológicos sobre el desarrollo educativo de los estudiantes de pregrado de ingeniería química y carreras afines, los cuales serán los principales beneficios del uso del simulador de código abierto DWSIM.

CAPÍTULO II

2. MARCO TEÓRICO

2.1. Estado del arte

2.1.1. Antecedentes

El periodo termodinámico de enfriamiento por absorción, al igual que el de compresión, se fundamenta en la necesidad del fluido utilizado como refrigerante de obtener calor del líquido a enfriar para lograr pasar del estado líquido al estado de vapor cuando se reduce la presión a la que es sometida. En la refrigeración, el fluido que se encuentra en estado líquido está a alta presión otro del condensador y este se le hace fluir al dentro del evaporador a una baja presión en el cual este recibe el calor primordial para evaporarse, el refrigerante que se encuentra en estado de vapor regresa a alta presión al condensador en el cual se sustrae el calor para regresar al estado líquido, para comenzar otra vez el periodo. Con ello se consigue la finalidad de sacar calor de un lugar, el evaporador, enfriándolo, para disiparlo en otro, el condensador (Ibrahim, 2002, p.35).

En el periodo de compresión, la circulación del fluido y el impacto de presión es recibido en un compresor, en donde el periodo de absorción es conseguido aportando el calor al generador, aquí el refrigerante se mezcla con otro fluido el cual se nombre absorbente y su funcionalidad es: absorber el vapor en el área de baja presión hasta devolverlo en forma líquida(Cai, Sen y Paolucci, 2012, p.28).

El periodo de absorción no es un hallazgo presente. Sus precedentes tienen la posibilidad de posicionarse en 1755, una vez que el escocés William Cullen alcanzó a obtener una pequeña proporción de hielo en una campana donde mantenía una presión limitada. Al poco tiempo, en 1777, otro escocés, Gerald Nairne, introducía ácido sulfúrico en la campana de Cullen, de forma que el vapor de agua fuera absorbido por este, dejando espacio para permitir una más grande evaporación de agua. Tiempo después en 1810, John Leslie bajo vacío coloca en la campana, un recipiente con el agua a evaporar y otro recipiente con ácido sulfúrico al fondo, logrando una producción de 3 kg de hielo por hora (Cortés Espinosa, 2015 p.44).

Sin embargo, al final el francés Ferdinand Carré, quién contribuyo y comercializa la primera máquina de absorción, referida primordialmente a la construcción de hielo, usando amoniaco como refrigerante y agua como absorbente. Esta máquina ha sido patentada en 1859 y obtuvo el premio de la Exposición Mundial de Londres de 1862. En 1875 el buque Paraguay, equipado con máquinas de Carré, transportó por primera ocasión carne congelada a partir de Buenos Aires hasta el puerto de Le Havre (Ibrahim, 2002, p.35).

Hasta los años sesenta del pasado siglo XX, esta técnica se desarrolló en especial en los Estados Unidos, empero después ha evolucionado especialmente en el Japón debido posiblemente a la política energética seguida por esta nación. Hay variantes de llama directa en las que el calor es aportado por un quemador de combustible y otras por agua caliente, donde se usa la energía contenida en agua caliente de procedencia solar o procedente de conjuntos de cogeneración u otras fuentes de calor gratuito o residual (Ibrahim, 2002, p.35).

El desarrollo de esta tecnología se ha derivado en 2 enormes conjuntos en funcionalidad del refrigerante y del tipo de absorbente usado. Uno de ellos usa una solución de amoniaco y agua siendo el amoniaco el refrigerante y el agua el absorbente. A esta familia corresponden los conjuntos de la firma ROBUR distribuidos por ABSORSISTEM. El otro conjunto emplea una solución de bromuro de litio (LiBr) con agua donde ésta actúa como refrigerante siendo las sales de LiBr el absorbente. Los conjuntos de las marcas YAZAKI y THERMAX, distribuidos además por ABSORSISTEM, pertenecen a esta segunda familia (Kosuda et al, 2012, p.18).

2.2. Bases Teóricas

2.2.1. Sistema de refrigeración por absorción

Los sistemas de refrigeración por absorción se aplican como dispositivos que generan gélido, estos equipos ayudan a obtener bajas temperaturas y son utilizadas en distintas aplicaciones, a su vez esto ayuda obtener una solución eficiente (Villamil Tulcán, 2005).

Comparados con los sistemas por compresión de vapor, los sistemas de refrigeración por absorción muestran una virtud fundamental: estos comprimen el líquido de un vapor. El trabajo del flujo estacionario es proporcional al volumen especifico, en donde el acceso de trabajo en el sistema de refrigeración por absorción es pequeño y se desprecia constantemente en la exploración del periodo. La operación de dichos sistemas se fundamenta en la transferencia de calor de una fuente externa (Cengel, 2011, p.288).

Figura 1-2: Ciclo de Refrigeración por absorción Realizado por: (Steiu, 2010).

Hace más de veinte años las más maquinas comercializadas de alto rendimiento (japonesas o norteamericanas) son de tipo amoníaco / agua, o "de impacto fácil", o bien máquinas agua / bromuro de litio, o "de doble impacto", las cuales han sido experimentadas en los EE. UU en prototipos industriales, en donde el COP alcanza 1,2 - 1,3 en condiciones nominales de funcionamiento (Chirigoba, 2018, p.142).

2.2.1.1. Características de los fluidos

Amoniaco (NH3) / Agua	
Ventajas	Inconvenientes
El refrigerante amoniaco tiene una alta capacidad	Presión muy alta del refrigerante (tuberías más
calorífica.	gruesas).
Aplicaciones de temperaturas muy bajas, hasta -60°C.	Volatilidad del solvente (es necesaria una rectificación).
Propiedades muy buenas de transferencia de calor y	Toxicidad del amoniaco.
masa.	
Temperaturas	
Temperatura de condensación	41°
Temperatura de generación	120°

Tabla 1-2: Características Amoniaco / Agua

Realizado por: (Camacho B, 2021).

Agua / Bromuro de litio (LiBr)	
Ventajas	Inconvenientes
La refrigerante agua tiene una alta capacidad	El sistema no puede enfriar a temperaturas menores
calorífica.	del punto de congelación de agua.
La solución de bromuro de litio no es volátil.	El bromuro de litio es solvente en agua sólo
	limitadamente.
Las sustancias no son tóxicas ni inflamables.	El vacío demanda una alta impermeabilidad del
	sistema.
Temperaturas	
Temperatura de condensación	60°
Temperatura de generación	300°

Tabla 2-2: Características Agua / Bromuro de litio

Realizado por: (Camacho B, 2021).

2.2.1.2. Sistemas de refrigeración por absorción en el País

El primordial beneficio de esta clase de energías se debería a el decrecimiento del efecto ambiental, las cuales aportan el 6,4 % de energía total y representan el 0,6 % de la potencia eléctrica construida en el territorio de acuerdo con la Organización Latinoamericana de Energía (OLADE) y el Consejo de Electricidad (CONELEC), el Ecuador conserva una profundo dependencia al petróleo, un recurso contaminante y que cada vez se vuelve más limitado en el mundo Por lo tanto, esta clase de sistemas beneficiaria a regiones rurales del Ecuador para la producción de gélido mediante una fuente de calor barata la cual es perteneciente del sol y es suministrada a modo de energía térmica, siendo más económica y ecológica respecto al consumo energético (Barreto, 2010, p.27).

2.2.2. Columna de separación gas-liquido

El recipiente de división obtiene la mezcla del condensado caliente donde el líquido se separa por gravedad y cae al fondo mientras tanto que el vapor sale por la parte preeminente. Típicamente, un tanque de recolección situado abajo de la cámara de división recoge el líquido por gravedad utilizando un control de grado de líquido y una válvula de control para regular la proporción de líquido extraído. El control además preserva una barrera de vapor a medida que descarga el líquido recogido a la misma rapidez de acumulación (Viswanathan et al, 2012, p.38).

2.2.3. Condensador de aire

El condensador es un dispositivo en el aire acondicionado que se usa para condensar una sustancia de estado gaseoso a estado líquido por medio de su enfriamiento. El serpentín del condensador es donde se quita el calor. La unidad de consolidación se localiza en el exterior. Su capacidad original es la de un intercambiador de calor, en el cual recoge una sustancia (refrigerante) de su estado vaporoso a fundido. Desde aquel instante, el calor latente es cedido por el contenido y se intercambiará con el refrigerante del condensador. En el periodo de refrigeración, una bomba de calor transfiere el calor de una fuente cercana de baja temperatura a un fregadero de alta temperatura (Poles, 2013).

La segunda ley de la termodinámica provoca que el agua caliente fluya hacia el otro lado. El más reconocido de los ciclos de refrigeración usa un motor eléctrico para accionar un compresor. Ya que la disipación pasa una vez que se retiene el calor, y la acumulación pasa una vez que se descarga el calor, los sistemas de aireación y enfriamiento fueron creados con el fin de usar un compresor para provocar cambios de peso entre 2 compartimentos, y para atraer en verdad el refrigerante. Dentro del condensador, el vapor de refrigerante se compacta y se restringe por medio de un circuito de trueque de calor, acumulándolo en un fluido y expulsando el calor ya retenido del área interior gélida (Balmore, 2012, p.65).

2.2.4. Calentador

Prácticamente podríamos asimilar un calentador, o caldera, a fuego directo a un horno. El calor se transfiere de manera directa al producto de proceso, fundamentalmente hidrocarburos o resoluciones químicas. Los calentadores a fuego directo se usan para aplicaciones concretas. Podríamos considerarlos conjuntos diseñados a medida, debido a que, al trasmitirse de manera directa el calor al producto de proceso, un cambio en las propiedades de este último puede dar por sentado que los equipamientos sean ineficientes para las novedosas condiciones del proceso o incluso logre llegarse a la devastación del producto o del equipo por esta inadecuación (Zhang, 2014).

2.2.5. DWSIM - Chemical Process Simulator

La iniciativa tecnológica se desarrollará por medio de la implementación del programa DWSIM, el cual tiene una rica interfaz gráfica de cliente en donde tienen la posibilidad de simular diversos tipos de procesos químicos. DWSIM es de monumental ayuda para los alumnos de la carrera de ingeniería química y expertos afines a dicha área, ya que es un programa gratuito, de simple uso e instalación.

Por medio de este programa se va a poder reproducir virtualmente un sistema alternativo de sistema de refrigeración por absorción amoniaco/agua y agua /bromuro de litio. Y obtener los datos necesarios para la validación del proceso y la decisión de su eficiencia (DWSIM, 2017).

2.2.5.1. Características

DWSIM es capaz de simular procesos de equilibrio vapor-líquido-líquido-sólido en estado estacionario con los siguientes modelos termodinámicos y operaciones de unidades.

	Peng – Robinson		
	Peng – Robinson – Stryjek – Vera 2		
	Soave – Redlich – Kwong		
	Lee – Kesler		
	Lee – Kesler – Plöcker		
	> UNIFAC (-LL)		
	 UNIFAC modificado (Dortmund) 		
	> UNIQUAC		
	> NRTL		
Modelos termodinámicos	> COSMO – SAC		
	Chao – Seader		
	Grayson – Streed		
	> LIQUAC		
	Extended UNIQUAC		
	Raoult's Law		
	➢ IAPWS − 97 Steam Tables		
	➢ IAPWS − 08 Seawater		
	➢ Black − Oil		
	Sour Water		
	Zócalo CAPE-OPEN, mezclador, válvula, separador,		
	bomba, calentador, calentador, enfriador, segmento de		
	tubería, separador de gas -liquido, intercambiador de		
	calor, reactores (conversión, PFR, CSTR, equilibrio y		
Operaciones de la unidad	Gibbs), columna de destilación, Absorbentes simples,		
	refluidos y rebobinados, separador de componentes,		
	placa de orificio, separador de sólidos, filtro de torta		
	continuo; Operaciones de la Unidad		
	Excel, Script y Flowsheet.		
	Envolvente de fase, hidratos de gas natural,		

Tabla 3-2: Características de DWSIM

Utilidades	propiedades de componentes puros, punto crítico verdadero, dimensionamiento de PSV, dimensionamiento de vasos, hoja de cálculo y propiedades de flujo frío de		
	petroleo.		
	Caracterización de petróleo. Gerente de análisis de		
Herramientas	petróleo, Gerente de reacciones.		
Análisis y optimización de procesos	Utilidad de análisis de sensibilidad, optimizador multivariante con restricciones limitadas.		
Extras	Regresión de datos binarios VLE / LLE / SLE, soporte para scripts de tiempo de ejecución, complementos y objetos de monitoreo de hoja de flujo CAPE-OPEN.		

Fuente: (DWSIM, 2020).

2.2.5.2. Interfaz plataforma DWSIM

Al llevar a cabo DWSIM en Windows se tiene la elección de 2 interfaces gráficas de cliente (GUI): Classic y multiplataforma, esta última además popular como IU "Nueva". La interfaz de cliente típica es la basada en Windows Forms, con cada una de las funcionalidades (DWSIM, 2020).

Figura 2-2: Interfaz DWSIM-sistema de refrigeración por absorción amoniaco/agua **Realizado por:** (Camacho B, 2021).

Figura 3-2: Interfaz DWSIM-sistema de refrigeración por absorción agua/bromuro de litio **Realizado por:** (Camacho B, 2021).

2.3. Simulación Dinámica

La simulación dinámica posibilita evaluar el impacto de condiciones variables sobre el funcionamiento de procesos industriales. Se puede usar a partir de la fase de diseño conceptual de un plan, para revisar que la planta entregará el producto esperado en forma segura y simple de operar. Posibilita verificar si los grupos diseñados funcionarán o no como se espera en una situación real de planta, y diseñar sistemas de control automático que sirvan para indemnizar las perturbaciones debidas a cambios en la ingesta de alimentos, en el ambiente externo, en el ensuciamiento de intercambiadores, en la actividad de catalizadores y varios otros. Posibilita examinar el funcionamiento de los sistemas de estabilidad, la transición entre condiciones de operación, los arranques y paradas de planta, y diseñar simuladores de entrenamiento. En dicho trabajo de titulación, se desarrolla capacidades únicas para hacer simulación dinámica y aprender las superiores técnicas de diseño de sistemas de control y descubrirá atajos fundamentales para usar en plataformas como DWSIM y Aspen HYSYS Dynamics. Se presentarán procedimientos eficientes para evaluar el manejo de plantas químicas enteras, y se automatizarán actividades con el Programador de Eventos y la Matriz Causa-Efecto (Afonso, 2016, p.76).

2.4. Análisis de estudio económico y energético

2.4.1. Modelo de absorción del Sistema de Refrigeración

Los modelos se fundamentan en los balances de materia y energía en cada factor de periodo, estos se basan en la suposición de un sistema persistente. En el generador es la energía de acceso en el periodo de refrigeración, el cual está dado por:

$$Q_g = (m_9 h_9 + m_3 h_3) - m_8 h_8$$
 Ecuación 1-2

El flujo del calor del rectificador se define por:

$$Q_r = (m_{3f}h_{3f} + m_1h_1) - m_3h_3$$
 Ecuación 2-2

El calor disipado en el condensador está dado por:

$$Q_c = m_4 h_4 - m_2 h_2$$
 Ecuación 3-2

El calor en el evaporador está dado por:

$$Q_c = m_6 h_6 - m_5 h_5 \tag{Ecuation 4-2}$$

.. ..

Ecuación 5-2

-

El flujo de calor disipado por el absorbente está dado por:

$$Q_a = (m_6 h_6 + m_{10} h_{10}) - m_7 h_7$$

El simplificado del trabajo de bombeo, el COP (Coeficiente de Rendimiento) del ciclo se calcula a partir de la siguiente ecuación:

$$COP_E = \frac{Q_e}{Q_a}$$
 Ecuación 6-2

2.4.1.1. Análisis energético del sistema

Un análisis energético del sistema se clasifica en el cálculo de todas las cargas térmicas, junto con el análisis del ciclo de refrigeración con su suministro energético.

✤ Cargas Térmicas:

En lo Global el sistema gana calor por las siguientes cargas: Carga térmica generada por transmisión a través de par La expresión general por la que se calcula este concepto:

$$Q = A * U * \Delta T$$
 Ecuación 7-2

Donde:

Q = Calor total de transmisión a través de las paredes.

A =Área de expansión

U = Coeficiente global de transferencia de calor.

