

# ESCUELA SUERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA INGENIERÍA QUÍMICA

# "DISEÑO DE UN PROCESO INDUSTRIAL PARA LA PRODUCCIÓN DE PAPEL HIGIÉNICO PARA EL GADIC CAÑAR"

Trabajo de Integración Curricular

Tipo: Proyecto Técnico

Presentado para optar al grado académico de:

### INGENIERO QUÍMICO

**AUTOR:** OSCAR ANTONIO MOROCHO PILLAGA **DIRECTORA:** Ing. LINDA MARIUXI FLORES FIALLOS, MSc.

Riobamba – Ecuador

#### © 2022, Oscar Antonio Morocho Pillaga

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

Yo, OSCAR ANTONIO MOROCHO PILLAGA, declaro que el presente Trabajo de Integración

Curricular es de mi autoría y los resultados del mismo son auténticos. Los textos en el documento

que provienen de otras fuentes están debidamente citados y referenciados.

Como autor asumo responsabilidad legal y académica de los contenidos de este Trabajo de

Integración Curricular; el patrimonio intelectual pertenece a la Escuela Superior Politécnica de

Chimborazo.

Riobamba, 07 de julio de 2022

Oscar Antonio Morocho Pillaga

C.I: 030279793-1

ii

# ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA INGENIERÍA QUÍMICA

El Tribunal del Trabajo de Integración Curricular certifica que: El Trabajo Integración Curricular; Tipo: Proyecto Técnico, **DISEÑO DE UN PROCESO INDUSTRIAL PARA LA PRODUCCIÓN DE PAPEL HIGIÉNICO PARA EL GADIC CAÑAR**, realizado por el señor: **OSCAR ANTONIO MOROCHO PILLAGA**, ha sido minuciosamente revisado por los Miembros del Tribunal del Trabajo de Integración Curricular, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal Autoriza su presentación.

| FIRMA                                                                                     | FECHA      |
|-------------------------------------------------------------------------------------------|------------|
| Ing. Mónica Lilián Andrade Ávalos, MSc.  PRESIDENTE DEL TRIBUNAL                          | 2022-07-07 |
| Ing. Linda Mariuxi Flores Fiallos, MSc.  DIRECTORA DEL TRABAJO DE  INTEGRACIÓN CURRICULAR | 2022-07-07 |
| Ing. Cristian Germán Santiana Espin, MSc.  ASESOR DEL TRABAJO DE  INTEGRACIÓN CURRICULAR  | 2022-07-07 |

#### **DEDICATORIA**

Este trabajo se lo a mi familia y amigos cercanos que siempre se han mantenido a mi lado apoyándome; en especial a mis padres Segundo y Rosa que han sido un ejemplo de lucha, determinación y perseverancia a lo largo de toda mi vida, motivándome diariamente a seguir adelante sin rendirme ante ninguna adversidad y que, pese a todos los contratiempos que se me han presentado, nunca dejaron de creer en mí.

Oscar

#### **AGRADECIMIENTO**

A mis padres, hermanos, familiares y amigos que siempre me brindaron su apoyo incondicional permitiéndome cumplir con esta meta en mi vida, sin desistir ante las distintas adversidades que se presentaron. A la Escuela Superior Politécnica de Chimborazo que me permitió formarme profesionalmente bajo la guía y tutela de sus docentes, en especial, a la Ing. Linda Flores y al Ing. Cristian Santiana quienes, siendo la tutora y el miembro asesor de este proyecto, fueron un apoyo fundamental para su desarrollo gracias a su conocimiento y tiempo brindado.

Oscar

#### TABLA DE CONTENIDO

| ÍNDICI   | E DE TABLAS                                                   | ix   |
|----------|---------------------------------------------------------------|------|
| ÍNDICI   | E DE FIGURAS                                                  | xi   |
| ÍNDICI   | E DE GRÁFICOS                                                 | xii  |
| ÍNDICI   | E DE ANEXOS                                                   | xiii |
| RESUM    | IEN                                                           | xiv  |
| ABSTR    | ACT                                                           | XV   |
| INTRO    | DUCCIÓN                                                       | 1    |
| CAPÍT    | ULO I                                                         |      |
| 1.       | DIAGNÓSITO DEL PROBLEMA                                       | 2    |
| 1.2.     | Identificación del problema                                   | 2    |
| 1.3.     | Justificación del proyecto                                    | 2    |
| 1.4.     | Localización del proyecto                                     | 3    |
| 1.5.     | Objetivos                                                     | 4    |
| 1.5.1.   | Objetivo General                                              | 4    |
| 1.5.2.   | Objetivos específicos                                         | 4    |
| CAPÍT    | ULO II                                                        |      |
| 2.       | MARCO TEÓRICO                                                 | 5    |
| 2.1.     | Antecedentes de la investigación                              | 5    |
| 2.2.     | Marco conceptual                                              | 7    |
| 2.2.1.   | Papel y cartón                                                | 7    |
| 2.2.1.1. | Papel y cartón como materia prima                             | 7    |
| 2.2.1.2. | Reciclaje de papel                                            | 8    |
| 2.2.2.   | Papel Higiénico                                               | 10   |
| 2.2.2.1. | Proceso de producción de papel higiénico                      | 11   |
| 2.2.2.2. | Parámetros de calidad del papel higiénico norma NTE INEN 1430 | 12   |
| 2.2.2.3. | Parámetros adicionales de análisis                            | 13   |
| 2.2.3.   | Diagramas de ingeniería                                       | 14   |
| 2.2.4.   | Balance de masa y energía                                     | 15   |
| 2.2.4.1. | Balance de masa                                               | 16   |
| 2.2.4.2. | Balance de energía                                            | 17   |