Los sistemas de refrigeración tienen grupos eléctricos de iluminación los cuales entregan energía al medio en el momento que operan, todos estos sistemas de iluminación los cuales pueden ser incandescentes o fluorescentes, convierten la energía eléctrica que reciben para su operación, en calor. Para lograr calcular el rendimiento energético tomamos presente cambiantes como el calor la zona de la tubería y la temperatura (Valle-Hernandez et al., 2017, p.142).

2.4.1.2. Análisis del estudio económico

El beneficio en el aspecto económico se debería a que las técnicas de energía renovable promueven la soberanía energética, esto significa hacer uso del recurso propio con que se cuenta en definida zona, de esta forma puede verse limitada la dependencia económica de nuestro estado respecto de la economía de otros y del petróleo, además con la aplicación de energías renovables y con la optimización en la eficiencia de los sistemas recientes además se tendría menor peso en la báscula de pagos, más grande costo añadido a las cadenas energéticas, optimización en la calidad del abasto energético y más grande fiabilidad del abasto energético (Afonso, 2016, p.76). Un procedimiento alternativo de refrigeración es por absorción. No obstante, este procedimiento por absorción únicamente se frecuenta usar una vez que existe la fuente de calor residual, donde la producción del gélido será más económica y ecológica, aun cuando su rendimiento es bastante menor que el sistema de refrigeración por compresión. En dichos sistemas la energía suministrada es, en primera instancia, energía térmica (Afonso, 2016, p.76).

Figura 4-2: Análisis económico Realizado por: (Camacho B, 2021).

Un procedimiento alternativo de refrigeración es por absorción. No obstante, este procedimiento por absorción únicamente se frecuenta usar una vez que existe una fuente de calor residual o barata, por lo cual la producción de gélido es muchísimo más económica y ecológica, aun cuando su rendimiento es bastante menor que el sistema de refrigeración por compresión. En dichos sistemas la energía suministrada es, en primera instancia, energía térmica (Afonso, 2016, p.76).

• Costos directos e indirectos de la construcción del equipo:

Colector solar	Precio U. (USD)	Cant.	Precio Total (USD)
Tubería de acero inoxidable			
1/2" SHC 40	15,00	4 m	60,00
Tubería de acero inoxidable 1"			
SHC 40	20,00	2 m	40,00
Plancha de acero inoxidable			
64 x 84 cm	60,00	1 u	50,00
Placa colectora	40.00	1 u	40.00
37,8 x 49 cm	40,00	1 u	40,00
Lana de vidrio de	10.00	1 u	10.00
25 mm	10,00	1 u	10,00
Cubierta de vidrio	10.00	1 u	10.00
40 x 60 cm de 6 mm	10,00	1 u	10,00
Pintura negra mate 1 galón	15,00	1 u	15,00
Cañuelas de lana de vidrio de		2	20.00
25 mm	10,00	2 m	20,00
Universal 1" inox	9,50	2 u	19,00

 Tabla 4-2: Costo del colector y tanque de almacenamiento

3,50	2 u	7,00
30.00	1 u	30.00
20,00	1 4	20,00
1.50	4 u	6.00
-,		.,
15.00	1 บ	15.00
Total:		322,00
	3,50 30,00 1,50 15,00 Total:	3,50 2 u 30,00 1 u 1,50 4 u 15,00 1 u Total: 1000000000000000000000000000000000000

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Condensador	Precio U. (USD)	Cant.	Precio Total (USD)		
Condensador de tubería de 3/8" x 10 m (Al).	35,00	1 u	35,00		
Tanque recibidor 4" x 8 cm	15,00	1 u	15,00		
Evaporador					
Tubería de 3/8" x 4 m acero inox.	50,00	1 u	50,00		
Cámara de enfriamiento					
Plancha de acero galvanizado 121 x 243 cm	25,00	1 u	25,00		
Lana de vidrio	25,00	1 u	25,00		
Empaque de puerta	10,00	1 u	10,00		
Bisagras	5,00	1 u	5,00		
Válvula de expansión					
Válvula de aguja en acero inox de 1/4"	95,00	1 u	95,00		
	Total:		260,00		

Tabla 5-2: Costos del condensador y evaporador

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Tabla 6-2: Costos varios

Elementos varios	Precio U. (USD)	Cantidad	Precio Total (USD)
Tubo cuadrado 2 x 2 cm para estructura	20,00	2 u	40,00
Man inox 1/4", rango 0- 200 PSI, Ø 80 mm	50,00	1 u	50,00
Válvulas de esfera inox 1/4".	15,00	2 u	30,00

Neplos en acero inoxidable de 1/4"	1,50	5 u	7,50
Codos en acero inoxidable de 1"	3,25	4 u	13,00
Bushing en acero inoxidable de1/4" a 3/8"	2,60	4 u	10,40
Tubing 6 mts inox x 10 mm	12,75	6 m	76,50
Costo en soladuras especiales	-	-	150,00
	Total:		377,40

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Elementos Químicos	Precio U. (USD)	Cantidad	Precio Total (USD)
Amoniaco (aproximado)	5,00	10 kg	50,00
Bromuro de litio (Aproximado)	6,00	10kg	60,00
Agua destilada (aproximado)	1,00	4 u	4,00
Azufre (aproximado)	1,00	3 u	3,00
	Total, Amoniaco:		57,00
	Total, Bromuro de Litio:		67,00

Tabla 7-2: Costos	de Elementos	Químicos
-------------------	--------------	----------

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Tabla 8-2: Costos de Mano de Obra

	N° de personas	Horas de trabajo	Costo hora (USD)	Valor total/día
	iv ue personas	noras de trabajo		(USD)
Mano de Obra	2	8	1,75	28,00
			Valor total:	616,00

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Tabla 9-2: Costos Indirectos

Descripción	Precio total
	(USD)
Transporte del equipo	50,00
Materiales de oficina	30,00
Total:	80,00

Realizado por: (Camacho B, 2021).

Costo total	
Costo de materiales	1016,40
Costo de mano de obra	616,00
Costo indirecto	80,00
Total NH ₃ / H ₂ O :	1712,40
Total H ₂ O/LiBr :	1722,40

Tabla 10-2: Costo Total del Equipo

Fuente: (Chirigoba Jhonathan, 2018).

Realizado por: (Camacho B, 2021).

Precios directos e indirectos de la Obra del equipo:

El valor total del equipo refrigeración por absorción amoniaco/ agua es de 1712,40 USD y los sistemas agua/bromuro de litio 1722,40 USD. Tratándose de los costos los sistemas de refrigeración por absorción tienen costos más elevados que los sistemas de refrigeración por compresión de vapor, estos son mucho más complicados, ocupan más espacio y son menos eficientes, por lo tanto, estos necesitan torres de enfriamiento mucho más grandes para poder liberar calor residual, y su mantenimiento es más difícil de realizar. Los sistemas de refrigeración por absorción deben de considerarse únicamente una vez que el precio unitario de la energía térmica sea bajo y se proyecte quedar bajo comparativamente con la electricidad. Los sistemas de refrigeración por absorción se usan primordialmente en enormes instalaciones comerciales e industriales (Cengel, 2008, p.290).

Consumo de energía de sistemas de Refrigeración

 a) Según la factura de Sistema de Refrigeración por absorción enviada por el grupo Galp Energía, se extraen los siguientes datos de interés:

Consumo= 1172 KWh Importe= 116,22 \$ Se calcularán a continuación, el coste:

$$Coste = \frac{Importe}{Consumo} = \frac{116,22 \$}{1172 \text{ KWh}} = 0,0991 \frac{\$}{\text{KWh}}$$

 b) Según la factura de Sistema de Refrigeración por compresión enviada por el grupo Galp Energía, se extraen los siguientes datos de interés:

Consumo= 1332 KWh

Importe= 194,24 \$
Se calcularán a continuación, el coste:

$$Coste = \frac{Importe}{Consumo} = \frac{194,24\$}{1332 \text{ KWh}} = 0,1458 \frac{\$}{\text{KWh}}$$

Económicamente un sistema de refrigeración por absorción es más rentable económicamente que uno compresión (Balmore et al. 2012, p.67).

2.4.2. Diagrama de Flujo de la simulación estable en DWSIM

Figura 5-2: Diagrama de flujo del proceso **Realizado por:** (Camacho B, 2021).

2.4.3. Matlab

El procedimiento dinámico se realizó en la plataforma Matlab en el programa Simulink.

2.4.3.1. Simulink

Simulink es un programa hecho para modelar, simular y examinar sistemas dinámicos. Aguanta tanto sistemas lineales como no lineales, modelando en tiempo constante, tiempo discreto o en forma mixta. Los sistemas a modelar además tienen la posibilidad de tener velocidades diversas, o sea, tener diferentes piezas que se manejen a cinéticas diferentes. Simulink posibilita hacer cuestiones sobre un sistema, modelarlo y ver que ocurre. Con Simulink, de forma sencilla tienen la posibilidad de edificar modelos a partir de la nada, o tomando un modelo que existe y agregarlo a él. Una cantidad enorme de ingenieros en torno al mundo utilizan Simulink para modelar y solucionar diferentes inconvenientes en una extensa variedad de industrias (Simulink, 2016, p.8).

Herramientas para Diseño de Modelos Básicos

Con Simulink, se puede desplazar más allá de los modelos linealizados e idealizados para explorar modelos no lineales que describen fenómenos más reales. Simulink transforma la computadora en un laboratorio para modelar y examinar sistemas que sencillamente no puede ser viable o a gusto de otra forma. Simulink tiene varios demos que modelan una enorme proporción de fenómenos de la vida real. Para modelar, Simulink entrega una Interfaz Gráfica para el Cliente (GUI) para edificar los modelos como diagramas de bloques, utilizando operaciones de clic-and-drag del ratón. A través de esta interfaz, tienen la posibilidad de hacer un dibujo los modelos como si se realizaran con lapicero y papel. Simulink incluye una vasta librería de bloques para fuentes, resultados, elementos lineales y no lineales y conectores, además de poder generar nuestros bloques (Escribir funciones-S). Los modelos creados son jerárquicos, con lo que tienen la posibilidad de generar modelos utilizando numerosas ventanas. Se puede ver el sistema a partir del grado máximo, para después por medio de un doble clic comprobar los múltiples subsistemas insertos en el modelo general. Esta modalidad de presentación muestra la virtud de examinar cómo está organizado el modelo y cómo sus piezas interactúan (Simulink, 2016, p.9).

• Herramientas para Simulación

Una vez determinado el modelo, se puede parecido, utilizando una suerte de procedimientos matemáticos de adhesión, tanto a partir de los menús de Simulink o ingresando comandos en la

ventana de comandos de MATLAB [®]. Los menús son convenientes para el trabajo interactivo, mientras tanto que la línea de comandos es eficaz una vez que se hace una secuencia de simulaciones. Utilizando scopes y otros bloques de salida, se puede ver los resultados de la simulación a medida que ésta se realiza. Además, se puede modificar ciertas fronteras y examinar qué ocurre. Los resultados de la simulación tienen la posibilidad de ser colocados en el workspace de MATLAB para su visualización y reprocesamiento (Simulink, 2016, p.12).

• Herramientas para el Análisis

Las herramientas de Análisis incluyen linealización y arreglo de los modelos, los cuales pueden ser accesados desde la línea de comandos de MATLAB, junto con las numerosas herramientas que posee MATLAB y sus toolboxes de aplicaciones. Como MATLAB y Simulink se encuentran integrados se puede simular, analizar y revisar los modelos en cualquiera de los dos ambientes (Simulink, 2016, p.12).

2.4.3.2. Controlador PID

Los sistemas gestionados en la industria se llaman "fábricas" o "procesos". La señal se aplica al acceso de proceso "señal de control" o "variable de instrumento (MV)". Señal de salida de proceso "Tarjeta de control" o "Tarjeta de proceso (PV)". Para poder hacer el más alto rendimiento de la planta, se usa un controlador de proceso de acceso para recibir una alusión de acceso o punto de ajuste (SP) y asegurar el equilibrio de la señal de salida. En un sistema de retroalimentación, el proceso forma un bucle. Esta disposición se llama circuito cerrado. En un sistema de circuito cerrado, el controlador recibe constantemente la diferencia entre los valores reales de SP y PV. Esta diferencia se llama error, por lo cual el dispositivo crea una señal de control que disminuye el error a un costo bastante diminuto o nulo, independientemente de la existencia de la señal (Ogata, 1982). Sonido a lo extenso del proceso. El control de bucle cerrado tiene los beneficios de una alta exactitud del sistema de control, la supresión de los efectos del sonido fotovoltaico y menos fluctuaciones gracias a la inestabilidad (más robusto).

Figura 6-2: Diagrama en bloques de un controlador PID **Realizado por:** (Camacho B, 2021).

El control PID combina acciones proporcionales, integrales y derivadas para generar una única señal de control. Cada acción tiene propiedades poderosas que ayudan a controlar la salida. El comportamiento proporcional permite que el sistema reaccione a fallas existentes y actúe inmediatamente en respuesta a fluctuaciones y fallas. Las acciones integradas eliminan las fallas de estado estable a largo plazo y las acciones derivadas predicen el comportamiento del proceso (Bazanella, 2005, p.37).

• Acción Proporcional (Kp)

Debido a limitaciones físicas y razones de seguridad, existen límites superior e inferior para la aplicación de señales de MT. Este rango de operación se llama rango de escala. Si la señal de control opera fuera de rango, se dice que está saturada y se comporta de manera no lineal. Cuanto mayor sea el valor de la acción proporcional, menor será el rango de escala y mayor será la energía de accionamiento. Esto hace que el sistema responda mejor, pero la señal de salida puede ser más alta o más baja que la configuración de estado estable, y el error no se elimina por completo.

Figura 7-2: Controlador P Realizado por: (Camacho B, 2021).

• Acción Integral (Ti)

La aplicación del comportamiento integral individualmente reduce la estabilidad relativa del sistema, pero cuando se usa en combinación con el comportamiento proporcional, los errores permanentes pueden ignorarse. Cuanto mayor sea la integral, más tiempo tardará el sistema en alcanzar el ajuste de estado estable.

Figura 8-2: Controlador PI Realizado por: (Camacho B, 2021).

• Acción derivativa (Td)

Un proceso generalmente tiene inercia con respecto a un cambio en MV, que es el tiempo que tarda un cambio en la entrada del proceso para provocar un cambio en la salida. Las acciones derivadas implican acciones de control para que el proceso reaccione más rápido de lo habitual. Esta acción predictiva aumenta la estabilidad relativa del sistema, haciéndolo más receptivo y reduciendo las vibraciones con el tiempo. En el estado estacionario, esta acción es cero porque el valor del error es constante.

Figura 9-2: Controlador PID Realizado por: (Camacho B, 2021).

La fórmula para calcular la señal de control de MV se muestra a continuación. Aquí los parámetros Kp, Ti y Td están relacionados. El valor de error representado por "e" en la expresión es utilizado por cada acción de control para generar la señal.

Figura 10-2: Controlador PID Realizado por: (Camacho B, 2020).

Por lo tanto, el control PID combina las tres acciones descritas, cada una de las cuales compensa la otra característica indeseable. La acción integral estacionaria elimina el error y la acción derivada elimina el efecto oscilante de la acción integral. De hecho, el efecto esperado es acelerar la reacción y aumentar la estabilidad relativa del sistema. La acción proporcional cambia la tasa de recuperación de los parámetros. Estos comportamientos descritos pueden observarse aumentando el valor de las acciones individuales en el proceso.

CAPÍTULO III

3. METODOLOGÍA

El objetivo de este capítulo es detallar por medio de etapas, la metodología usada en el desarrollo de la simulación dinámica de sistemas de refrigeración por absorción para conocer la eficiencia económica y energética de los dos sistemas. La iniciativa de calculo que relaciona las fronteras primordiales de una cámara frigorífica de almacenamiento, en la cual se caracteriza la refrigeración solar por absorción, dejara establecer límites de selección de los conjuntos q relacionan los sistemas, por el cual el objetivo partirá del estudio teórico de la instalación. El estudio nace de la potencia frigorífica que se puede generar, así como la ingesta de alimento del generador y sus rangos de temperatura a los cuales trabaja, por lo cual se tomara inicio los datos de entrada como la temperatura del fluido proporciona energía, la temperatura que extraerá energía del condensador, la temperatura del fluido que refrigerara y la capacidad frigorífica. Estos cálculos de refrigeración por absorción se basarán en los análisis de los procesos térmicos que será generados en el periodo, el análisis de diferentes estados de recursos tales como (solido, líquido y gaseoso), la composición de las mezclas, los efectos producidos por la presión y las temperaturas. Donde para calcular estos procesos se deberá sustraer el sistema de refrigeración y será considerado la carga térmica del pollo a refrigerar, la radiación solar, la carga térmica que generan los motores, para el cálculo de dichas cargas térmicas del sistema de refrigeración por absorción se tomara en cuenta las características termodinámicas del producto a refrigerar, así mismo a su vez se considerara.