| 2.2.5.   | Viabilidad técnica y económica                                       | 17 |
|----------|----------------------------------------------------------------------|----|
| CAPÍTU   | U <b>LO III</b>                                                      |    |
|          |                                                                      |    |
| 3.       | MARCO METODOLÓGICO                                                   | 19 |
| 3.1.     | Tipo de Estudio                                                      | 19 |
| 3.1.1.   | Estudio Exploratorio                                                 | 19 |
| 3.1.2.   | Estudio Experimental                                                 | 19 |
| 3.2.     | Diseño del experimento                                               | 19 |
| 3.3.     | Experimentación                                                      | 20 |
| 3.3.1.   | Caracterización de la materia prima                                  | 20 |
| 3.3.1.1. | Determinación de humedad                                             | 20 |
| 3.3.2.   | Obtención de pulpa celulósica                                        | 22 |
| 3.3.2.1. | Desfibrado                                                           | 22 |
| 3.3.2.2. | Depuración                                                           | 22 |
| 3.3.2.3. | Destinte                                                             | 23 |
| 3.3.2.4. | Blanqueo                                                             | 24 |
| 3.3.2.5. | Agregados químicos                                                   | 25 |
| 3.3.3.   | Formación de la hoja                                                 | 26 |
| 3.3.3.1. | Prensado y secado                                                    | 26 |
| 3.3.3.2. | Cortado                                                              | 26 |
| 3.4.     | Determinación de parámetros de calidad del producto final            | 26 |
| 3.4.1.   | pH y humedad del papel                                               | 26 |
| 3.4.2.   | Gramaje                                                              | 27 |
| 3.4.3.   | Resistencia a la rotura por tracción longitudinal y espesor de papel | 28 |
| 3.4.4.   | Tiempo de absorción                                                  | 29 |
| 3.4.5.   | Rendimiento                                                          | 30 |
| 3.4.6.   | Resultados                                                           | 31 |
| 3.5.     | Análisis estadístico                                                 | 31 |
| 3.5.1.   | Análisis ANOVA                                                       | 31 |
| 3.5.2.   | Prueba de Tukey                                                      | 32 |
| 3.5.3.   | Selección de procedimiento                                           | 36 |
| 3.6.     | Diagramas                                                            | 38 |
| 3.6.1.   | Diagrama de bloques de proceso                                       | 38 |
| 3.6.2.   | Diagrama de flujo de procesos                                        | 39 |
| 3.7.     | Identificación de equipos                                            | 40 |
| 3.7.1.   | Principales                                                          | 40 |

| <b>3.7.2.</b>                                                                                           | De transporte                                                                                                                                                                                                                            | 40               |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 3.7.3.                                                                                                  | De servicio                                                                                                                                                                                                                              | 41               |
| 3.8.                                                                                                    | Cálculos de ingeniería                                                                                                                                                                                                                   | 41               |
| 3.8.1.                                                                                                  | Balance de masa y energía                                                                                                                                                                                                                | 41               |
| 3.8.1.1.                                                                                                | Resultados                                                                                                                                                                                                                               | 51               |
| 3.8.2.                                                                                                  | Dimensionamiento de equipos                                                                                                                                                                                                              | 52               |
| 3.8.2.1.                                                                                                | Tanque de destinte, equipo de blanqueo 1 y 2, tanque de mezclado                                                                                                                                                                         | 52               |
| 3.8.2.2.                                                                                                | Desfibrador                                                                                                                                                                                                                              | 57               |
| 3.8.2.3.                                                                                                | Depurador por tamiz                                                                                                                                                                                                                      | 58               |
| 3.8.2.4.                                                                                                | Lavador                                                                                                                                                                                                                                  | 59               |
| 3.8.2.5.                                                                                                | Prensador                                                                                                                                                                                                                                | 60               |
| 3.8.2.6.                                                                                                | Formación de la hoja                                                                                                                                                                                                                     | 60               |
| 3.8.2.7.                                                                                                | Secador por rodillo                                                                                                                                                                                                                      | 63               |
| 3.8.2.8.                                                                                                | Empaquetado                                                                                                                                                                                                                              | 65               |
| 3.8.2.9.                                                                                                | Resultados                                                                                                                                                                                                                               | 66               |
| 3.9.                                                                                                    | Análisis económico                                                                                                                                                                                                                       | 68               |
| 3.9.1.                                                                                                  | Inversión                                                                                                                                                                                                                                | 68               |
| 3.9.2.                                                                                                  | Ventas                                                                                                                                                                                                                                   | 68               |
| 3.9.2.                                                                                                  |                                                                                                                                                                                                                                          |                  |
| 3.9.2.<br>3.9.3.                                                                                        | Impuestos                                                                                                                                                                                                                                | 69               |
|                                                                                                         | Impuestos Inversión anual                                                                                                                                                                                                                |                  |
| 3.9.3.                                                                                                  | •                                                                                                                                                                                                                                        | 69               |
| 3.9.3.<br>3.9.4.                                                                                        | Inversión anual                                                                                                                                                                                                                          | 69               |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.                                                                            | Inversión anual  Materia prima y material de empaque                                                                                                                                                                                     | 69<br>69<br>70   |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.                                                    | Inversión anual  Materia prima y material de empaque  Aditivos                                                                                                                                                                           | 69<br>70         |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.                                                    | Inversión anual                                                                                                                                                                                                                          | 69<br>70<br>70   |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.4.                                        | Inversión anual                                                                                                                                                                                                                          | 69<br>70<br>71   |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.4.<br>3.9.4.5.                            | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos                                                                                                                | 69707171         |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.4.<br>3.9.4.5.<br>3.9.5.                  | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos  Total, ingreso neto                                                                                           | 6970717171       |
| 3.9.3.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.4.<br>3.9.4.5.<br>3.9.5.                            | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos  Total, ingreso neto  Indicadores de viabilidad y rentabilidad                                                 |                  |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.5.<br>3.9.5.<br>3.9.6.<br>3.9.7.<br>3.10. | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos  Total, ingreso neto  Indicadores de viabilidad y rentabilidad  Resultados                                     | 6970717171717171 |
| 3.9.3.<br>3.9.4.<br>3.9.4.1.<br>3.9.4.2.<br>3.9.4.3.<br>3.9.4.5.<br>3.9.5.<br>3.9.6.<br>3.9.7.<br>3.10. | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos  Total, ingreso neto  Indicadores de viabilidad y rentabilidad  Resultados  Análisis y discusión de resultados |                  |
| 3.9.3. 3.9.4. 3.9.4.1. 3.9.4.2. 3.9.4.3. 3.9.4.5. 3.9.5. 3.9.6. 3.9.7. 3.10.  CONCL RECONCI             | Inversión anual  Materia prima y material de empaque  Aditivos  Gasto energético  Consumo total de agua  Recursos humanos  Total, ingreso neto  Indicadores de viabilidad y rentabilidad  Resultados  Análisis y discusión de resultados |                  |