Figura 1-3: Sistema de refrigeración solar por absorción utilizando NH3-H2O **Realizado por:** (Camacho B, 2021).

3.1. Descripción del proceso

Se puede visualizar en la igura 2-3 el diagrama del sistema una refrigeración por absorción el cual utiliza la solución de NH3(refrigerante)-H2O (absorbente), la energía que se obtiene al usar un colector y esta se acumula en un tanque de almacenamiento, siguiente esta agua caliente es ingresada al generador para poder desorber el NH3 de la solución de amoniaco-agua. aquí luego el vapor es rectificado, para poder aumentar la concentración de NH3, la cual se considera una sección del absorbente, en el presente caso es el H2O que vuelve al generador.

El NH3 es enfriado en el condensador y este luego procede a pasar al evaporador, donde se evapora a una baja presión, esta es proporcionado en el proceso de enfriamiento del espacio fundamental, el vapor que corresponde al evaporador ingresa al absorbedor en donde se realiza una reacción exotérmica al acabarse el proceso de absorción con el H2O que nace del generador. La solución que se obtiene es rica en NH3 la cual es transportada al generador para volver a realizarse nuevamente en el proceso de desorción, luego es enviada la solución pobre de NH3 al absorbedor y la solución rica al rectificador. Por lo tanto, la temperatura en el absorbente tiene una eficiencia más predominante en el sistema que la temperatura en la condensación. El modelamiento matemático del sistema de refrigeración solar por absorción necesita la modelación del sistema de absorción, así como la del sistema de colectores solares por separado.

3.2. Justificación de la mezcla seleccionada

Las características principales que son requeridas para poder considerar un adecuado fluido de trabajo para los equipos de refrigeración por absorción son de fracción molar. En cuanto a otras consideraciones están: los fluidos tienen que tener compatibilidad física y químicamente, tiene que ser de bajo costo y fácil disponibilidad, y no se perjudiciales para el ser humano y amigable con el medioambiente.

Tabla 1-3: Características Físico-Química de la mezcla

Refrigerante	Absorbente	Solución
Alto calor de vaporización y calor	Baja viscosidad	Bajo calor especifico y viscosidad
latente.		
Baja viscosidad	Alta solubilidad con el refrigerante	Alta conductividad térmica

Fuente: (Ramírez et al., 2015).

Realizado por: (Camacho B, 2021).

3.3. Establecimiento de parámetros

En este caso de estudio, la información utilizada como referencia proviene del artículo científico de nombre **"Simulación y análisis de un sistema de refrigeración por absorción solar intermitente"** propuesto por Diana Julissa Ramírez Álvarez, Andrés Felipe Tapia Vertel, Valéry José Lancheros Suáres, Luis Armando Espitia Sanjuán, Yahir Enrique González Doria del departamento de Ingeniería Química de la Universidad de Córdova. Montería, Colombia.

Y también, el articulo científico con nombre "Simulación y estudio termodinámico de un sistema de enfriamiento por absorción libr-H₂O de doble efecto de baja capacidad activado con energía solar" propuesto por González L.A., Velázquez N., Nakasima M.O., Ruelas A., Pando G.E., González E.S del Centro de Estudios de las Energías Renovables, Universidad Autónoma de Baja California, México.

En dicho trabajo se lleva a cabo un sistema de refrigeración por absorción en simulaciones dinámicas y de estado estable en DWSIM; por tanto, los parámetros iniciales de operación, ordenados en la Tabla 2-3: *Parámetros de diseño óptimos para la simulación dinámica NH3/H2O*, se tomaron como base para simular sistemas de refrigeración por absorción en el software DWSIM y así obtener una base de datos confiable para realizar la comparación y sacar resultados.

Figura 2-3: Estructura del sistema de refrigeración por absorción

Fuente: (Ramírez et al., 2015).

Tabla 2-3: Parámetros	de diseño ó	óptimos para la	a simulación	dinámica	NH3/H2O
-----------------------	-------------	-----------------	--------------	----------	---------

Temperatura de condensación	46°C
Temperatura de evaporación	36°C
Temperatura de generación	120°C
Presión de generación	1700 kPa
Caída de presión en la expansión Temperatura	150kPa
Temperatura ambiente en el día	25°C
Temperatura ambiente de noche	25°C
Concentración de amoniaco	54% p/p
Operación de día	4 horas
Operación de noche	4 horas
Cantidad de solución	7,2 kg

Fuente: (Ramirez et al., 2015).

Temperatura de condensación	60°C
Temperatura de evaporación	36°C
Temperatura de generación	87°C
Presión de generación	300 kPa
Caída de presión en la expansión Temperatura	87kPa
Temperatura ambiente en el dia	25°C
Temperatura ambiente de noche	25°C
Concentración de amoniaco	54% p/p
Operación de dia	4 horas

Tabla 3-3. Parámetros de diseño óptimos para la simulación dinámica H2O/LiBr

Operación de noche	4 horas
Cantidad de solución	7,2 kg

Fuente: (Ramirez et al., 2015).

Realizado por: (Camacho B, 2021).

3.3.1.Operacionalización de variables simulación amoniaco/agua

3.3.1.1. Selección de variables

• Variables Independientes

- Presión en el separador
- Temperatura de alimentación
- Velocidad de flujo de la alimentación
- Fracción molar de amoniaco en la alimentación
- Concentración amoniaco
- Presión en las válvulas
- Presión en la Bomba

• Variables Dependientes

- Flujo molar en el separador
- Fracción molar de amoniaco en el separador
- > Temperatura en el enfriador
- > Temperatura en el calentador

3.3.1.2. Operación de variable

Tabla 4-3: Variables de operación establecidas en el sistema de destilación

	Variable		Unidad de medida
	Presión	Р	Кра
	Temperatura de alimentación	T _F	С
Independiente	Flujo de alimentación	F	Kg/h
macpenaiente	Fracción molar del amoniaco	X _{C,F}	Adimensional
	Relación de Reflujo	RR	Adimensional
	Presión de válvulas.	Р	Кра
	Presión de la Bomba	Р	Кра
Dependiente	Flujo molar en el separador	D ₁	kg/h

Fracción molar de amoniaco en el separador	X _{C,D1}	Adimensional
Temperatura del enfriador	T _F	С
Temperatura del calentador	T _F	С

Realizado por: (Camacho B, 2021).

3.3.2. Operacionalización de variables simulación agua/bromuro de litio

3.3.2.1. Selección de variables

• Variables Independientes

- Presión en el separador
- Temperatura de alimentación
- Velocidad de flujo de la alimentación
- Fracción molar del agua en la alimentación
- Concentración de bromuro de litio
- Presión en las válvulas
- Presión en la Bomba

• Variables Dependientes

- Flujo molar en el separador
- Fracción molar de amoniaco en el separador
- > Temperatura en el enfriador
- > Temperatura en el calentador

3.3.2.2. Operación de variables

Tabla 5-3: Variables de operación establecidas en el sistema de destilación

	Variable		Unidad de medida
	Presión	Р	Кра
	Temperatura de alimentación	T _F	С
Independiente	Flujo de alimentación	F	Kg/h
macpenaiente	Fracción molar del amoniaco	X _{C,F}	Adimensional
	Relación de Reflujo	RR	Adimensional
	Presión de válvulas.	Р	Кра
	Presión de la Bomba	Р	Кра
Dependiente	Flujo molar en el separador	D ₁	kg/h

Fracción molar de amoniaco en el separador	X _{C,D1}	Adimensional
Temperatura del enfriador	T _F	С
Temperatura del calentador	T _F	С

Realizado por: (Camacho B, 2021).

3.3.3. Validación de la simulación amoniaco/agua

Con el propósito de analizar y optimizar los resultados, surge la necesidad de validar el modelo de simulación desarrollado en DWSIM con los resultados existentes en bibliografía para este tipo de modelos. El estudio que se toma en cuenta para la validación de la simulación, es el trabajo expuesto por (Ramírez et al. 2015, p.43).

Una vez realizada y optimizada la simulación del proceso de sistema de refrigeración por absorción del amoniaco/agua, para obtener un conjunto de datos las cantidades de energía que se produce en el sistema.

Tabla 6-3: Rango de valores para las variables del proceso

RANGO DE VALORES PARA LAS VARIABLES DEL PROCESO		
Temperatura de generación	70 ° C-140 ° C	
Presión de generación	1310 Kpa-1700 kPa	
Concentración de amoníaco	42-56% p / p	
Cantidad de solución	4 kg- 8 kg	

Realizado por: (Camacho B, 2021).

3.3.3.1. Parámetros operacionales de la simulación dinámica en Matlab amoniaco/agua

Tomando datos de la simulación amoniaco/agua, los datos que se utilizaran en la obtención de la curva tiempo/calor fueron los siguientes.

N°	Variables	Valores
1	Capacidad del evaporador	0,7063 KJ/Kg°K
2	Flujo masico	1,174 Kg/h
3	Capacidad del agua	4186 J/Kg°K
4	Temperatura entrada	316,26°K
5	Temperatura salida	673,94°K
6	Calor del evaporador	0,2784 KW

Tabla 7-3: Valores operacionales en Matlab amoniaco/agua

3.3.4. Validación de la simulación agua/bromuro de litio

Destinados a examinar y optimizar los resultados, nace la necesidad de validar el modelo de simulación desarrollado en DWSIM con los resultados existentes en bibliografía para esta clase de modelos. El análisis que se toma presente para la validación de la simulación, es el trabajo expuesto por (Ramírez et al. 2015, p.43).

Una vez elaborada y optimizada la simulación del proceso de sistema de refrigeración por absorción del agua/bromuro de litio, para obtener un grupo de datos las porciones de energía que se genera en el sistema. Destinados a examinar y optimizar los resultados, nace la necesidad de validar el modelo de simulación desarrollado en DWSIM con los resultados existentes en bibliografía para esta clase de modelos.

RANGO DE VALORES PARA LAS VARIABLES DEL PROCESO		
Temperatura de generación	60 -330° C	
Presión de generación	80 Kpa-110kPa	
Concentración de bromuro de litio	52-56% p / p	
Cantidad de solución	4 kg- 7 kg	

Tabla 7-3. Rango de valores para las variables del proceso

Realizado por: (Camacho B, 2021).

3.3.4.1. Parámetros operacionales de la simulación dinámico agua/bromuro de litio

Tomando datos de la simulación agua/bromuro de litio, los datos que se utilizaran en la obtención de la curva tiempo/calor fueron los siguientes.

	•	C C	
N°	Variables	Valores	
1	Capacidad del evaporador	1,319 KJ/Kg°K	
2	Flujo masico	1,00024 Kg/h	
3	Capacidad del agua	4186 J/Kg°K	
4	Temperatura entrada	333 °K	
5	Temperatura salida	573°K	
6	Calor del evaporador	0,1385 KW	

Tabla 7-3: Valores operacionales en Matlab agua/bromuro de litio

Realizado por: (Camacho B, 2021).

3.3.4.2. Ecuación empleada en MATLAB

Para una mejor interpretación con el cambio del tiempo se realizó una figura en función del calor entrada del evaporador las ecuaciones utilizadas fueron las siguientes:

$$\begin{aligned} C_{ev} \cdot \frac{dT_{salida}}{dt} &= \dot{m}ev(h_{entrada} - h_{salida}) + Q_{evap} \\ \frac{dT_{salida}}{dt} &= \frac{1}{Cev} \left[\rho \cdot g_{gen} \cdot c_w(t_{entrada} - T_{salida}) + Q_{evap} \right] \\ \frac{dQ_{evap}}{dt} &= -\frac{1}{Cev} \left[\rho \cdot g_{gen} \cdot C_w(T_{entrada} - T_{salida}) + T_{salida} \right] \end{aligned}$$
 Ecuación 8

Donde:

 C_{ev} = Capacidad del evaporador ho= densidad del agua C_w = Capacidad del agua \dot{m} = flujo masico $Q_{generador}$ = Perdidas del generador

CAPÍTULO IV

4. GESTIÓN DEL PROYECTO

Tabla 1-4: Cronograma de	e actividades
--------------------------	---------------

		MESES													
ACTIVIDADES		M	AYC)		JU	NIO			JU	LIO		A	GOS	ГО
		SEMANAS													
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3
Revisión bibliográfica															
Elaboración del anteproyecto															
Determinación de variables															
Simulación dinámica y comparación de 2 sistemas de refrigeración - absorción amoniaco/agua y agua/bromuro de litio															
Obtención de datos experimentales															
Validación del método y determinación de eficiencia															
Estudio técnico y económico															
Redacción del trabajo final															
Análisis de costos															
Revisión del documento final															
Defensa de los resultados															

4.1. Presupuesto

En la tabla 2-4 **;Error! No se encuentra el origen de la referencia.**, se detallan los costos para cada actividad.

PRESUPUESTO					
ACTIVIDAD	MONTO	FUENTE DE FIN	ANCIAMIENTO		
		INTERNA	EXTERNA		
Investigación y aprendizaje (internet)	\$60	Х			
Impresión del documento final	\$30	Х			
Copias e impresiones adicionales	\$20	Х			
Empastados	\$60	Х			
TOTAL		\$170			

Tabla 2-4: Presupuesto del proyecto

Realizado por: (Camacho B, 2021).

4.2. Recursos materiales

El programa usado a lo largo del desarrollo de los periodos planteadas en este trabajo es DWSIM versión 5.9 Update 11(64-bit) de la cual se usan varias herramientas como el ChemSep Rigorous separation Column (CAPE-OPEN). Paralelamente, cada una de las simulaciones se han realizado en un ordenador con procesador AMD RYZEN 3 a 2.00 GHz con 8 GB de memoria RAM y un sistema operativo Microsoft ® Windows 10.

4.3. Resultados

A lo largo de este trabajo se han presentado, de manera parcial, algunos de los resultados las 2 simulaciones de sistemas de refrigeración por absorción amoniaco/agua y agua/bromuro de litio, en las que Finalmente, en esta sección, se muestran todos los resultados obtenidos durante las simulaciones del sistema.

4.3.1. Sistema de refrigeración por absorción amoniaco/agua

El sistema de refrigeración por absorción que se simula en este proyecto se basa en el artículo científico que titula "Simulación y análisis de un sistema de refrigeración por absorción solar intermitente" propuesto por Diana Julissa Ramírez Álvarez, Andrés Felipe Tapia Vertel, Valéry José Lancheros Suáres, Luis Armando Espitia Sanjuán, Yahir Enrique González Doria del departamento de Ingeniería Química de la Universidad de Córdova. Montería, Colombia.

Figura 1-4: Sistema del sistema de refrigeración por absorción amoniaco/agua **Realizado por:** (Camacho B, 2021).

Tabla 3-4	I: Corriente	a la salida (del separado	or solución	fuerte	(refrigerante)
			1			$\tilde{\mathbf{U}}$

Parámetros	Valor	Unidad
Temperatura	120	С
Presión	1700	KPa
Flujo másico	0,4593	kg/h
Flujo molar	0,0074	mol/s
Entalpía molar	2757,89	kJ/kmol
Entropía molar	-12,323	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-0,7202	kJ/ [kg. K]
Fracción molar de amoniaco	0,9198	adimensional
Fracción molar de agua	0,0801	adimensional
Fase de la mezcla	Vapor	adimensional

Tabla 4-4: Corriente a la salida del separador solución débil (absorbente)

Parámetros	Valor	Unidad
Temperatura	120	С
Presión	1700	Кра
Flujo másico	0,7144	kg/h
Flujo molar	0,0112	mol/s
Entalpía molar	-32498,9	kJ/kmol
Entropía molar	-89,1237	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-5,0342	kJ/ [kg. K]
Fracción molar de amoniaco	0,3164	Adimensional
Fracción molar de agua	0,6835	Adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 5-4: Corriente de refrigerante (a) en el enfriador

Parámetros	Valor	Unidad
Temperatura	46,66	С
Presión	1700	Кра
Flujo másico	0,4593	kg/h
Flujo molar	0,00745	mol/s
Entalpía molar	-22182,7	kJ/kmol
Entropía molar	-86,126	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-5,0338	kJ/ [kg. K]
Fracción molar de amoniaco	0,9198	Adimensional
Fracción molar de agua	0,0801	Adimensional
Fase de la mezcla	Liquido	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 6-4: Corriente de absorbente (f) en el enfriador

Parámetros	Valor	Unidad
Temperatura	50,15	С
Presión	101,32	Кра
Flujo másico	0,7144	kg/h
Flujo molar	0,0112	mol/s
Entalpía molar	-32499,1	kJ/kmol
Entropía molar	-86,1997	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-4,8689	kJ/ [kg. K]
Fracción molar de amoniaco	0,3164	Adimensional
Fracción molar de agua	0,6835	Adimensional
Fase de la mezcla	Liquido	Adimensional

Tabla 7-4: Corriente de refrigerante (c) en el calentador

Parámetros	Valor	Unidad
Temperatura	400,94	С
Presión	1550	Кра
Flujo másico	0,4593	kg/h
Flujo molar	0,007456	mol/s
Entalpía molar	15166	kJ/kmol
Entropía molar	12,0884	kJ/ [kmol. K]
Capacidad calorífica (Cp)	0,7065	kJ/ [kg. K]
Fracción molar de amoniaco	0,9198	Adimensional
Fracción molar de agua	0,0801	Adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 8-4: Corriente en la salida del mezclador (g)

Parámetros	Valor	Unidad
Temperatura	65,02	С
Presión	101,325	Кра
Flujo másico	1,1737	kg/h
Flujo molar	0,01866	mol/s
Entalpía molar	-13458,7	kJ/kmol
Entropía molar	-32,518	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-1,861	kJ/ [kg. K]
Fracción molar de amoniaco	0,5574	Adimensional
Fracción molar de agua	0,4425	Adimensional
Fase de la mezcla	Liquido	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 9-4: Corriente de salida del proceso (h)

Parámetros	Valor	Unidad
Temperatura	-12,1692	С
Presión	101,32	Кра
Flujo másico	1,1737	kg/h
Flujo molar	0,01866	mol/s
Entalpía molar	-37904,5	kJ/kmol
Entropía molar	-115,462	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-6,6105	kJ/ [kg. K]
Fracción molar de amoniaco	0,5574	Adimensional
Fracción molar de agua	0,4425	Adimensional
Fase de la mezcla	Líquido	Adimensional

		ASPEN		Frror
Corriente de Flujo	Parámetro	(Ramirez	DWSIM	(0/)
		et al., 2015)		(70)
	Temperatura	401	400,94	0,25
Destilado de la solución	Flujo molar	0,0075	0,007456	0,012
fuerte (refrigerante)	Fracción molar de amoniaco	0,9111	0,9198	1,42
	Fracción molar de agua	0,0889	0,0801	0,10
	Temperatura	41,8	41,03	1,84
Destilado de la solución débil (absorbente)	Flujo molar	0,01120	0,0109	2,67
	Fracción molar de amoniaco	0,318	0,3164	0,0503
	Fracción molar de agua	0,6820	0,6835	0,2199
	Temperatura	65,10	65,02	0,34
Corriente a la salida del	Flujo molar	0,01890	0,01866	1,06
mezclador	Fracción molar de amoniaco	0,5600	0,5574	1,96
	Fracción molar de agua	0,465	0,4425	-2,04
	Temperatura	-12,6021	-12,1692	0,72
Corriente a la salida del	Flujo molar	0,01890	0,01866	1,06
proceso	Fracción molar de amoniaco	0,5600	0,5574	1,96
	Fracción de agua	0,465	0,4425	2,04

Tabla 10-4: Validación de la simulación

Realizado por: (Camacho B, 2021).

De los resultados presentados según Diana Julissa Ramírez Álvarez en comparación del trabajo de titulación, el promedio del error porcentual en la validación de la simulación es de 1,216%.

4.3.1.1. Cálculo del coeficiente de eficiencia energética

El COP es dependiente en enorme medida de las condiciones de desempeño, en especial la temperatura absoluta y la temperatura relativa entre el disipador de calor y el sistema.

Algunos de estos datos se tomaron del libro del cengel en sus tablas termodinámicos, los mismos que figuran en la sección anexos y otros de la simulación que se encuentran las Tablas: 4-4, 5-4, 6-4 7-4.

$$COP = \frac{Q_{eva}}{Q_{ref} + W}$$

Ecuación 1-4

Dónde:

COP: Coeficiente de rendimiento

Qeva: Calor de evaporación, kJ/h

Qref: Calor de refrigeración, kJ/h

W: Trabajo de la bomba, kJ/h

$$Q_{eva} = m_1 * C_p * \Delta T$$
 Ecuación 2-4

-

Dónde:

Qeva: calor de evaporación, kJ/h

M1: Masa de agua en el evaporador, kg/h

Cp: Capacidad calorífica del agua, kJ/K-kg

 ΔT : Diferencia de temperatura, K.

$$Q_{eva} = 0,459 * 0,7065 * (673 - 316)$$

$$Q_{eva} = 115,76 \frac{KJ}{Kg}$$

$$Q_{ref} = Q_{ref1} + Q_{ref2} + Q_{ref3}$$
 Ecuación 3-4

Dónde:

Q_{ref}: Calor de refrigeración total, kJ/h

Qref1: Calor de refrigeración del condensador en la parte superior de la torre, kJ/h

Qref2: Calor de refrigeración del condensador en la parte inferior de la torre, kJ/h

Qref3: Calor de refrigeración del condensador 3; kJ/h

$$Q_{ref1} = m_2 * C_p * \Delta T$$
 Ecuación 4-4

Dónde:

Qref1: Calor de refrigeración del condensador en la parte superior de la torre, kJ/h

m2: Masa de alimentación al condensador, kg/h

Cp: Capacidad calorífica del liquido, kg

 ΔT : Diferencia de temperatura, K

$$Q_{\text{ref1}} = 0.46 * 5.06 * (393 - 314)$$

$$Q_{ref1} = 183.88 \frac{kJ}{h}$$

$$Q_{ref2} = m_3 * C_p * \Delta T$$

Dónde:

Qref2: Calor de refrigeración del condensador en la parte inferior de la torre, kJ/h

m3: Masa de alimentación al condensador, kg/h

C_p: Capacidad calorífica del líquido, kg

ΔT: Diferencia de temperatura, K

$$Q_{ref2} = 0.714 * 0.58 * (393 - 314)$$

 $Q_{ref2} = 32,71 \frac{kJ}{kg}$

$$Q_{ref3} = m_4 * C_p * \Delta T$$

Dónde:

Qref3: Calor de refrigeración del condensador 3, kJ/h

m3: Masa de alimentación al condensador, kg/h

Cp: Capacidad calorífica del líquido, kg

ΔT: Diferencia de temperatura, K

$$Q_{ref3} = 1.17 * 3.6 * (338 - 261)$$
$$Q_{ref3} = 217.39 \frac{kJ}{kg}$$
$$Q_{ref} = 183.88 + 32,71 + 217.14$$
$$Q_{ref} = 433.73 \frac{kJ}{kg}$$

4.3.1.4. Trabajo de la bomba

$$W = m_5 * (h_s - h_e)$$
 Ecuación 5-4

Dónde:

W: Trabajo de la bomba, kJ/h

M5: Masa de entrada a la bomba, kg/h

h_s: Entalpia de salida a la bomba, kJ/kg

h_e: Entalpia de entrada a la bomba, kJ/kg

$$W = 1.173 * (1998.84 - 1997.09)$$

$$W = 2.05 \frac{kJ}{h}$$

4.3.1.5. Coeficiente de eficiencia energética

$$COP = \frac{Q_{eva}}{Q_{ref} + W}$$
$$COP = \frac{255.83}{433.73 + 1.80}$$
$$COP = 0.29$$

El valor del COP según Diana Julissa Ramírez Álvarez que es de 0,285, se validaría con un error de 1,75%, en la simulación amoniaco/agua.

4.3.2. Análisis de los datos generados en DWSIM

Una vez ejecutados y analizados los resultados generados en DWSIM, se recopila el conjunto de datos de entrada del sistema de refrigeración por absorción, en condiciones normales.

	Base de datos operacionales del equipo de refrigeración por absorción amoniaco/agua.												
N°		h	a	MSTD 11	6	f	F	h	0	Solucion	Refrigera	Solucion	h
	Condiciones	11	g	WIST K-11	C	1	Ľ	U	a	debil	nte	fuerte	
1	Temperature (C)	72,339	135,58	72,3776	400,948	120,018	119,997	43,269	46,662	120	120	67,4004	72,339
2	Pressure (kPa)	1550	1550	1700	1550	1550	1700	1550	1700	1700	1700	1529	1550
3	Mass Flow (kg/h)	1,17308	1,17308	1,17308	0,45930 1	0,71449 1	0,71449 1	0,459301	0,459301	0,714491	0,459301	1,17379	1,17308
4	Molar Flow (mol/s)	0.0186561	0.0186561	0.0186561	0,00745	0,01121	0,01121	0,007456	0,007456	0,011210	0,007456	0,018667	0,018656
		0,0100501	0,0100501	0,0100501	69	07	07	9	9	7	9	6	1
5	Volumetric Flow	4,97705E-	2,05315E-	4,97664E-	2,67171	3,08869	3,08694	3,82556E	2,17456E	3,087E-	1,32782E	4,9112E-	4,97705E
	(m3/s)	07	05	07	E-05	E-07	E-07	-07	-07	07	-05	07	-07
6	Density (Mixture) (kg/m3)	654,718	15,8711	654,772	4,77534	642,569	642,934	333,503	586,709	642,922	9,60851	663,898	654,718
7	Molecular Weight (Mixture) (kg/kmol)	17,4665	17,4665	17,4665	17,1095	17,7036	17,7036	17,1095	17,1095	17,7036	17,1095	17,4663	17,4665
8	Specific Enthalpy (Mixture) (kJ/kg)	-1772,61	-770,241	-1772,3	886,411	- 1835,73	- 1835,73	-1296,45	-1296,52	-1835,72	161,191	-1796,27	-1772,61

Tabla 11-4: Base de datos del equipo de refrigeración por absorción amoniaco/agua

9	SpecificEntropy(Mixture)(kJ/[kg.K])	-5,29889	-2,61991	-5,29866	0,70653 1	- 5,03369	- 5,03424	-5,03247	-5,03388	-5,0342	-0,720261	-5,36829	-5,29889
10	Molar Enthalpy (Mixture) (kJ/kmol)	-30961,3	-13453,4	-30956	15166	- 32499,1	- 32499,1	-22181,5	-22182,7	-32498,9	2757,89	-31374,2	-30961,3
11	Molar Entropy (Mixture) (kJ/[kmol.K])	-92,553	-45,7606	-92,5491	12,0884	- 89,1145	- 89,1243	-86,1028	-86,1269	-89,1237	-12,3233	-93,7642	-92,553
12	Density (Mixture) (kg/m3)	0,462612	0,256425	0,462551	0,07556 5	0,48223 7	0,48226 5	0,44165	0,440582	0,482261	0,035734 8	0,470197	0,462612
13	Molecular Weight (Mixture) (kg/kmol)	0	8,39862	0	4,77534	0	0	11,3727	0	0	9,60851	0	0
14	Thermal Conductivity (Mixture) (W/[m.K])	0	17,19	0	17,1095	0	0	17,0307	0	0	17,1095	0	0
15	Density (Vapor) (kg/m3)	72,339	135,58	72,3776	400,948	120,018	119,997	43,269	46,662	120	120	67,4004	72,339
16	Molecular Weight (Vapor) (kg/kmol)	1550	1550	1700	1550	1550	1700	1550	1700	1700	1700	1529	1550
17	SpecificEnthalpy(Vapor) (kJ/kg)	1,17308	1,17308	1,17308	0,45930 1	0,71449 1	0,71449 1	0,459301	0,459301	0,714491	0,459301	1,17379	1,17308

18	Specific Entropy (Vapor) (kJ/[kg.K])	0,0186561	0,0186561	0,0186561	0,00745 69	0,01121 07	0,01121 07	0,007456 9	0,007456 9	0,011210 7	0,007456 9	0,018667 6	0,018656 1
19	Thermal Conductivity (Mixture) (W/[m.K])	4,97705E- 07	2,05315E- 05	4,97664E- 07	2,67171 E-05	3,08869 E-07	3,08694 E-07	3,82556E -07	2,17456E -07	3,087E- 07	1,32782E -05	4,9112E- 07	4,97705E -07
20	Density (Vapor) (kg/m3)	654,718	15,8711	654,772	4,77534	642,569	642,934	333,503	586,709	642,922	9,60851	663,898	654,718
21	Molecular Weight (Vapor) (kg/kmol)	17,4665	17,4665	17,4665	17,1095	17,7036	17,7036	17,1095	17,1095	17,7036	17,1095	17,4663	17,4665

W bomba	2,05 KW
Q generador	0,2419 KW
Q condensador	0,1859 KW
Q evaporador	0,2784 KW
Q absorbedor	2,63 x10 ⁻⁶ KW
Q rectificador	0,4563KW

 Tabla 12-4:
 Análisis energético (Amoniaco/Agua)

Realizado por: (Camacho B, 2021).

a) Consumo

Potencia de la bomba: 2,05 KW

Tiempo de operación: 8 horas

Consumo = W bomba x tiempo Ecuación 6-4

Consumo = 2,05 KW * 8 h

 $Consumo = 16,4 \ KWh$

Importe = 116,22\$

Costo electricidad Ecuador = $0.04 \frac{\$}{KWh}$

b) Coste

$$Coste = \frac{Importe}{Consumo}$$
Ecuación 7-4

$$Coste = \frac{116,22 \$}{16,4 \text{ KWh}}$$

$$Coste = 7,08 \frac{\$}{\text{KWh}} * 0.04 \frac{\$}{\text{KWh}}$$

$$Coste = 0,283 \frac{\$}{\text{KWh}}$$

Los sistemas de cogeneración, gracias a las varias ventajas que muestran, se han convertido en una tecnología bastante usada para la generación de energía. En dichos procesos, la eficiencia es subjetivamente alta y las emisiones de gases de impacto invernadero son bajas. En este trabajo se hace un análisis técnico y económico de un sistema de cogeneración de una simulación dinámica

de un sistema de refrigeración. La primera y segunda ley de la termodinámica son aplicadas para la investigación técnico. Los precios de producción de la energía eléctrica y vapor producido son determinados en la exploración económico. Los resultados presentan que la planta tiene una potencia de la bomba de 2,05 Kw . Por un lado, el estudio energético expone que la eficiencia de la planta de un 58%. Mientras los resultados del análisis económico muestra, el coste resulta de 0,283 $\frac{\$}{KWh}$ (Valle-Hernandez et al. 2017). El Estudio económico completo esta llevado a cabo en las Páginas (15-18).

Tabla 13-4: Consumo total de energía NH₃ /H₂0

	Consumos Energéticos (kW)								
ESTACIONARIO	Separador	C-1	H-1	C-2	C-3	Bomba	Consumo total de Energía		
	0,24191	0,185979	0,278497	1,47E-06	0,457314	8,45E-05	1,16378592		
Flujo Volumétrico (m3/s)	4,91E-07	1,33E-05	4,55E-07	3,09E-07	0,00033491	4,22E-07			
Volumen (m3)	0,01414426	0,38240928	0,01310109	0,00889059	9,6454368	0,01216164			

Realizado por: (Camacho B, 2021).

El costo total de energía que se consume para amoniaco/agua es de 1,1637KW. El volumen varía según cada equipo.

$$Q = \frac{V}{T}$$
 Ecuación 8-4
$$V = Q \times T$$

Donde:

C1 = Condensador 1 C2= Condensador 2 C3= Condensador 3 H1= Evaporador Q = flujo volumétrico (m³/seg) T= tiempo empleado (28800 seg) V= volumen (m³)

Datos

 $T = 30^{\circ}C = 303^{\circ}K$

Ø= 30%

h1= 152 9KJ/Kg

Q_H= 115,76 KJ/K

$$Q_{H} = h_{2} - h_{1}$$
 Ecuación 9-4
 $h_{2} = Q_{H} + h_{1}$
 $h_{2} = 115,76 \frac{kJ}{kg} + 152 \frac{kJ}{kg}$
 $h2 = 267,76 \frac{kj}{kg}$
 $T_{2} = 267^{\circ} K = -6^{\circ}C$

La temperatura capaz de enfriar el espacio es -6°C, para el sistema de refrigeración por absorción amoniaco/agua.