#### ÍNDICE DE TABLAS

| Tabla | 1-1:  | Coordenadas geográficas del Cantón Cañar                                         | 3   |
|-------|-------|----------------------------------------------------------------------------------|-----|
| Tabla | 1-2:  | Composición de residuos sólidos de cada cantón mancomunado en 2019               | 6   |
| Tabla | 2-2:  | Cantidad total de material reciclado anual                                       | 6   |
| Tabla | 3-2:  | Composición de los desechos sólidos: % en el Cantón Cañar                        | 6   |
| Tabla | 4-2:  | Requisitos para el papel higiénico de uso en el hogar e institucional.           | .13 |
| Tabla | 5-2:  | Simbología para diagrama de procesos                                             | .15 |
| Tabla | 1-3:  | Datos para humedad de materia prima                                              | .21 |
| Tabla | 2-3:  | Condiciones de operación para desfibrado                                         | .22 |
| Tabla | 3-3:  | Condiciones de operación para destinte                                           | .23 |
| Tabla | 4-3:  | Condiciones de operación para etapa 1 de blanqueo                                | .24 |
| Tabla | 5-3:  | Condiciones de operación para segundo proceso de blanqueo                        | .25 |
| Tabla | 6-3:  | Composición de los agregados químicos para la pasta                              | .25 |
| Tabla | 7-3:  | Datos para pH y porcentaje de humedad de papel                                   | .27 |
| Tabla | 8-3:  | Datos para gramaje de papel                                                      | .28 |
| Tabla | 9-3:  | Datos para resistencia a la rotura por tracción longitudinal y espesor de hoja   | .29 |
| Tabla | 10-3: | Datos de espesor de hoja                                                         | .29 |
| Tabla | 11-3: | Datos para tiempo de absorción de papel                                          | .30 |
| Tabla | 12-3: | Datos de masas y rendimiento por procedimiento                                   | .30 |
| Tabla | 13-3: | Comparación de parámetros de calidad con la norma NTE INEN 1430                  | .31 |
| Tabla | 14-3: | Tabla de resultados de análisis de varianza univariable                          | .32 |
| Tabla | 15-3: | Resultados prueba Tukey para gramaje                                             | .33 |
| Tabla | 16-3: | Resultado prueba Tukey para la resistencia a la rotura por tracción longitudinal | .33 |
| Tabla | 17-3: | Resultado prueba Tukey para tiempo de absorción                                  | .34 |
| Tabla | 18-3: | Resultado prueba Tukey para nivel de pH                                          | .34 |
| Tabla | 19-3: | Resultado prueba Tukey para porcentaje de humedad                                | .35 |
| Tabla | 20-3: | Resultado prueba Tukey para espesor                                              | .35 |
| Tabla | 21-3: | Distribución de equipos por tipo de proceso                                      | .40 |
| Tabla | 22-3: | Equipo necesario para transporte de fluidos                                      | .40 |
| Tabla | 23-3: | Distribución de equipos de servicio por sustancia de trabajo                     | .41 |
| Tabla | 24-3: | Datos para balance de masa                                                       | .41 |
| Tabla | 25-3: | Calores específicos de componentes mayoritarios                                  | .42 |
| Tabla | 26-3: | Resultados del balance general del proceso                                       | .42 |
| Tabla | 27-3: | Taza de rechazo en seco a nivel general y por procesos                           | .43 |
| Table | 20 2. | Pagultados dal lavado 1                                                          | 11  |

| Tabla 30-3: Resultados del depurado por tamiz                                  | 45 |
|--------------------------------------------------------------------------------|----|
| Tabla 31-3: Resultados del espesado                                            | 45 |
| Tabla 32-3: Resultados de primer blanqueamiento                                | 45 |
| Tabla 33-3: Resultados del segundo lavado                                      | 46 |
| Tabla 34-3: Resultados de segundo espesado                                     | 47 |
| Tabla 35-3: Resultados de segundo blanqueamiento                               | 47 |
| Tabla 36-3: Resultados de tercer lavado                                        | 48 |
| Tabla 37-3: Resultados del tanque de mezcla                                    | 48 |
| Tabla 38-3: Resultados de diluido                                              | 49 |
| Tabla 39-3: Resultados de formado de papel                                     | 49 |
| Tabla 40-3: Resultados de prensado de lámina                                   | 49 |
| Tabla 41-3: Resultados de secado                                               | 50 |
| Tabla 42-3: Tabla de resultados del balance de masa                            | 51 |
| Tabla 43-3: Tabla de resultados del balance de energía                         | 52 |
| Tabla 44-3: Parámetros de diseño de agitadores tipo turbina                    | 53 |
| Tabla 45-3: Valores para el dimensionamiento de equipos de blanqueo y mezclado | 57 |
| Tabla 46-3: Resultados de dimensionamiento de equipos                          | 66 |
| Tabla 47-3: Tabla resumen de equipos                                           | 67 |
| Tabla 48-3: Cotización de equipos                                              | 68 |
| Tabla 49-3: Características del papel higiénico por rollo                      | 68 |
| Tabla 50-3: Cotización de materia prima y material de empaque anual            | 70 |
| Tabla 51-3: Cotización anual de agregados químicos                             | 70 |
| Tabla 52-3: Costo anual por gasto energético de equipos                        | 70 |
| Tabla 53-3: Costo anual por consumo de agua                                    | 71 |
| Tabla 54-3: Costo por recursos humanos                                         | 71 |
| Tabla 55-3: Ingreso Neto                                                       | 71 |
| Tabla 56-3: Variables para determinación del VAN y TIR                         | 72 |
| Tabla 57-3: Tabla de saldos actualizados                                       | 73 |
| Tabla 58-3: Resultados de análisis económico                                   | 73 |

#### ÍNDICE DE FIGURAS

| Figura 1-1: Delimitación geográfica del Cantón Cañar                                  | 3  |
|---------------------------------------------------------------------------------------|----|
| Figura 1-3: Diagrama de flujo de procesos                                             | 39 |
| Figura 2-3: Mediciones de turbina                                                     | 53 |
| Figura 3-3: Número de potencia vs número de Reynolds de algunos impulsores de turbina | 55 |

## ÍNDICE DE GRÁFICOS

| Gráfico 1-2: Principales operaciones para la obtención en pasta celulósica | 10 |
|----------------------------------------------------------------------------|----|
| Gráfico 2-2: Diagrama de flujo para elaboración de papel higiénico         | 12 |
| Gráfico 1-3: Medias estimadas de características físicas del papel         | 36 |
| Gráfico 2-3: Diagrama de bloque del proceso                                | 38 |

#### ÍNDICE DE ANEXOS

**ANEXO A:** "INFORME AMBIENTAL N. 004-UTGA-2021

**ANEXO B:** "NTE INEN 1430: PAPELES Y CARTONES. PAPEL HIGIÉNICO. REQUISITOS"

**ANEXO C:** "NTE INEN-ISO 12625-6 PAPEL TISÚ Y PRODUCTOS DE TISÚ. PARTE 6: DETERMINACIÓN DEL GRAMAJE (ISO 12625-6:2005, IDT)"

**ANEXO D:** "NTE INEN 1405:2013 PAPELES Y CARTONES. DETERMINACION DE LA RESISTENCIA A LA RUPTURA POR TRACCIÓN EN SECO"

**ANEXO E:** "NTE INEN 1407:2013 PAPELES Y CARTONES. DETERMINACIÓN DE LA ABSORCIÓN DEL AGUA EN PAPELES POROSOS"

**ANEXO F:** "NTE INEN 1418:2013 PAPELES Y CARTONES. DETERMINACIÓN DE PH DE UN EXTRACTO ACUOSO"

ANEXO G: "TABLA PROPIEDADES DE MATERIALES DE CONSTRUCCIÓN"

ANEXO H: "TABLA PROPIEDADES DEL AGUA SATURADA"

**ANEXO I:** "DESFIBRADO Y DESTINTE DE PAPEL"

**ANEXO J:** "BLANQUEO"

ANEXO K: "ACABADO FINAL DE LA HOJA"

**ANEXO L:** "COMPARACIÓN DE PRODUCTOS OBTENIDOS"

**ANEXO M:** "ANÁLISIS DE PARÁMETROS DE CALIDAD I"

**ANEXO N:** "ANÁLISIS DE PARÁMETROS DE CALIDAD II"

**ANEXO O:** "DISEÑO DE EQUIPOS I"

**ANEXO P:** "DISEÑO DE EQUIPOS II"

**ANEXO Q:** "DISEÑO DE EQUIPOS III"

**ANEXO R:** "DIAGRAMAS P&ID I"

ANEXO S: "DIAGRAMAS P&ID II"

**ANEXO T:** "DIAGRAMAS P&ID III"

ANEXO U: "DIAGRAMAS P&ID IV"

**ANEXO V:** "DISTRIBUCIÓN DE LA PLANTA"

#### **RESUMEN**

El objetivo de este trabajo fue diseñar un proceso industrial para la producción de papel higiénico a partir de cartón y papel reciclado, para lo cual se partió del diseño a escala de laboratorio que sirvió como base para los cálculos y proyecciones pertinentes. A nivel de laboratorio se propusieron tres experimentos con diferencias en los métodos de destinte, desfibrado y blanqueamiento de pulpa; al realizar el control de calidad a sus productos mediante la aplicación de la norma NTE INEN 1430, se identificó el procedimiento óptimo y de mayor rendimiento; además, se identificaron los equipos involucrados, esto a la par de los balances de masa y energía, permitieron elaborar la proyección a nivel industrial, misma que se acompañó con un análisis de viabilidad económica. El análisis estadístico para los datos obtenidos durante el control de calidad se realizó mediante la implementación de las pruebas ANOVA y TUKEY, se evidenciaron diferencias significativas entre los procedimientos planteados y se estableció el procedimiento optimo con un 56.282% de rendimiento donde se partió de un destinte previo al desfibrado, y la pulpa se sometió a dos procesos de blanqueo con hipoclorito de sodio y peróxido de hidrógeno. Finalmente, el proceso industrial planteado, con un VAR de 5211.62, TIR del 20% y un periodo de recuperación de 4 años aproximadamente, demostró ser viable con las condiciones determinadas, sin embargo, cabe la posibilidad de realizar una optimización, para lo cual, se recomienda analizar métodos de blanqueo adicionales que aminoren los costos de producción; además de sistemas de recuperación de pulpa que puedan aplicarse en los rechazos de los sistemas de lavado para aumentar el rendimiento del proceso.

**Palabras clave:** <DISEÑO DE PROCESO>, <DESTINTE>, <BLANQUEAMIENTO DE PULPA>, <DESFIBRADO>, <DIMENSIONAMIENTO DE EQUIPOS>.

0353-DBRA-UTP-2023

**ABSTRACT** 

The objective of this work dealt with designing an industrial process to produce toilet paper from

cardboard and recycled paper, starting with a laboratory-scale design that served as the basis for

the pertinent calculations and projections. At the laboratory level, three experiments were

proposed with differences in the methods of deinking, defibering and pulp bleaching; by

performing quality control on the products through the application of the NTE INEN 1430

standard, the optimal and most efficient procedure was identified; in addition, the equipment

involved was identified, which, together with the mass and energy balances, allowed for the

elaboration of the industrial level projection, which was accompanied by an economic feasibility

analysis. The statistical analysis for the data obtained during the quality control was carried out

by implementing ANOVA and TUKEY tests. Significant differences were found between the

procedures proposed and the optimum procedure was established with a yield of 56.282%, where

the starting point was a de-inking prior to defibering, and the pulp was subjected to two bleaching

processes with sodium hypochlorite and hydrogen peroxide. Finally, the industrial process

proposed, with an ARV of 5211.62, IRR of 20% and a recovery period of approximately 4 years,

proved to be viable with the conditions determined; however, there is the possibility of

optimization, for which it is recommended to analyze additional bleaching methods that reduce

production costs; as well as pulp recovery systems that can be applied in the wastes of the washing

systems to increase the process yield.