Amonio / Agua						
Porcentaj	e de obtención de Refrig	erante y Sln debil en fur	ición de T y P			
Separador -	Separador -	Refrigerante - Molar	Solución débil - Molar			
Separation	Separation Pressure	Fraction (Mixture) /	Fraction (Mixture) /			
Temperature (if	(if overriden) (kPa)	Ammonia ()	Water ()			
overriden) (C)	() ()	0				
90	1500	0,976835	0,567501			
90	1560	0,978168	0,557203			
90	1620	0,979398	0,547202			
90	1680	0,980529	0,537187			
90	1740	0,981566	0,527279			
90	1800	0,98253	0,517553			
96	1500	0,968181	0,60005			
96	1560	0,969928	0,589969			
96	1620	0,971534	0,580869			
96	1680	0,973021	0,571426			
96	1740	0,974386	0,561931			
96	1800	0,975652	0,552792			
102	1500	0,95721	0,629079			
102	1560	0,959459	0,6209			
102	1620	0,961549	0,611765			
102	1680	0,963467	0,602805			
102	1740	0,965237	0,593809			
102	1800	0,966876	0,585473			
108	1500	0,943489	0,65779			
108	1560	0,946374	0,649578			
108	1620	0,949031	0,641126			
108	1680	0,951485	0,632274			
108	1740	0,95375	0,623874			
108	1800	0,955851	0,615614			
114	1500	0,926595	0,685049			
114	1560	0,930248	0,676544			
114	1620	0,9336	0,668175			
114	1680	0,936684	0,659466			
114	1740	0,939561	0,651897			
114	1800	0,942203	0,644184			
120	1500	0,906044	0,710362			
120	1560	0,910583	0,70212			
120	1620	0,914762	0,694967			
120	1680	0,918622	0,686137			
120	1740	0,922218	0,678361			

Tabla 14-4: Porcentaje de obtención de Refrigerante y Sln débil en función de T y P.

120	1800	0,92554	0,670727

Realizado por: (Camacho B, 2021).

El rango de 90 a 120 °C y 1500 a 1800 Kpa son los más óptimos para sistemas de refrigeración por absorción amoniaco/agua, siendo 120°C y 1800KPa las condiciones más apropiadas para separar el refrigerante de la solución débil.

4.3.2.2. Aplicaciones de sistema de refrigeración por absorción amoniaco/agua

En la actualidad, se está intensificando la utilización en instalaciones del sector terciario que disponen de campos de captadores solares térmicos para producción de agua caliente sanitaria y calefacción, y estas instalaciones, en verano, una vez que es más grande la disponibilidad de radiación solar, en vez de disipar los sobrantes, los aprovechan para obtener refrigeración gratuita. La otra implementación típica de dichos grupos es en procesos industriales, más que nada en los que además se usa una fuente de calor residual como energía para hacer funcionar los accesorios. Equipo de refrigeración por absorción con periodo amoniaco/agua.

En cuanto a las plantas fundamentadas en el periodo amoníaco/agua como refrigerante/absorbente, tienen la posibilidad de utilizarse, además, en aplicaciones a baja temperatura, como en la cadena de preparación y conservación de alimentos, procesos vinícolas, procedimiento de lácteos, preparaciones farmacéuticas, etcétera. Por cierto, el campo de aplicación es bastante extenso, debido a que hablamos de una técnica bastante realizada, plenamente fiable y con reducidos costes de mantenimiento (Jesús, 2006, p.75).

4.3.2.3. Análisis de grafica en Matlab

Se realizo un proceso dinámico y se obtuvo una gráfica en Matlab para saber cómo cambia en calor del evaporador en función del tiempo.

Los resultados obtenidos nos demuestran en 25 minutos el cambio de calor en el evaporador, este es el responsable de generar transferencia de calor del refrigerante a enfriar al refrigerante.

N°	Tiempo(min)	Qevap (KW)
1	0	0
2	1,23416642871130e-10	0,000200950914528499
3	7,40499857226779e-10	0,00120570548740297
4	3,82591592900502e-09	0,00622947835757462

 Tabla 15-4:
 Datos obtenidos en la grafica

5	1,92529962878962e-08	0,0313483428534158
6	9,63883980823523e-08	0,156942668957194
7	4,82065407054633e-07	0,784914390090318
8	2,41045045191603e-06	3,92477526110332
9	1,20523756762230e-05	19,6241362487926
10	6,02620017977581e-05	98,1223568703007
11	0,000301310132405433	490,648835488726
12	0,00150655078544381	2454,16354707881
13	0,00753275405063569	12293,5373024740
14	0,0376637703765951	62003,7436681833
15	0,188318852006392	319758,581451981
16	0,591774553684684	1015017,35266657
17	1,08319316485139	1730666,71748694
18	1,58319316485139	2243408,39265510
19	2,08319316485140	2559046,58514197
20	2,58319316485140	2728703,04557536
21	3,08319316485140	2802847,84879235
22	3,58319316485140	2820567,99447929
23	4,08319316485139	2808401,11184856
24	4,58319316485139	2782694,59189504
25	5,08319316485139	2752652,85719395
26	5,58319316485139	2722951,85349175
27	6,08319316485139	2695632,24543890
28	6,58319316485139	2671330,64088600
29	7,08319316485139	2650014,13810608
30	7,58319316485139	2631383,53890794
31	8,08319316485139	2615074,38275790
32	8,58319316485139	2600744,29864832
33	9,08319316485139	2588101,88557192
34	9,58319316485139	2576908,85556880
35	10,0831931648514	2566972,19132895
36	10,5831931648514	2558134,27410153
37	11,0831931648514	2550264,18320477
38	11,5831931648514	2543251,03761676
39	12,0831931648514	2536999,25890952
40	12,5831931648514	2531425,31910380
41	13,0831931648514	2526455,52182523
42	13,5831931648514	2522024,45634423
43	14,0831931648514	2518073,87197707
44	14,5831931648514	2514551,81054796
45	15,0831931648514	2511411,89925318
46	15,5831931648514	2508612,74819748
47	16,0831931648514	2506117,42202644

48	16,5831931648514	2503892,96913658
49	17,0831931648514	2501909,99926681
50	17,5831931648514	2500142,30380873
51	18,0831931648514	2498566,51474475
52	18,5831931648514	2497161,79877512
53	19,0831931648514	2495909,58347381
54	19,5831931648514	2494793,31247982
55	20,0831931648514	2493798,22688885
56	20,5831931648514	2492911,17019199
57	21,0831931648514	2492120,41431098
58	21,5831931648514	2491415,50449345
59	22,0831931648514	2490787,12104463
60	22,5831931648514	2490226,95607649
61	23,0831931648514	2489727,60364535
62	23,5831931648514	2489282,46182334
63	24,0831931648514	2488885,64540603
64	24,5831931648514	2488531,90809996
65	25	2488266,55992957

Realizado por: (Camacho B, 2021).

Figura 2-4: Grafica obtenida en Simulink Tiempo Vs Qevap amoniaco/agua. **Realizado por:** (Camacho B, 2021).

La grafica obtenida en Matlab en la que tenemos tiempo Vs Calor del evaporador; aplicando un controlador PID, frente a la simulación en DWSIM el valor que se obtuvo es 0,2784 KW en el

evaporador en estado estable, utilizando la herramienta de MATLAB a los 19,2 minutos el calor del evaporador en este tiempo alcanza la estabilidad la simulación en DWSIM.

Según Vinodh K. Viswanathan "El rendimiento transitorio del enfriador se puede caracterizar en términos de sus cargas, presiones, concentraciones y caudales de calentamiento y enfriamiento que varían con el tiempo, como se muestra en la Figura 2-4. Durante el arranque, la carga de calor del desorbedor aumenta drásticamente, lo que resulta en generación de vapor. Las cargas de otros componentes son relativamente más bajas y, como resultado, el sistema se calienta gradualmente y alcanza un estado estable" (Viswanathan et al., 2012, p.66).

4.3.3. Sistema de refrigeración por absorción agua/bromuro de litio

El sistema de refrigeración por absorción que se simula en este proyecto se basa en el artículo científico que titula "Simulación y estudio termodinámico de un sistema de enfriamiento por absorción libr-H₂O de doble efecto de baja capacidad activado con energía solar" propuesto por González L.A., Velázquez N., Nakasima M.O., Ruelas A., Pando G.E., González E.S del Centro de Estudios de las Energías Renovables, Universidad Autónoma de Baja California, México.

Figura 3-4: Sistema del sistema de refrigeración por absorción agua/bromuro de litio **Realizado por:** (Camacho B, 2021).

Tabla 16-4: Corriente a la salida del separador solución fuerte (r	refrigerante)	ļ
---	---------------	---

Parámetros	Valor	Unidad
Temperatura	300	С
Presión	87	KPa
Flujo másico	0,1717	kg/h
Flujo molar	0,00264	mol/s
Entalpía molar	9483,34	kJ/kmol
Entropía molar	23,76	kJ/ [kmol. K]
Capacidad calorífica (Cp)	1,3035	kJ/ [kg. K]
------------------------------------	-------------------------	--------------
Fracción molar de agua	1	Adimensional
Fracción molar de bromuro de litio	3,369x10 ⁻¹⁰	adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 17-4: Corriente a la salida del separador solución débil (absorbente)

Parámetros	Valor	Unidad
Temperatura	300	С
Presión	87	Кра
Flujo másico	0,8285	kg/h
Flujo molar	0,00265	mol/s
Entalpía molar	9484,49	kJ/kmol
Entropía molar	23,76	kJ/ [kmol. K]
Capacidad calorífica (Cp)	1,3193	kJ/ [kg. K]
Fracción molar de agua	0,00033	Adimensional
Fracción molar de bromuro de litio	0,9997	adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 17-4: Corriente de refrigerante (a) en el enfriador

Parámetros	Valor	Unidad
Temperatura	60	С
Presión	87	Кра
Flujo másico	0,1717	kg/h
Flujo molar	0,00264	mol/s
Entalpía molar	-42862,9	kJ/kmol
Entropía molar	-114,10	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-6,3335	kJ/ [kg. K]
Fracción molar de agua	1	Adimensional
Fracción molar de bromuro de litio	3,369x10 ⁻¹⁰	Adimensional
Fase de la mezcla	Liquido	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 18-4: Corriente de absorbente (f) el enfriador

Parámetros	Valor	Unidad
Temperatura	60,0035	С
Presión	78	Кра
Flujo másico	0,8285	kg/h
Flujo molar	0,00265	mol/s
Entalpía molar	-257506	kJ/kmol
Entropía molar	-301,32	kJ/ [kmol. K]

Capacidad calorífica (Cp)	-3,4704	kJ/ [kg. K]						
Fracción molar de agua	0,00034	Adimensional						
Fracción molar de bromuro de litio	0,9996	Adimensional						
Fase de la mezcla	Liquido	Adimensional						
Realizado por: (Camacho B, 2021).								

Tabla 19-4: Corriente de refrigerante (c) en el calentador

Parámetros	Valor	Unidad
Temperatura	300	С
Presión	87	Кра
Flujo másico	0,1717	kg/h
Flujo molar	0,002647	mol/s
Entalpía molar	9484,49	kJ/kmol
Entropía molar	23,766	kJ/ [kmol. K]
Capacidad calorífica (Cp)	1,3193	kJ/ [kg. K]
Fracción molar de agua	1	Adimensional
Fracción molar de bromuro delitio ÇÇ	3,369x10 ⁻¹⁰	Adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tal	bla	20-4: Corriente del mezclador (g)	
D	,		

Parámetros	Valor	Unidad
Temperatura	120,202	С
Presión	78	Кра
Flujo másico	1,00025	kg/h
Flujo molar	0,00529	mol/s
Entalpía molar	3176,15	kJ/kmol
Entropía molar	11,4832	kJ/ [kmol. K]
Capacidad calorífica (Cp)	0,6374	kJ/ [kg. K]
Fracción molar de agua	0,49987	Adimensional
Fracción molar de bromuro de litio	0,50012	Adimensional
Fase de la mezcla	Vapor	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 21-4: Corriente de salida del proceso (h)

Parámetros	Valor	Unidad
Temperatura	60	С
Presión	78	Кра
Flujo másico	1,00025	kg/h
Flujo molar	0,00529	mol/s
Entalpía molar	-128821	kJ/kmol

Entropía molar	-147,875	kJ/ [kmol. K]
Capacidad calorífica (Cp)	-2,8197	kJ/ [kg. K]
Fracción molar de agua	0,49984	Adimensional
Fracción molar de bromuro de litio.	0,50015	Adimensional
Fase de la mezcla	Liquido	Adimensional

Realizado por: (Camacho B, 2021).

Tabla 22-4: Validación de la simulación

Corriente de Flujo	Parámetro	ASPEN (Ramirez et al., 2015)	DWSIM	Error (%)
	Temperatura	300	300	0
Destilado de la solución fuerte	Flujo molar	0,0027	0,002647	1,96
(refrigerante)	Fracción molar de agua	0,99	1	-1,0101
(conigoratio)	Fracción molar de bromuro de litio	0,01	3,369x10 ⁻¹⁰	-0,01
	Temperatura	61,00	60,0035	1,63
	Flujo molar	0,0027	0,00265	1,85
Destilado de la solución débil (absorbente)	Fracción molar de agua	0,00035	0,00034	2,85
	Fracción molar de bromuro de litio.	0,9995	0,9996	-0,010
	Temperatura	121	120,208	0,65
	Flujo molar	0,0054	0,00529	2,03
Corriente a la salida del mezclador	Fracción molar de agua	0,4900	0,49987	-2,01
	Fracción molar de bromuro de litio	0,5100	0,50012	1,93
	Temperatura	60,73	60	1,20
	Flujo molar	0,00547	0,00529	3,29
Corriente a la salida del proceso	Fracción molar de agua	0,4900	0,49987	-2,01
	Fracción molar de bromuro de litio	0,5100	0,50012	1,93

Realizado por: (Camacho B, 2021).

De los resultados presentados el promedio frente al el error porcentual en la validación de la simulación es de 1,697%.

4.3.3.1. Cálculo del coeficiente de eficiencia energética

El COP es dependiente en enorme medida de las condiciones de desempeño, en especial la temperatura absoluta y la temperatura relativa entre el disipador de calor y el sistema.

Ciertos de dichos datos se tomaron del libro del cengel en sus tablas termodinámicos, los mismos que figuran en la parte anexos y otros de la simulación que se hallan las Tablas: 15-4, 16-4, 17-4, 18-4.

$$COP = \frac{Q_{eva}}{Q_{ref} + W}$$
 Ecuación 1-4

Dónde:

COP: Coeficiente de rendimiento Q_{eva}: Calor de evaporación, kJ/h Q_{ref}: Calor de refrigeración, kJ/h W: Trabajo de la bomba, kJ/h

4.3.3.2. Calor en el evaporador

$$Q_{eva} = m_1 * C_p * \Delta T$$
 Ecuación 2-4

Dónde:

Qeva: calor de evaporación, kJ/h

M1: Masa de agua en el evaporador, kg/h

Cp: Capacidad calorífica del agua, kJ/K-kg

 ΔT :Diferencia de temperatura, K.

$$Q_{eva} = 0.17 * 2.31 * (300 - 60)$$

$$Q_{eva} = 94.28 \frac{KJ}{Kg}$$

4.3.3.3. Calor en el rectificador

 $Q_{ref} = Q_{ref1} + Q_{ref2} + Q_{ref3}$ Ecuación 3-4

Dónde:

Qref: Calor de refrigeración total, kJ/h

Qref1: Calor de refrigeración del condensador en la parte superior de la torre, kJ/h

 Q_{ref2} : Calor de refrigeración del condensador en la parte inferior de la torre, kJ/h Q_{ref3} : Calor de refrigeración del condensador 3; kJ/h

$$Q_{ref1} = m_2 * C_p * \Delta T$$
 Ecuación 4-4

Dónde:

Qref1: Calor de refrigeración del condensador en la parte superior de la torre, kJ/h

m2: Masa de alimentación al condensador, kg/h

 C_p : Capacidad calorífica del liquido, kg

 ΔT : Diferencia de temperatura, K

$$Q_{ref1} = 0.17 * 1.31 * (300 - 60)$$
$$Q_{ref1} = 53.44 \frac{kJ}{h}$$
$$Q_{ref2} = m_3 * C_p * \Delta T$$

Dónde:

Qref2: Calor de refrigeración del condensador en la parte inferior de la torre, kJ/h

m3: Masa de alimentación al condensador, kg/h

 C_p : Capacidad calorífica del líquido, kg

 ΔT : Diferencia de temperatura, K

$$Q_{ref2} = 0.83 * 2.24 * (300 - 60)$$

$$Q_{ref2} = 440.82 \frac{kJ}{kg}$$

$$Q_{ref3} = m_4 * C_p * \Delta T$$

Dónde:

Qref3: Calor de refrigeración del condensador 3, kJ/h

m3: Masa de alimentación al condensador, kg/h

- C_p: Capacidad calorífica del líquido, kg
- ΔT : Diferencia de temperatura, K

$$Q_{ref3} = 0.57 * 3.6 * (374 - 333)$$

$$Q_{ref3} = 117.41 \frac{kJ}{kg}$$

$$Q_{ref} = 440.82 + 53.44 + 117.41$$

$$Q_{ref} = 611.69 \frac{kJ}{kg}$$

4.3.3.4. Trabajo de la bomba

$$W = m_5 * (h_s - h_e)$$
 Ecuación 5-4

Dónde:

- W: Trabajo de la bomba, kJ/h
- M5: Masa de entrada a la bomba, kg/h
- h_s : Entalpia de salida a la bomba, kJ/kg
- h_e: Entalpia de entrada a la bomba, kJ/kg

$$W = 1.022 * (400,62 - 391,21)$$

$$W = 9,61\frac{kJ}{h}$$

4.3.3.5. Coeficiente de eficiencia energética

$$COP = \frac{94.28}{611.70 + 9,61}$$

 $COP = 0.15$

La simulación agua/ bromuro de litio el resultado del COP es de 0,15, frente a González L.A donde el COP es de 1,10. Mencionando que ciertas condiciones no son las del articulo como es la temperatura de condensación, concentración de bromuro de litio y tiempo empleados son los mismos que la simulación amoniaco/agua; para así poder comparar con una mejor exactitud los 2 sistemas.