Key words: <PROCESS DESING>, <DEINKING>, <PULP BLEACHING>, <FIBERING>,

<EQUIPMENT SIZING>.

Abg. Ana Gabriela Reinoso, Mgs.

C.I: 110369613-2

XV

#### INTRODUCCIÓN

El Cantón Cañar tiene una población de aproximadamente 58185 de habitantes, cada uno produce diariamente una cantidad considerable de desechos que forman parte de la basura que es llevada a la planta clasificadora y posteriormente al relleno sanitario, esto en el mejor de los casos; sin embargo, existe la posibilidad de que estos terminen en carreteras, suelo agrícola o fuentes de agua entre otros, significando un gasto alto a la municipalidad que implica su recolección, tratamiento y desecho.

La composición de los desechos sólidos es variable, pero generalmente contiene: material orgánico, metales, plásticos, textiles, papeles y cartones. Cada uno con un efecto distinto en el medio ambiente, tanto a corto como a largo plazo. A pesar de esto, son los dos últimos los que presentan mayor impacto debido a dos puntos importantes: primero, su fabricación conlleva a la talla de árboles provocando una deforestación progresiva; y segundo, son materiales de mayor uso cotidiano que generalmente son desechados luego de cumplir con su propósito. Todo esto desencadena en efectos negativos al entorno provocando alteraciones al ecosistema que pueden ser evidenciadas día a día.

Una de las maneras de contrarrestar estos efectos es el reciclaje, es decir, volver productivo un material que ha cumplido con su propósito de elaboración. Para ello una propuesta posiblemente viable es la implementación de procesos de producción de materiales nuevos a partir de estos desperdicios. Para esto, inicia a partir de una evaluación a nivel de laboratorio donde se determinará un proceso adecuado y económico que logre las características deseadas del producto terminado. Una vez determinado el proceso, el interés radica en llevarlo a nivel industrial para lo cual es necesario plantear los diagramas que definirán el funcionamiento de la producción general mismos que contengan la información requerida para cada operación. Finalmente, como en todo proyecto, la viabilidad es uno de los temas principales a tratar ya que definirá la aprobación o rechazo del mismo, para esto será necesario analizar una inversión inicial y el tiempo en el que se va a recuperar esa inversión.

#### CAPÍTULO I

#### 1. DIAGNÓSITO DEL PROBLEMA

#### 1.2. Identificación del problema

El papel y cartón son dos de los materiales más utilizados a nivel mundial, se estima que su producción ha incrementado de 382.6 millones de toneladas métricas en el 2006 a 419.9 millones de toneladas hasta el 2017 (Díaz, 2020). Su alta demanda tiene implicaciones perjudiciales al medio ambiente: primero, al ser una producción basada en celulosa, cada vez se requiere de mayor cantidad de vegetación para satisfacer la demanda lo que provoca una deforestación notable; por otro lado, su consumo crea grandes desechos formando parte de los residuos sólidos de una localidad, los cuales no siempre tienen su tratamiento adecuado, es decir, estos suelen ser quemados, terminan en ríos o botaderos de basura generando contaminación y una pequeña cantidad es utilizada para producir nuevos productos.

En Ecuador, el panorama no es diferente, para el 2018, sé estimó que 12900 toneladas de residuos sólidos se generaban diariamente llegando a tener un incremento del 25% para el 2020, de estos valores apenas el 10% es recuperado donde el 24.4% se compone de cartón y papel (Solíz et al., 2020, p. 17; Morán, 2018). Estos residuos recuperados pueden ser o no tratados para un nuevo uso, esto depende de las entidades encargadas de su recolección; en el caso del cantón Cañar, cuenta con una planta clasificadora de residuos sólidos en una localidad denominada "Yurakasha" mas no cuenta con ningún proceso de reciclaje propio, es decir, los residuos sólidos clasificados en esta planta son transportados hacia otras ciudades para que tengan un tratamiento adecuado; actualmente se mantiene un convenio interinstitucional entre la EMMAIPC-EP (Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar Biblián El Tambo y Suscal.) y GEOCYCLE, con vigencia hasta diciembre de 2021, donde se trasladan diariamente hacia Guayaquil un aproximado de 20 toneladas de residuos sólidos de todo tipo como textiles, cueros, plásticos, papel, cartón y biomasa como madera y aserrín (EMMAIPC, 2021b). Cabe recalcar que, a esta planta clasificadora, además de los desechos sólidos del Cantón Cañar, llegan también los desechos de los cantones pertenecientes a la EMMAIPC-EP como los son: Biblián, El Tambo y Sucal.

#### 1.3. Justificación del proyecto

El reciclaje es un tema de gran peso hoy en día, se habla de que cada ciudad debe contar con un sistema de reciclaje que aminore de cierta forma el impacto ambiental producida por la actividad humana; en caso de ciudades que no cuentan con plantas especializadas para estos tratamientos,

como es el caso del cantón Cañar, se ven forzados a recurrir a programas de reciclaje de ciudades ajenas donde los beneficios que se presentan son menores en comparación a las ciudades que si cuentan con programas propios, o simplemente los desechan en rellenos sanitarios o botaderos de basura.

Este proyecto tiene como finalidad proponer una vía para el reciclaje, enfocada al cartón y papel, que sea propio del cantón y darles una vida útil, como un nuevo producto de uso cotidiano, a estos materiales cuyo destino final es incierto en la mayoría de los casos. El reciclaje de estos materiales permitirá obtener un mayor beneficio al momento de darles un tratamiento, además del impacto ambiental positivo que se generaría ya que favorecerá una disminución en el uso de material vegetal para la fabricación de nuevos productos, en este caso papel higiénico.

#### 1.4. Localización del proyecto

El presente proyecto técnico será realizado en el Cantón Cañar, mismo que se encuentra ubicado al noreste de la provincia de Cañar siendo limitado al norte por la provincia de Chimborazo; al sur por la provincia del Azuay y los cantones de Biblián y Azogues; al ESTE, por el cantón Azogues; y, al OESTE, por la provincia del Guayas.

Tabla 1-1: Coordenadas geográficas del Cantón Cañar

| Latitud  | 2°33'38.2"S        |
|----------|--------------------|
| Longitud | 78°56'21.8"W       |
| Altitud  | 3160 m.s.n.m       |
| Clima    | 11.8°C media anual |

Fuente: Google Maps, 2021.

Realizado por: Morocho, Oscar, 2021.



**Figura 1-1:** Delimitación geográfica del Cantón Cañar

Fuente: Google, 2021.

#### 1.5. Objetivos

#### 1.5.1. Objetivo General

 Diseñar un proceso industrial para la producción de papel higiénico a partir de papel y cartón reciclado para el GADIC Cañar.

#### 1.5.2. Objetivos específicos

- Diseñar a escala de laboratorio el proceso de elaboración de papel higiénico a partir de cartón y papel desechado.
- Validar el producto obtenido según la norma NTE INEN 1430 con el proceso planteado.
- Realizar los diagramas de ingeniería y de operación identificando las variables presentes en el proceso.
- Dimensionar los equipos necesarios para un proceso industrial de obtención de papel.
- Realizar un estudio de viabilidad técnica y económica del proyecto.

#### CAPÍTULO II

#### 2. MARCO TEÓRICO

#### 2.1. Antecedentes de la investigación

A lo largo de los años, la producción de papel higiénico ha ido cambiando y adaptándose a las circunstancias del entorno que se presentan, tales como la alta demanda y diversos problemas ambientales que ocasiona su producción. En vista de ello se ha optado por investigar nuevas alternativas de materia prima para la elaboración de este producto donde la más aceptable y que más beneficios presenta es la del reciclaje. Por tal motivo, muchos investigadores han decidido encaminarse por esta área con la finalidad de determinar un proceso más óptimo y económico de aprovechar esta materia prima.

León y Fuentes (2012, p. 100) en su tesis "Diseño de un proceso para la fabricación de papel reciclado ecológico a escala laboratorio usando peróxido de hidrógeno" indican que variaciones en variables como la cantidad de agente oxidante y reductor, tiempo de destintado y presión de prensado afectan directamente en las características finales del producto por lo que se debe conseguir un óptimo equilibro entre todas ellas.

Estrada (2013, p. 1) recalca la importancia de la optimización del consumo energético en la producción de papel higiénico, ya que la mayor parte de gastos producidos por una fábrica de este tipo radica en el proceso de secado y si se consigue una distribución óptima de las variables de proceso, se logra disminuir el consumo de combustible economizando en este sentido.

Por otra parte, Velásquez et al. (2010, p. 46) en su publicación "Producción de almidón Zwitteriónico a partir de almidón de papa para la industria papelera" menciona la efectividad del almidón como un aditivo que mejora las características de rigidez, resistencia, peso, gramaje, etc., en un papel reforzando las uniones interfibra de la pulpa de celulosa.

Para el desarrollo de este proyecto, los datos a emplearse serán los proporcionados por la EMMAIPC sobre la caracterización de la materia prima, mismos que se encuentran en el ANEXO A: "Informe ambiental N.- 004-UTGA-2021".

El trabajo por parte de la EMMAIPC se vio afectada para el año 2020 debido a la pandemia que se presentó, donde los valores de recolección se vieron afectado llegando en unos meses a mantenerse como mínimos, debido a esto, los valores en los que se basa este trabajo son los

recolectados en el 2019 para mantener una cercanía al mercado en una situación normal. Para este año, la caracterización de los residuos sólidos fue de:

Tabla 1-2: Composición de residuos sólidos de cada cantón mancomunado en 2019

| Cantón   | Orgánico | Cartón | Papel | Inorgánico | Madera | Caucho | Textil | Uso Higiénico | Otros  |
|----------|----------|--------|-------|------------|--------|--------|--------|---------------|--------|
| Cañar    | 57.09%   | 0.51%  | 3.08% | 22.86%     | 0.28%  | 0.00%  | 1.98%  | 9.97%         | 4.23%  |
| Biblián  | 46.85%   | 1.45%  | 3.89% | 24.14%     | 0.58%  | 0.91%  | 1.58%  | 11.71%        | 8.89%  |
| El Tambo | 61.65%   | 1.10%  | 3.26% | 9.93%      | 0.37%  | 0.14%  | 2.79%  | 16.00%        | 4.79%  |
| Suscal   | 39.20%   | 3.99%  | 8.66% | 17.87%     | 0.14%  | 4.12%  | 1.68%  | 10.63%        | 13.70% |

Fuente: EMMAIPC, 2021a.

Realizado por: Morocho, Oscar, 2021.

 Tabla 2-2:
 Cantidad total de material

reciclado anual

| TIPO DE MATERIAL | 2019 (Tn) |
|------------------|-----------|
| Papel cuaderno   | 25.47     |
| Cartón           | 42.4      |

Fuente: EMMAIPC, 2021a.

Realizado por: Morocho, Oscar, 2021.

Donde se puede observar un porcentaje considerable de papel y cartón presente en estos desperdicios, sin embargo, dependiendo del cantón procedente, los materiales que entran dentro de estos porcentajes pueden variar. Siendo así, para el cantón Cañar se observa la caracterización siguiente:

**Tabla 3-2:** Composición de los desechos sólidos: % en el Cantón Cañar

|        | MATERIALES                     | 2019  |
|--------|--------------------------------|-------|
| CARTÓN | Plegadizo                      | 0.22% |
| CARTON | Grueso                         | 0.28% |
| PAPEL  | Periódico                      | 0.28% |
|        | Kraft                          | 0.00% |
|        | Bond y blanqueado impreso      | 0.03% |
|        | Bond y blanqueado sin imprimir | 0.02% |
|        | Papel de cuaderno              | 1.75% |
|        | Revista                        | 0.99% |

Fuente: EMMAIPC, 2021a.