4.3.4.Análisis de los datos generados en DWSIM

Una vez ejecutados y analizados los resultados causados en DWSIM, se recopila el grupo de datos de acceso del sistema de refrigeración por absorción, en condiciones dinámicas el flujo de ingesta de alimentos, y las presiones en los sistemas varían según el tiempo. Los datos presentados en la Tabla 21-4:

	Base de datos operacionales del equipo de refrigeración por absorción agua/bromuro de litio.												
N°	Condiciones	I	Solución Fuerte	Refrigerante	Solución débil	a	e	b	f	с	g	h	I
1	Temperature (C)	62,8743	62,762	300	300	60	60	60	60,0035	300	120,202	60	62,8743
2	Pressure (kPa)	87	87	87	87	87	87	87	78	87	78	78	87
3	Mass Flow (kg/h)	1,00025	1,00024	0,171692	0,828555	0,171692	0,828555	0,171692	0,828555	0,171692	1,00025	1,00025	1,00025
4	Molar Flow (mol/s)	0,00529804	0,00529804	0,00264733	0,00265072	0,00264733	0,00265072	0,00264733	0,00265072	0,00264733	0,005298 04	0,005298 04	0,00529804
5	Volumetric Flow (m3/s)	8,18962E- 05	8,18579E-05	0,000144681	6,64675E- 08	4,85322E- 08	6,64546E- 08	4,85322E- 08	6,64546E- 08	0,000144681	0,000109 979	9,06502E -05	8,18962E-05
6	Density (Mixture) (kg/m3)	3,39267	3,39423	0,329638	3462,66	982,695	3463,33	982,695	3463,33	0,329638	2,52635	3,06504	3,39267
7	Molecular Weight (Mixture) (kg/kmol)	52,4432	52,4429	18,0153	86,8271	18,0153	86,8271	18,0153	86,8271	18,0153	52,4432	52,4432	52,4432

Tabla 23-4: Datos operacionales del equipo de refrigeración por absorción H2O/LiBr

8	Specific Enthalpy (Mixture) (kJ/kg)	-2452,51	-2452,71	526,469	-2694,31	-2379,25	-2965,73	-2379,25	-2965,73	526,469	-2366,35	-2456,39	-2452,51
9	Specific Entropy (Mixture) (kJ/[kg.K])	-2,81199	-2,81267	1,31933	-2,59586	-6,33355	-3,47047	-6,33355	-3,47045	1,31933	-2,51547	-2,81972	-2,81199
10	Molar Enthalpy (Mixture) (kJ/kmol)	-128618	-128627	9484,49	-233939	-42862,9	-257506	-42862,9	-257506	9484,49	-124099	-128821	-128618
11	Molar Entropy (Mixture) (k13J/[kmol.K])	-147,47	-147,504	23,7682	-225,391	-114,101	-301,331	-114,101	-301,329	23,7682	-131,92	-147,875	-147,47
12	Thermal Conductivity (Mixture) (W/[m.K])	0,0102904	0,0102846	0,0439018	3,71495E- 09	0,653215	0	0,653215	0	0,0439018	0,012992 9	0,010178 1	0,0102904
13	Specific Enthalpy (Mixture) (kJ/kg)	0,566598	0,566792	0,329638	0,329638	0	0	0	0	0,329638	0,432184	0,51194	0,566598
14	Density (Vapor) (kg/m3)	18,0153	18,0153	18,0153	18,0153	0	0	0	0	18,0153	18,0153	18,0153	18,0153
15	Molecular Weight (Vapor) (kg/kmol)	62,8743	62,762	300	300	60	60	60	60,0035	300	120,202	60	62,8743

16	Specific Enthalpy (Vapor) (kJ/kg)	87	87	87	87	87	87	87	78	87	78	78	87
17	Specific Entropy (Vapor) (kJ/[kg.K])	1,00025	1,00024	0,171692	0,828555	0,171692	0,828555	0,171692	0,828555	0,171692	1,00025	1,00025	1,00025
18	Molar Fraction (Vapor)	0,00529804	0,00529804	0,00264733	0,00265072	0,00264733	0,00265072	0,00264733	0,00265072	0,00264733	0,005298 04	0,005298 04	0,00529804
19	Mass Fraction (Vapor)	8,18962E- 05	8,18579E-05	0,000144681	6,64675E- 08	4,85322E- 08	6,64546E- 08	4,85322E- 08	6,64546E- 08	0,000144681	0,000109 979	9,06502E -05	8,18962E-05

Realizado por: (Camacho B, 2021).

4.3.4.1. Análisis económico y energético sistema de refrigeración por absorción H2O/LiBr

 Tabla 24-4: Análisis económico (Agua/Bromuro de litio)

W bomba	9,61 KW
Q generador	0,0864KW
Q condensador	0,1385 KW
Q evaporador	0,1385KW
Q absorbedor	0,0624KW
Q rectificador	0,02500 KW

Realizado por: (Camacho B, 2021).

a) Consumo

Potencia de la bomba: 9,61KW

Horas de operación: 8 horas

Consumo = W bomba x tiempo Ecuación 6-4

Consumo = 9,61KW * 8 h

Consumo = 76,88 KWh

Importe= 116,22\$

Costo electricidad Ecuador = $0,04 \frac{\$}{KWh}$

b) Coste

$$Coste = \frac{Importe}{Consumo}$$
Ecuación 7-4
Coste = $\frac{116,22\$}{76,88 KWh}$
Coste = $1,511 \frac{\$}{KWh} * 0.04 \frac{\$}{KWh}$

$$Coste = 0,06 \frac{\$}{KWh}$$

Realizando el análisis económico y energético de un sistema de refrigeración por absorción también es importante mencionar, que la construcción del equipo es costosa, pero a nivel el

rendimiento y cuidado ambiental tiene ventaja sobre un sistema de refrigeración por compresión. Lo más rescatable de esta máquina es el ahorro de emisiones de bióxido de carbono al ambiente ya que en los mismos seis meses evitaría 25 toneladas de CO2. Lo que recalca la importancia del uso de la energía renovable a largo plazo, calculando el coste teniendo una potencia de la bomba de 9,61 KW en un tiempo de 8 horas, el valor calculado de nuestro análisis es $0,06 \frac{\$}{KWh}$ menor al coste de amoniaco/agua, lo que quiere decir que es más rentable. El Análisis económico completo esta realizado en las Páginas (15-18).

Tabla 25-4: Consumo total de energía H₂0/LiBr

	Consumos Energéticos (kW)								
ESTACIONARIO	Separador	C-1	H-1	C-2	C-3	Bomba	Consumo total de Energía		
	0,0785991	0,138581	0,138581	0,0624692	0,0245619	1,27E-06	0,44279347		
Flujo Volumétrico (m3/s)	8,71E-05	0,000144681	4,85E-08	8,90E-08	0,000109952	9,07E-05			
Volumen (m3)	2,50936704	4,1668128	0,001397724	0,002563906	3,1666176	2,61134208			

Realizado por: (Camacho B, 2021).

El costo total de energía que se consume para agua/bromuro de litio es de 0,442 KW. El volumen varía según cada equipo.

$$Q = \frac{V}{T}$$
 Ecuación 8-4
$$V = Q \ x \ T$$

Donde:

C1 = Condensador 1

C2= Condensador 2

C3= Condensador 3

H1= Evaporador

 $\mathbf{Q} =$ flujo volumétrico (m³/seg)

 \mathbf{T} = tiempo empleado (28800 seg)

 $V = volumen (m^3)$

Datos: T = 24°C = 293 °K Ø= 30% h1= 152 9KJ/Kg Q_H= 94,28 KJ/Kg

$$Q_{H} = h_{2} - h_{1}$$
Ecuación 9-4

$$h_{2} = Q_{H} + h_{1}$$

$$h_{2} = 115,76 \frac{kJ}{kg} + 165 \frac{kJ}{kg}$$

$$h2 = 280 \frac{kj}{kg}$$

$$T_{2} = 280^{\circ} K = 7^{\circ}C$$

Para el par agua/bromuro de litio, la temperatura que máximo de refrigeración del medio es 7°C.

	Agua /Bromuro de litio								
Porcentaj	e de obtencion de Refrig	gerante y Sln debil en fun	cion de T y P						
Separador - Separation	Separador -	Refrigerante - Molar	Solucion debil - Molar						
Temperature (if	Separation Pressure	Fraction (Mixture) /	Fraction (Mixture) / Lithium						
overriden) (C)	(if overriden) (kPa)	Water ()	Bromide ()						
280	75	1	0.999656						
280	78	1	0,999642						
280	81	1	0,999628						
280	84	1	0,999615						
280	87	1	0,999601						
280	90	1	0,999587						
296	75	1	0,999703						
296	78	1	0,999691						
296	81	1	0,999679						
296	84	1	0,999667						
296	87	1	0,999656						
296	90	1	0,999644						
312	75	1	0,999741						
312	78	1	0,999731						
312	81	1	0,99972						
312	84	1	0,99971						
312	87	1	0,999699						
312	90	1	0,999689						
328	75	1	0,999771						
328	78	1	0,999762						
328	81	1	0,999753						
328	84	1	0,999744						
328	87	1	0,999735						
328	90	1	0,999726						
344	75	1	0,999797						
344	78	1	0,999788						
344	81	1	0,99978						
344	84	1	0,999772						
344	87	1	0,999764						
344	90	1	0,999/56						
360	75	1	0,99981/						
260	/8	1	0,99981						
300	81	1	0,999803						
260	04 97	1	0,997/93						
300	87 ۵۸	1	0,222788						
300	90	1	0,999781						

Tabla 26-5: Porcentaje de obtención de Refrigerante y Sln débil en función de T y P

Realizado por: (Camacho B, 2021).

La separación del refrigerante y la solución débil para el sistema de refrigeración por absorción agua/bromuro de litio; el rango de condiciones en el separador de 280 a 360 °C y 75 a 90 Kpa son los ideales y a 360 °C y 87 Kpa haciendo más eficiente la separación.

4.3.4.2. Aplicaciones de sistema de refrigeración por absorción agua/bromuro de litio

Dichos sistemas se aplican comúnmente en aplicaciones que se hallan en localizaciones remotas donde el abasto de electricidad no está disponible y tienen la posibilidad de adaptar de forma sencilla energía solar, energía térmica (Alfonso y Martínez, 2016).

Los conjuntos de absorción y el par agua/bromuro de litio tienen la posibilidad de ser usados para la refrigeración y climatización en aplicaciones en las que se dispone de fuentes alternativas de energía. Energías no convencionales como la Geotérmica, la Biomasa y la Solar Térmica tienen la posibilidad de ser empleadas como fuente de aporte energético a los concentradores de plantas de absorción de sencilla impacto, para valores de 51 temperatura de agua entendidos entre 80 y 130°C, bien es verdad que con COPs bastante bajos, cerca de 0,5, sin embargo con la virtud que implica la libertad de fuentes convencionales de energía y, más que nada, el ahorro de combustibles fósiles y la reducción del efecto ambiental que su uso lleva aparejado.

El sistema de refrigeración por absorción es diseñado destinados a ejemplificar su manejo usando como fuente de energía cualquier desperdicio de vapor o fluidos a altas temperaturas en la zona industria esa energía calorífica se puede usar para hacer funcionar un sistema de refrigeración por absorción, así como además se puede hacer uso de la energía solar mediante colectores donde se obtenga calor y el agua que por ellos pasa almacenarla en tanques térmicos para estar abastecidos en instantes en los que el sol desaparece para que el sistema no deje de funcionar, la biomasa es otra fuente de energía que se puede aprovechar para el manejo de hablado sistema (Alfonso y Martínez, 2016, p.37).

4.3.4.3. Análisis de grafica en Matlab

Se realizo un proceso dinámico y se obtuvo una gráfica en Matlab para saber cómo cambia en calor del evaporador en función del tiempo.

El evaporador es un intercambiador de calor, cuya función principal es transferir energía térmica del ambiente a enfriar al sistema líquido o refrigerante. El calor siempre se transfiere de los elementos calientes a las partes más frías. Se produce una evaporación repentina durante el intercambio de calor. Se determino en un tiempo de 25 minutos omo actúa ese calor.

N°	Tiempo(min)	Qevap (KW)
1	0	0
2	4,02890989386485e-10	0,000200950914546009
3	2,41734593631891e-09	0,00120570548803332
4	1,24896206709810e-08	0,00622947837440163
5	6,28509943442917e-08	0,0313483432795367
6	3,14657862710845e-07	0,156942679637545
7	1,57369220454361e-06	0,784914657235191
8	7,86886391370744e-06	3,92478194032309
9	3,93447224595266e-05	19,6243032219542
10	0,000196724015188622	98,1265298725180
11	0,000983620478834101	490,752992717446
12	0,00491810279706149	2456,74653805424
13	0,0245905143881985	12355,5248887007
14	0,122952572343883	63248,3680050849
15	0,493208903435945	260438,204906635
16	0,976630978237188	487903,018599242
17	1,47663097823719	659257,396474963
18	1,97663097823719	767616,238963072
19	2,47663097823719	827734,998443801
20	2,97663097823719	855543,469210041
21	3,47663097823719	863850,806131031
22	3,97663097823719	861563,522283298
23	4,47663097823719	854275,761821948
24	4,97663097823719	845199,327344421
25	5,47663097823719	836005,985605005
26	5,97663097823719	827455,086624101
27	6,47663097823719	819810,101522782
28	6,97663097823719	813091,548937225
29	7,47663097823719	807218,387422933
30	7,97663097823719	802080,123952255
31	8,47663097823719	797569,275961177
32	8,97663097823719	793593,020459654
33	9,47663097823719	790075,043746371
34	9,97663097823719	786953,517968159

Tabla 27-4: Datos obtenidos en la grafica

35	10,4766309782372	784178,091948011
36	10,9766309782372	781707,110909579
37	11,4766309782372	779505,440478010
38	11,9766309782372	777542,900031832
39	12,4766309782372	775793,181745015
40	12,9766309782372	774233,113831299
41	13,4766309782372	772842,150605216
42	13,9766309782372	771602,005224849
43	14,4766309782372	770496,370156785
44	14,9766309782372	769510,691865209
45	15,4766309782372	768631,980411643
46	15,9766309782372	767848,643295416
47	16,4766309782372	767150,337768567
48	16,9766309782372	766527,838452005
49	17,4766309782372	765972,918352694
50	17,9766309782372	765478,241957724
51	18,4766309782372	765037,269322828
52	18,9766309782372	764644,170173801
53	19,4766309782372	764293,747093774
54	19,9766309782372	763981,366917093
55	20,4766309782372	763702,899504485
56	20,9766309782372	763454,663135230
57	21,4766309782372	763233,375817157
58	21,9766309782372	763036,111880858
59	22,4766309782372	762860,263287852
60	22,9766309782372	762703,505141727
61	23,4766309782372	762563,764945683
62	23,9766309782372	762439,195199184
63	24,4766309782372	762328,148970647
64	24,9766309782372	762229,158122668
65	25	762224,803942029

Realizado por: (Camacho B, 2021).