Realizado por: Morocho, Oscar, 2021.

#### 2.2. Marco conceptual

#### 2.2.1. Papel y cartón

El papel es un material que se elabora a partir de fibras celulósicas en la que su estructura está compuesta por fibras largas (aproximadamente 3 milímetros) o fibras cortas (entre 1 a 2 milímetros), esto dependiendo del uso del que se vaya a dar. Siendo así, papeles con un mayor requerimiento de resistencia a la tensión, tienen en su composición fibras largas (provenientes de pino u otras coníferas); por el contrario, en papeles cuya resistencia no es primordial, pero si su formación, textura y opacidad, las fibras cortas (extraídas principalmente del eucalipto) forman mayoritariamente parte de su estructura (Bonilla, 2015, p. 11).

De la misma manera que el papel, el cartón está compuesto a partir de fibras celulósicas. Para su fabricación es necesaria la superposición de varias capas de pasta de papel adquiriendo dureza y resistencia.

#### 2.2.1.1. Papel y cartón como materia prima

El papel y cartón, al igual que cualquier producto elaborado, es desechado luego de su uso provocando altas cantidades de residuos sólidos. Sin embargo, su contenido de celulosa lo hace apto para un proceso que se denomina reciclaje. Puican (2018, p. 20) explica al reciclaje de papel y cartón como un proceso de recuperación para producción de productos nuevos de papel. A estas materias primas se las denomina fibras de celulosa secundaria ya que han pasado por al menos una vez por un proceso para fabricar papel.

Vásconez (2018, p. 4) explica algunos tipos de papel que pueden ser usados para el reciclaje, estos son:

- **Bond blanco:** papel que no presenta ningún tipo de impresión o tinta.
- ➤ **Bond impreso:** papel tipo blanco que proviene de impresiones únicamente en blanco y negro los cuales son usados mayormente en oficinas y/o universidades.
- Mixto A: papel con poca cantidad de color como cuadernos, revistas o algunos libros.
- ➤ Mixto B: papel con una gran cantidad de color impreso, aquí se encuentran periódicos y guías telefónicas.

Sin embargo, existen algunos tipos de papel y cartón que no son aptos para el reciclaje debido a que su uso es único o su composición presenta diferentes contaminantes que dificultan el proceso. Tal es el caso del papel sanitario, papel encerado o con parafina, papel o cartón con grasa, papel autocopiado, papel térmico de fax o papel fotográfico; estos materiales contienen en su estructura fluidos o elementos que generalmente no se pueden eliminar sin destruir la celulosa (Arriols, 2020).

#### 2.2.1.2. Reciclaje de papel

El primer paso a dar en el reciclado de cartón y papel se basa principalmente en la obtención de la pasta celulósica de fibras secundarias a partir de los materiales ya mencionados. Este proceso puede variar dependiendo de los desechos a tratar y el producto que se va a obtener, sin embargo, existen operaciones en común a los cuales se someten todos los tipos de papel y en los cuales se basará el diseño a proponer:

**Disolución de las fibras secundarias:** llamado también desfibrado, consiste en obtener una pasta consistente y uniforme a partir del papel reciclado haciendo uso de un equipo denominado Pulper (Vásconez, 2018, p. 17).

**Limpieza y depuración de la masa obtenida:** La pasta obtenida se somete a un proceso de tamizado y centrifugado con el fin de eliminar partículas de gran tamaño como lo son: metales, plásticos, grapas, clips, etc., seguido a ello se realiza una depuración para eliminar las partículas que se hubiesen filtrado consiguiendo así una pasta libre de agentes extraños (Vásconez, 2018, p. 17).

**Destinte y blanqueo:** en esta etapa se busca eliminar la mayor cantidad de tinte existente en la materia prima inicial, para ello la pasta se somete a un tratamiento con dióxido de cloro o a un método TCF donde los agentes blanqueadores pueden ser el peróxido de hidrógeno y el hidrosulfito de sodio. Un punto a tomar en cuenta es que el método TCF es menos tóxico que el tratamiento con cloro y a su vez utiliza menos agua (Noruega, 2020). Algunos de los químicos usados en el destinte y blanqueamiento de pastas son:

- ➤ **Hipoclorito de sodio:** compuesto químico fuertemente oxidante usado como fungicida y para blanqueo de textiles y papel (Braz, 2007, p. 111).
- ➤ Nonil Fenol etoxilado: surfactante no iónico etoxilado usado comúnmente en el destintado ya que actúa también como estabilizante favoreciendo la repulsión fibra-tinta, su uso en la flotación es recomendada con una concentración de entre 200 a 500 mg/L ya que concentraciones superiores disminuyen su acción (Machado y Alzate, 2012, p. 19).

➤ Peróxido de hidrógeno: compuesto con alto poder oxidante, se usa como desinfectante, blanqueadora y desodorante. En el blanqueo, reduce considerablemente la necesidad de aditivos con contenido en cloro mientras se mantenga en un pH alcalino (Braz, 2007, p. 34).


**Refinación de la pasta:** la pasta celulósica de fibras secundarias entra a un tratamiento mecánico en los refinadores donde se modifica su estructura y se la hace apta para la formación del papel (Vásconez, 2018, p. 17).

**Agregado o no de fibras vírgenes:** el reciclaje de papel alarga la vida útil de las fibras celulósicas contenidas, sin embargo, dependiendo del número de veces que las fibras han sido sometidas a procesos de reciclaje, éstas se van deteriorando y se crea la necesidad de incorporar fibras vírgenes en el proceso de producción de papel formándose una complementariedad entre estos tipos de fibras (Ministerio del Medio Ambiente Chile, 2010, p. 52).