🛃 Scope	-			- 0 X				
File Tools View Simulation Help	File Tools View Simulation Help							
@ · < O ≥ ■ S · Q · I ·	3 · ≤ ⊙ ▷ ○ 2 · 2 · 2 · 2 · 2 ·							
×10 ⁵								
6								
3								
8								
5								
4								
3								
2								
0		10 1	15	20 25				

Figura 4-4: Grafica obtenida en Simulink Tiempo Vs Qevap agua/bromuro de litio. **Realizado por:** (Camacho B,2021).

La grafica obtenida en Matlab en la que tenemos tiempo Vs Calor del evaporador, en la plataforma DWSIM en estado estable Qevap es 0,1385KW haciendo una interpolación entre los valores de la tabla, Para alcanzar ese valor el tiempo que empleo fue de 17 minutos, lo que quiere decir que nuestro proceso en Matlab avanza progresivamente con el tiempo.

De la revisión bibliográfica realizada se aprecia que la tecnología de refrigeración solar por absorción simple efecto BrLi-agua y los sistemas de enfriamiento con rueda desecante son los sistemas de refrigeración solar por sorción que están siendo más estudiados y empleados en diversos países para el acondicionamiento del aire. En el contexto mundial actual donde el ahorro de energía y la preservación del medio ambiente son una necesidad, realizar un estudio comparativo del comportamiento de estos sistemas en una edificación caso de estudio, para condiciones de operación de climas cálidos y húmedos, a través de la simulación dinámica de los mismos empleando el programa MATLAB en la plataforma SIMULINK es el objetivo fundamental de este trabajo (Li y Kandlikar, 2015, p.42)

4.3.5. Costos de la operación en base a 8 horas de operación

$$CW = (C1 + C2 + C3) * t$$
 Ecuación 10-4

Donde:

CW: Consumo total de agua, m³

C1: Consumo total de agua en el condensador de la parte superior de la torre, m^3/s

*C*2: Consumo total de agua en el condensador de la parte inferior de la torre, m³/s *C*3: Consumo total de agua en el condensador 3, m³/s

$$CW = (1.29 * 10^{-5} + 2.68 * 10^{-7} + 1.51 * 10^{-5}) * 28800$$

 $CW = 0.81 m^3$

Costo por efecto del consumo de agua

Dónde:

Importe: Costo de facturación del consumo de agua en Ecuador, m³/\$ CW: Consumo de agua en el proceso, m³

$$Costo = 0.81 * 1.21$$

$$Costo = \$1$$

Consumo de energía

$$CE = (E1 + E2 + E3) * t$$
 Ecuación 12-4

Dónde:

CE: Consumo de energía, KWs

E1: Energía consumida en la bomba, kW

E2: Energía consumida en la torre de absorción, kW

E3: Energía consumida en el calentador, kW

t: Tiempo de operación, s

$$CE = (7.66 * 10^{-5} + 0.24 + 0.21) * 28800$$

$$CE = 12962.20 \, kW \cdot s$$

Costo por efecto del consumo de energía eléctrica

Dónde:

Importe: Costo de facturación del consumo de agua en Ecuador, $kW \cdot s$ /\$ CW: Consumo de energía en el proceso, $kW \cdot s$

Costo total del proceso

$$CT = C1 + C2$$
 Ecuación 13-4

Donde:

CT: Costo total por operación de la planta, \$

C1: Costo por efecto del consumo de agua, \$

C2: Costo por efecto del consumo de energía eléctrica, \$

CT = 1 + 1209.33

$$CT = 1210.33$$

Costo total por de la planta con 8 horas de operación = 1210.33\$

CONCLUSIONES

- Se simulo y examino el periodo de refrigeración por absorción amoniaco/agua entre los cambiantes que han tenido más grande predominación fueron el COP, la temperatura de generación y la presión de generación. El mayor COP ha sido de 0,29 y se obtuvo a 120° y 1700 Kpa. Además, se investiga la contestación dinámica a un cambio de paso. El sistema alcanza velozmente un estado estable dados las fronteras operativas a los 19,20 minutos. El crecimiento de bomba; el crecimiento de presión da como consecuencia un incremento en el rendimiento del sistema. Además, se demuestra que la temperatura de enfriamiento del espacio -6°C. Por los resultados arrojados y otras investigaciones el sistema amoniaco/agua tiene un mayor rendimiento.
- Se procedió a realizar la simulación para un sistema agua/bromuro de litio con los datos presentados por mediante el software DWSIM, en los cuales se encontró un coeficiente de operación de 0,15 las condiciones de operación idóneas, requiere una temperatura de activación en el generador de 300° y 87Kpa, cercanamente esta simulación logra ser más estable que la de amoniaco / agua, la temperatura y presión de generación ser convirtieron estable a los 17 minutos de que el separador empiece a trabajar. Por último, la temperatura máxima de refrigeración es de 7°C.
- Se realizó un análisis económico y energético ocupando algunos los resultados de ambas simulaciones se obtuvo un coste de $0,283 \frac{\$}{KWh}$ en la simulación dinámica amoniaco/ agua y un coste de $0,06 \frac{\$}{KWh}$ en la simulación dinámica agua/bromuro de litio. Siendo el agua/bromuro de litio más económico y más rentable energéticamente, utilizando las mismas condiciones en ciertos puntos y tiempo con diferente refrigerante y absorbente. En cuanto en una contribución al medio ambiente utilizar la simulación de agua/ bromuro de litio, ya que es menos toxico para el medio ambiente a diferencia de amoniaco/ agua y el con un costo total por operación de la planta 8 horas es de 1210,33\$.

RECOMENDACIONES

- En cuanto a la simulación del sistema de refrigeración por absorción en DWSIM se recomienda comparar dichos resultados con los datos obtenidos por otro software de simulación de procesos químicos y diferentes métodos termodinámicos como WILSON, NRTL, MATLAB y UNIFAC recomendados en bibliografía.
- Es recomendable evaluar todas las condiciones que puedan influir en las simulaciones dinámicas, y los químicos a utilizar ya que este mecanismo nos ayuda para replicar equipos reales con el fin de construcción.
- Las propiedades termodinámicas y tablas del libro de Cengel son parte importante para poder generar un modelo apropiado y poder dimensionar de manera correcta los compuestos.
- Utilizar en la simulación la última actualización de las propiedades termodinámicas, termofisicas y transporte de masa de la mezcla amoniaco/agua y agua/bromuro de litio y con los cálculos le dan una mayor precisión
- Finalmente, la implementación de la domótica a nivel mundial es rentable; es una serie de sistemas tecnológicos que aportan diferentes servicios a las edificaciones que necesitan administrar los recursos energéticos, dentro de los que se encuentran el incremento del confort, integración de sistemas tecnológicos aportando diferentes servicios como seguridad, bienestar, comunicación gestión energética.

GLOSARIO

- Absorbedores: intercambiadores en los cuales la solución concentrada se pone en contacto con el refrigerante haciendo posible la absorción y dando como resultado la solución diluida con la que el proceso de absorción reinicia. Los tubos suelen ser de cobre o aleaciones de cobre y níquel (Afonso, 2016, p.52).
- Absorción: Proceso en el cual el refrigerante en vapor es absorbido en una solución concentrada o fuerte. El calor de condensación del agua y el calor de mezclado son liberados en el fluido por el proceso de absorción. El fluido debe ser enfriado, usualmente con agua de enfriamiento, para permitir que el refrigerante sea continuamente absorbido en la solución mientras se mantiene la condición de baja presión (Afonso, 2016, p.53).
- Bomba de calor: La bomba de calor tipo 1 es una máquina de absorción que usa calor de una fuente de alta temperatura para elevar la cantidad y temperatura de calor de la fuente disponible y mueve esta energía a otra locación a una temperatura intermedia. Una bomba tipo 2, es usualmente llamada transformador de calor, es una máquina de absorción que eleva sustancialmente la temperatura de la energía de la fuente Glosario 105 disponible a cantidades reducidas usando los calores latentes inherentes y el calor de mezclado de los fluidos del ciclo (Cengel, 2011, p.261).
- Calor: es una forma de energía que se transfiere entre dos sistemas debido a una diferencia de temperatura. Una interacción de energía es calor sólo si ocurre debido a una diferencia de temperaturas (Cengel, 2011, p.261).
- Calor específico: o capacidad calorífica. Es la cantidad de calor requerida para elevar un grado de temperatura en una unidad de masa (Cengel, 2011, p.262).
- Calor latente: es la energía térmica absorbida durante el proceso de modificar el estado físico de una sustancia sin cambio en su temperatura o presión. Existen tres tipos de calor latente: de vaporización, del estado líquido al vapor; de fusión, del estado sólido al líquido; y de condensación, del estado vapor al líquido (Cengel, 2011, p.262).
- Calor sensible: es el calor agregado o eliminado de una sustancia que origina un cambio en la temperatura de dicha sustancia (Cengel, 2011, p.263).
- Capacidad calorífica: es la cantidad de energía térmica necesaria para elevar un grado centígrado la temperatura de una sustancia. Indica la mayor o menor dificultad que presenta la sustancia para experimentar cambios de temperatura bajo el suministro de calor (Cengel, 2011, p.263).
- (COP): Para un enfriador, es la razón de la capacidad de enfriamiento sobre la cantidad de energía de calentamiento. Para una bomba de calor o un transformador de calor, es la razón de la energía calorífica de salida sobre la cantidad de energía calorífica de entrada (Cengel, 2011, p.272).

- Desorción: Conocida también como Generación. Es el proceso en el cual el calor es añadido a la solución diluida o débil para separar el refrigerante de la solución, al mismo tiempo que la solución se concentra permitiendo que el refrigerante sea reciclado para reutilizarse en el evaporador (Valle-Hernandez et al., 2017, p.138).
- Economizadores: Son típicamente intercambiadores de tubo y coraza o intercambiadores de platos. Transfieren el calor entre la solución fría y caliente, para reciclar energía. El material de construcción es acero inoxidable. Son llamados también Intercambiadores de solución (Valle-Hernandez et al., 2017, p.143).
- Exergía: magnitud termodinámica que indica el máximo trabajo teórico que se puede alcanzar por la interacción espontánea entre el sistema cerrado y entorno. Indica la utilidad potencial del sistema como fuente de trabajo (Cengel, 2011, p.263).
- Flujo axial: aire en movimiento paralelo al giro del eje generador por las cuchillas rotantes de un abanico (Cortés Espinosa 2015 p.38).
- Generadores de baja temperatura: son usualmente intercambiadores de calor de tubo y coraza. La solución proveniente del absorbedor inunda parte del generador o es rociado dentro del lado de la coraza y la fuente de calor, en este caso agua calentada de los colectores solares, pasa dentro de los tubos. La solución bulle y como resultado, una solución concentrada fluye del generador a una tubería de salida. El refrigerante en fase vapor pasa a través de un separador de vapor/líquido y luego fluye hacia el condensador. Se puede construir de diferentes materiales; cobre, aleación de cobre-níquel, acero inoxidable o titanio (Kosuda et al, 2012, p.18).
- Humedad relativa: humedad que contiene una masa de aire en relación con la máxima humedad absoluta que podría admitir sin producirse condensación, conservando las mismas condiciones de temperatura y presión atmosférica (Kosuda et al, 2012, p.12).
- Matlab: es una plataforma de programación y cálculo numérico utilizada por millones de ingenieros y científicos para analizar datos, desarrollar algoritmos y crear modelos (Ibrahim, 2002, p.35).
- Mezcla (saturada): mezcla saturada líquido-vapor es una sustancia que se encuentra entre los estados de líquido saturado y vapor saturado debido a que estas fases existen en equilibrio. Mezcla saturada (de solución) es una sustancia que no puede diluir más cantidad de un soluto (Cengel, 2011, p.215).
- Rectificación: Transferencia de masa térmicamente inducida en la cual el vapor de un sorbete volátil es separado de los vapores del refrigerante. La rectificación se lleva a cabo en la fase de desorción y cabe señalar que no todos los sorbetes son los suficientemente volátiles como para requerirla (Cortés Espinosa, 2015 p.38).
- Refrigeración: es la transferencia de calor de una región de temperatura inferior hacia una temperatura superior. La reducción de temperatura se realiza extrayendo energía del cuerpo,

reduciendo su energía térmica. Las diferencias de temperaturas entre el medio receptor y emisor pueden darse por transferencia de calor por convección, conducción o Radiación (Cengel, 2011, p.263).

- Refrigeradores: dispositivos que producen la transferencia de calor de una región de baja temperatura a una de alta temperatura. Su objetivo es mantener el espacio refrigerado a una temperatura a una temperatura baja y extraer el calor de él (Villamil Tulcán, 2005, p.35)..
- Refrigerantes: fluidos de trabajo empleados en los ciclos de refrigeración. Cuando el agua se usa como refrigerante, la temperatura mínima está por arriba del punto de congelación del agua. En el ciclo de absorción, el refrigerante es la sustancia volátil que deja la solución en el generador, realiza el proceso de refrigeración en el evaporador y es reabsorbido en el absorbedor para completar el ciclo termodinámico (Villamil Tulcán, 2005, p.36).
- Rigidez: Resistencia de un cuerpo humano flexible a la deformación una vez que se aplica una fuerza. En un muelle, la rigidez actúa permitiéndole volver a su configuración original (Villamil Tulcán, 2005, p.47).
- Simulink: es una toolbox especial de MATLAB que sirve para simular el comportamiento de los sistemas dinámicos. Puede simular sistemas lineales y no lineales, modelos en tiempo continuo y tiempo discreto y sistemas híbridos de todos los anteriores. Es un entorno gráfico en el cual el modelo a simular se construye clicando y arrastrando los diferentes bloques que lo constituyen (Simulink, 2016, p.9).

BIBLIOGRAFÍA

AFONSO, Juan CALIXTO SOTO. 2016. *Diseño e implementación de una simulación.* La laguna : s.n., 2016.

ARROBA BUENAÑO, Jorge Roberto, & ROCHA ULCUANGO, Karina Beatriz, 2019.Diseño y simulación de un control regulatorio descentralizado y estimadores de concentraciónusando un observador de estados y redes neuronales aplicados a un sistema reactor-separador-reciclador [en línea] (Trabajo de titulación). Escuela Politécnica Nacional, Quito, Ecuador. 2019.[Consulta:04Mayo2020].Disponibleen:https://bibdigital.epn.edu.ec/bitstream/15000/20321/1/CD 9787.pdf

ASAMBLEA NACIONAL DEL ECUADOR., 2016. Código orgánico de la economía social de los conocimientos, creatividad e innovación [en línea]. Quito-Ecuador: Editora Nacional, 2016. [Consulta: 18 Mayo 2020]. Disponible en: http://www.wipo.int/edocs/lexdocs/laws/es/ec/ec075es.pdf

ÁVILA VEGA, Carlos Fabián., 2013. Modelos basados en inteligencia artificial para el diseño de estructuras no convencionales de hormigón armado [en línea] (Trabajo de titulación). Escuela Politécnica Nacional, Quito, Ecuador, 2013. [Consulta: 04 Mayo 2020]. Disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/6756/1/CD-5131.pdf

ALFONSO, G. y MARTÍNEZ, R., 2016. Diseño y construcción de un banco de refrigeración por absorción para uso didáctico, utilizando agua y sales de bromuro de litio presentado por: edgardo alfredo cárcamo palencia ingeniero mecánico. . S.l.:

BAZANELLA Y J. M. G. 2005. "Sistemas de Controle. s.l. : 1.ed. Editora UFRGS, 2005.

BALMORE, D., MORÁN, A., QUINTANILLA, I.G., LEONEL, N., PERAZA, R., MARTINO, O. y CASTRO, T., 2012. Propuesta de diseño de un sistema de refrigeración por absorción para mejorar la eficiencia de operación de planta en una central geotérmica presentado por: ingeniero mecánico. . S.l.:

BARRETO CALLE, I.R., EDGAR, M.A.E.I. y FERNANDEZ, T., 2010. Area de la energia, las industrias y los recursos naturales no renovables loja ecuador. . S.l.:

CAI, W., SEN, M. y PAOLUCCI, S., 2012. Dynamic simulation of an ammonia-water absorption refrigeration system. *Industrial and Engineering Chemistry Research* [en línea], vol. 51, no. 4, pp. 2070-2076. [Consulta: 10 octubre 2020]. ISSN 08885885. DOI 10.1021/ie200673f. Disponible en: https://pubs.acs.org/doi/10.1021/ie200673f.

CENGEL, Y. & BOLES, M. 2008. Termodinamica. México: McGraw-Hill. : s.n., 2008.

CHIRIGOBA Jhonathan, COLLAGUAZO Paul. 2018. *Diseño y construcción de un sistema de enfriamiento por*. Ecuador : s.n., 2018.

CORTÉS ESPINOSA, F., 2015. Instituto tecnológico y de estudios superiores de monterrey campus monterrey división de ingeniería y arquitectura programa de graduados en ingeniería. [en línea]. S.l.: instituto tecnológico y de estudios superiores de monterrey. [consulta: 18 marzo 2021]. Disponible en: https://repositorio.tec.mx/handle/11285/568202.

DWSIM., 2017. [en línea], 2017. [Consulta: 18 marzo 2021]. Disponible en: https://dwsim.fossee.in/.

HOSGOR, E., KUCUK, T., OKSAL, I.N. y KAYMAK, D.B., 2014. Design and control of distillation processes for methanol-chloroform separation. *Computers and Chemical Engineering*, vol. 67, pp. 166-177. ISSN 00981354. DOI 10.1016/j.compchemeng.2014.03.026.

JESÚS CEREZO ROMÁN, 2006. Estudio del proceso de absorcion con amoniaco-agua en intercambiadores de placas para equipos de refrigeracion por absorcion. [en línea]. [consulta: 20 marzo 2021]. Disponible en: https://www.tesisenred.net/bitstream/handle/10803/8490/phdjesuscerezo2006.pdf?sequence=1& isAllowed=y.

RAMÍREZ ÁLVAREZ, D., TAPIA VERTEL, A., LANCHEROS SUÁRES, V., ESPITIA SANJUÁN, L. y GONZÁLEZ DÓRIA, Y., 2015. Analysis of a Solar Intermittent Absorption Refrigeration System. [en línea], pp. 32-39. [Consulta: 11 marzo 2021]. DOI 10.16924/riua.v0i43.872. Disponible en: http://dx.doi.org/10.16924/riua.v0i43.872.

KOSUDA, T., OKADA, T., NOZAKA, S., MATSUZAWA, Y., SHIMIZU, T., HAMANAKA, S. y MISHIMA, S., 2012. Characteristics and mechanism of low temperature dehydrochlorination of poly(vinyl chloride) in the presence of zinc(II) oxide. *Polymer* *Degradation and Stability*, vol. 97, no. 4, pp. 584-591. ISSN 01413910. DOI 10.1016/j.polymdegradstab.2012.01.009.

IBRAHIM, O.M. 2002. *Thermodynamic properties of ammonia-water mixtures*. Estados Unido : ASHRAE, 2002.

LI, Z. y KANDLIKAR, S.G., 2015. Current status and future trends in data-center cooling technologies. *Heat Transfer Engineering*, vol. 36, no. 6, pp. 523-538. ISSN 15210537. DOI 10.1080/01457632.2014.939032.

OGATA, K. 1982. *Engenharia de Controle Moderno*. s.l. : Editora Prentice/Hall do Brasil Ltd, 1982.

SIMULINK IQ753 Diseño de Reactores Químicos., 2016. S.l.:

STEIU, **M.S.**, **2010**. *Refrigeración por absorción con nh3/h2o/hidróxidos* [en línea]. S.l.: s.n. [Consulta: 13 enero 2021]. ISBN 978-84-693-4054-7. Disponible en: www.tesisenxarxa.net.

VALLE-HERNANDEZ, J.[†], NIETO-PEÑA, R.-A., MORALES-ORTEGA, A.Y. y ENRIQUE, E., 2017. Análisis energético de un sistema de refrigeración solar por absorción. [en línea]. S.l.: [Consulta: 18 marzo 2021]. Disponible en: www.ecorfan.org/bolivia.

VISWANATHAN, V.K., RATTNER, A.S., DETERMAN, M.D. y GARIMELLA, S., 2012. Purdue e-Pubs Dynamic Model for Small-Scale Ammonia-Water Absorption Chiller Dynamic Model for Small-Capacity Ammonia-Water Absorption Chiller. [en línea]. S.I.: [Consulta: 10 octubre 2020]. Disponible en: http://docs.lib.purdue.edu/iracc.

VILLAMIL Salcedo, HERWIN Marcos Y PIAMBA. 2005. *Estudio y aplicación de ciclos de refrigeración.* Colombia : s.n., 2005.

ZHANG, H., & SHAO, S. 2014. *Análisis del funcionamiento de sistemas de refrigeración por compresión y absorción.* Beijing : s.n., 2014.

ANEXOS

						949 Apéndice	1
TABLA A-27							
Propiedades de alguno	s combustibles	s e hidrocarbu	ros comunes				
Combustible (fase)	Fórmula	Masa molar, kg/kmol	Densidad, ¹ kg/L	Entalpía de vaporización, ² kJ/kg	Calor especí- fico, ¹ c _p kJ/kg · K	Poder calorífico superior, ³ kJ/kg	Poder caloríficu inferior, ³ kJ/kg
Acetileno (g)	C ₂ H ₂	26.038	_	_	1.69	49,970	48,280
Benceno (ℓ) Butano (ℓ)	C ₆ H ₆ C ₄ H ₁₀	78.114 58.123	0.877 0.579	433 362	1.72 2.42	41,800 49,150	40,100
Carbono (s)	C	12.011	2	_	0.708	32,800	32,800
Decano (\ell)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,24(
Diesel ligero (ℓ)	C _n H _{1.8n}	170	0.78-0.84	270	2.2	46,100	43,200
Diesel pesado (ℓ)	C _n H _{1.7n}	200	0.82-0.88	230	1.9	45,500	42,800
Etano (g)	C_2H_6	30.070	-	172	1.75	51,900	47,520
Etanol (\ell)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Gas natural (g)	C _n H _{3.8n} N _{0.1n}	18	-	-	2	50,000	45,000
Gasolina (ℓ)	C _n H _{1.87n}	100-110	0.72-0.78	350	2.4	47,300	44,000
Heptano (ℓ)	C ₇ H ₁₆	100.204	0.684	365	2.24	48,100	44,600
Hexano (ℓ)	C ₆ H ₁₂	84.161	0.673	392	1.84	47,500	44,400
Hexeno (ℓ)	C ₆ H ₁₄	86.177	0.660	366	2.27	48,310	44,74(
Hidrógeno (g)	H ₂	2.016	-	-	14.4	141,800	120,000
Isopentano (l)	C ₅ H ₁₂	72.150	0.626	-	2.32	48,570	44,91(
Metano (g)	CH4	16.043	-	509	2.20	55,530	50,050
Metanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Monóx. de carbono (g)	CO	28.013	-	-	1.05	10,100	10,100
Octano (\ell)	C ₈ H ₁₈	114.231	0.703	363	2.23	47,890	44,43(
1-Penteno (l)	C ₅ H ₁₀	70.134	0.641	363	2.20	47,760	44,630
Propano (ℓ)	C ₃ H ₈	44.097	0.500	335	2.77	50,330	46,340
Tolueno (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500

ANEXO A: PROPIEDADES DE ALGUNOS COMBUSTIBLES E HIDROCARBUROS COMUNES

¹A 1 atm y 20°C.

²A 25°C para combustibles líquidos, y 1 atm y temperatura normal de ebullición para combustibles gaseosos.

³A 25°C. Multiplique por la masa molar para obtener los valores caloríficos en kJ/kmol.

ANEXO B: ARTICULO CIENTÍFICO A

Simulación y análisis de un sistema de refrigeración por absorción solar intermitente

Análisis de un sistema de refrigeración por absorción solar intermitente

Diana Juliasa Ramiruz Álvarez (., Andrés Felipe Tapia Vertel (., Valéry José Lancheros Suáres (., Luis Armando Espitia Sanjuán (., Yahir Enrique González Dória (.,

«Entudiante de Ingenieria Mecánica, Universidad de Córdoba. Monteria, Colombia. Grupo de investigación en Ingenieria, Ciencia y Tecnología (TIC), diulissamentez/Bicomeo unicordoba edu co

- @Entudiante de Ingenieria Mecánica, Universidad de Córdoba. Monteria, Colombia. Grupo de investigación en Ingenieria, Ciencia y Tecnología (TIC). aflacia Bicomeo unicordoba edu co
- Maestria en Ingeriería Industrial. Docente de Planta, Programa de Ingeniería Mecánica, Universidad de Córdoba. Monteria, Colombia. Grupo

de investigación en ingeniería, Ciencia y Tecnología (ICT), vlanchero@correo unicordoba edu co "PhD, MSc en Ingeniería Metalúngica y de Materialea. Universidad de Córdoba. Montería, Colombia. Grupo de investigación en Ingeniería

ria, Ciencia y Tecnología (ICT). luisespitia () correo unicordoba edu co «Maestria en Ingerieria Industrial. Docente de Planta, Programa de Ingerieria Mecánica, Universidad de Córdoba. Monteria, Colombia. Grupo

de investigación en Ingeniería. Ciencia y Tecnología (ICT) (ablegonzalez (2) coreo unicordoba edu co

Recibido 26 de agosto de 2015. Madificado 20 de noviembre de 2015. Aprobado 30 de noviembre de 2015

DOI: http://dx.doi.org/10.16824/viaa.v643.872

Palabras clave

Coeficiente de desempeño, energía solar, refrigeración por absorción, simulación.

Resumen

El departamento de Córdoba cuenta con zonas runales que no hacen parte del sistema interconectado nacional. Esto crea un problema para sus habitantes ya que, no pueden conservar alimentos. Sin embargo, la alta deponibilidad de radiación solar durante todo el año, ofrece una alta radiación solar durante todo el año, ofrece una alta radiación solar durante todo el año, ofrece una alta radiación solar durante todo el año, ofrece una alta radiación solar durante todo el alterna- tiva para preservar alimentos utilizando equipos de refrigeración por absorción solar. El objetivo de este trabajo fue alimular y analizar un sistema de refrigeración por absorción solar, usando el aoftware ASPEN Hysys. Se obtu- vo un coeficiente de desempeño (COP) máximo de 1,0 a 93 ° C y 1547 kPa, teniendo en cuenta el efecto de distintas variables.

Palabras clave

Refrigeración por absorción, coeficiente de rendimiento, simulación, energía solar.

Abstracto

En la actualidad, algunas zonas rurales del departamento de Córdoba no forman parte del sistema de interconexión de cabieado eléctrico; un problema cuando se trata de la conservación de alimentos. Córdoba está sujeta a una alta radiación solar durante todo el año; por lo tanto, el desarrollo de dispositivos alimentados por una fuerte de energía aliemativa puede proporcionar la solución a este problema. El objetivo de este estudio fue simular y analizar un sistema de refrigeración intermitente utilizando el software ASPEN Hysys. La simulación se levó a cabo con el fin de obtener un coeficiente máximo de restrigeración (COR) de .

1.0 a 93 ° C y 1547 kPa, considerando el efecto de variables como la concentración de amoníaco, la cantidad de solución, la generación de presión y la generación de temperatura.

yo ntroducción

El consumo energético globel ha presentado un incremento significativo durante los últimos años como resultado del crecimiento acelerado en la población mundial y en la economía, especialmente en los países en desarrollo. De acuerdo con lo anterior, se prevé un incremento del 71% del consumo energético entre 2003 y 2030 (Sarbu & Adam, 2011). Actualmente, la mayor parte de la energía utilizada en todo el mundo proviene principalmente de combustibles tósiles. Estos combustibles son limitados y se utilizan más rápido de lo que se crean, no son amigables con el medio ambiente y su quema se convierte en el principal contribuyente al ca-lentamiento global. Esto traerá escasez con el tiempo. De shi que ses necesario la implementación de fuentes de energía amigables con el medio ambiente y que puedan renovarse

#43 Revista de Jaganieda. Universidad de los Andes. Bogstá DC, Colombia reving biolst. 0121-1983. Julio - Dulentere de 2015, pága. 32-38.

SIMULACIÓN Y ESTUDIO TERMODINAMICO DE UN SISTEMA DE ENFRIAMIENTO POR ABSORCIÓN LIBr-H20 DE DOBLE EFECTO DE BAJA CAPACIDAD ACTIVADO CON ENERGIA SOLAR

<u>González L.A.*</u>, Velázquez N.*, Nakasima M.O.*, Ruelas A.*, Pando G.E.*, Gonzalez E.S.*

* Centro de Estudios de las Energías Renovables, Universidad Autónoma de Baja California, Benito Juárez y Calle de la Normal S/N Col. Insurgentes, Mexicali, 21280, Baja California, México, Tel/Fax (686) 5664150 Ext 111, Email: gonzalezl18@uabc.edu.mx, nicolas.velazquez@uabc.edu.mx, mydory.nakasima@uabc.edu.mx, ruelasa@uabc.edu.mx, gabriel.pando@uabc.edu.mx, gonzalez.edgar@uabc.edu.mx

RESUMEN

En este trabajo se presenta la simulación y el estudio termodinámico de un sistema de enfriamiento por absorción LiBr-H2O de doble efecto con una capacidad de 16.8 kW (4.8 toneladas de refrigeración). Para el análisis se creó el modelo matemático del sistema y se realizó una simulación mediante la plataforma ASPEN Plus®. Los resultados mostraron un porcentaje de discrepancia no mayor al 2.5% con respecto a los datos reportados en la literatura. La metodología presentada permite la investigación de los sistemas de absorción de baja capacidad y puede ser utilizada para encontrar las mejores condiciones de operación, así como realizar estudios de acoplamiento con diferentes fuentes de energías renovables.

PALABRAS CLAVE: Simulación, Estudio termodinámico, Absorción y energía solar

ABSTRACT

In this paper, the mathematical modeling and simulation of a cooling system LiBr-H2O absorption double acting with a capacity of 16.8 kW (4.8 refrigeration tons) is presented. To analyze the mathematical model of the system was established and simulation was performed using ASPEN Plus © platform. The results showed a percentage of discrepancy not more than 2.5% with respect to the data reported in literature. The presented methodology allows investigation of absorption systems low capacity and can be used to find the best operating conditions and coupling studies with different sources of renewable energy.

KEYWORDS: Simulation, Thermodynamic Study, Absorption and Solar Energy

1455 XXXVIII Semana Nacional de Energía Solar. ANES, 20014.

ANEXO D: ARTICULO CIENTIFICO C

Numerical models fromd in literature to evaluate the performance of absorption chillers are generally relatively simple. Whether it is under steady or dynamic state, most of the models account for the heat transfer coefficient U in the heat exchangers and the whightant is consider to be pure. These numerical models do not take into consideration the mass transfer coefficients in the absorber [1,4]. Modeling absorbers was of interest to researchers over the last years. A review of a publication on the methods used

1960-1087/1 — see from statter + 2013 Marsier Int. All rights reserved. http://dx.doi.org/101010/j.recens.2012.01.027 condensation of a binary solution in the condenser while also respecting the specific features of the solar absorption chiller (cooling ceiling) [8,9] used to validate the manerical model. These features are essentially a thermosyphon desorber and super partfication effected with the rich solution. The correlations used to evaluate the heat transfer coefficients have been chosen based on the type of heat exchanger and how it is

have been chosen based on the type of heat exchanger and how it is put to one. When several correlations are available, the correlation that is the most representative of the experimental data is used. An analysis of the uncertainties of the chosen correlations demonimate that a 10% variation in the heat transfer coefficients cenality in

^{*} Corresponding author: Tel., +1 819 519 5400c H34. A-sual address: information of the impace (0, for Laster).

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

DIRECCIÓN DE BIBLIOTECAS Y RECURSOS DEL APRENDIZAJE UNIDAD DE PROCESOS TÉCNICOS Y ANÁLISIS BIBLIOGRÁFICO Y DOCUMENTAL

REVISIÓN DE NORMAS TÉCNICAS, RESUMEN Y BIBLIOGRAFÍA

Fecha de entrega: 13 / 10 / 2021

INFORMACIÓN DEL AUTOR/A (S)
Nombres – Apellidos: Ana Belén Camacho Benalcázar
INFORMACIÓN INSTITUCIONAL
Facultad: Ciencias
Carrera: Ingeniería Química
Título a optar: Ingeniera Química
f. Analista de Biblioteca responsable: Ing. Leonardo Medina Ñuste MSc.

LEONARDO FABIO MEDINA NUSTE Fecha: 2021.10.13 09:33:54 -05'00'