**Agregado de productos químicos:** estos son incorporados para el fortalecimiento de varias características del papel, como lo es la estructura fibrosa, la cual es cada vez más débil debido a los continuos procesos de reciclado (Robles et al., 2014, p. 71). Braz (2007, pp. 24-263) define varios agregados químicos que son utilizados en la fabricación de papel como carga o para mejorar distintas características del mismo, entre ellos están:

- ➤ Almidón: polisacárido de origen vegetal insoluble en agua fría, pero en caliente forma un engrudo que actúa como cola o adhesivo. Es usado para mejorar el acabado, rigidez y resistencia del papel.
- Carbonato de calcio: se usa como carga y revestimiento del papel, también puede añadirse con la finalidad de aumentar el pH de la pulpa.
- ➤ Hidróxido de sodio: al igual que el carbonato de calcio, se usa generalmente para aumentar el pH de la pulpa hasta el requerido dependiendo del procedimiento.
- ➤ Talco: formado en su mayor parte por silicato magnésico hidratado natural, es un polvo de color blanco resistente a los ácidos, álcalis y al calor. Generalmente es usado como carga y para el estucado en la fabricación de papel.

Estas operaciones siguen una línea de continuidad que se describe en el siguiente diagrama:



**Gráfico 1-2:** Principales operaciones para la obtención en pasta celulósica

Fuente: Arocena, 1998, p. 216.

Cabe recalcar que el reciclaje de papel tiene un límite, un mismo papel se lo puede reciclar hasta un máximo de 7 veces dependiendo su estructura ya que el procedimiento para convertirlo en un producto nuevo desgasta las fibras y los reduce de tamaño, asiéndolos menos eficientes al momento de formar un nuevo papel.

#### 2.2.2. Papel Higiénico

El papel higiénico es un tipo de papel tissue que se elabora a partir de una mezcla de fibras de celulosa corta y larga, lo que, junto a una operación de rebobinado durante su secado, le da su suavidad característica de este producto. Este tipo de papel es de uso sanitario y único, lo que quiere decir que luego de su utilización, el mismo ya no puede ser utilizado para crear un nuevo producto.

Hoy en día, este producto es indispensable para la sociedad, se lo puede encontrar en cualquier hogar o institución. En el Ecuador existe un gran número de empresas dedicadas a la producción y comercialización de papel higiénico y sus derivados debido al crecimiento constante de la demanda por parte de los consumidores ya que, para una persona, representa cerca del 0.5% de la canasta básica así como el 1.3% del sueldo básico en gastos por mes (Anchapaxi, 2012, p. 42; Arízaga y Marín, 2011, p. 10).

#### 2.2.2.1. Proceso de producción de papel higiénico

El papel higiénico se elabora a partir de una mezcla de fibras de celulosa cortas y largas, ya sea virgen o secundaria. En este caso, el proceso de pulpaje u obtención de pulpa es el mismo que para cualquier otro tipo de papel o cartón, la diferencia radica en las etapas posteriores a la misma donde se le da la propiedad de suavidad característico de este producto.

Bernal (2014, p. 39) menciona un proceso de producción a partir de la pulpa moldeada que consta de 8 procedimientos luego del secado, los cuales se describen en el gráfico 2-2.

- Formación de la hoja: Una vez obtenida la pasta de celulosa secundaria, esta pasa a un equipo compuesto de bandas filtradoras y varios rodillos de prensa, donde se forma una delgada lámina.
- > Secado: La lámina obtenida pasa a través de un cilindro caliente que evapora la cantidad restante de agua presente en la lámina de papel.

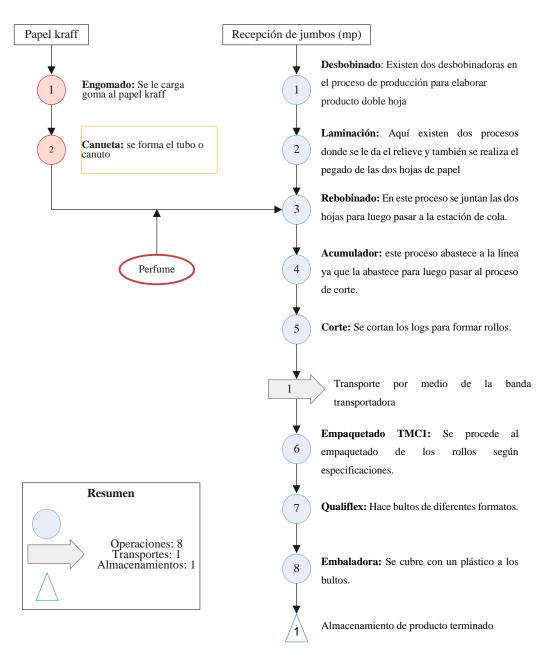



Gráfico 2-2: Diagrama de flujo para elaboración de papel higiénico

Fuente: Bernal, 2014, p. 39.

#### 2.2.2.2. Parámetros de calidad del papel higiénico norma NTE INEN 1430

El papel higiénico debe estar libre de suciedad, grumos de fibra, virutas de madera u otras materias extrañas en comparación con su composición normal. Puede contener otros aditivos para uso en productos blancos, teñidos, impresos o sin imprimir, o para el consumo humano y no debe tener un impacto nocivo en el medio ambiente (NTE INEN 1430, 2015).

Para que el producto sea considerado como apto para el uso humano debe cumplir con ciertas características físicas que se establecen en la norma vigente NTE INEN 1430 "Papeles y cartones. Papel higiénico. Requisitos".

**Tabla 4-2:** Requisitos para el papel higiénico de uso en el hogar e institucional.

| Requisitos                                        | Unidad           | Papel hoja sencilla |      | Papel multihoja |      | Métodos de ensayo                               |
|---------------------------------------------------|------------------|---------------------|------|-----------------|------|-------------------------------------------------|
|                                                   |                  | Mín.                | Máx. | Mín.            | Máx. |                                                 |
| Gramaje                                           | g/m <sup>2</sup> | 19,0                |      | 28,0            |      | NTE INEN-ISO 536                                |
| Resistencia a la rotura por tracción longitudinal | N/m              | 50                  |      | 50              |      | NTE INEN-ISO 12625-4                            |
| Tiempo de absorción                               | S                |                     | 50   |                 | 50   | NTE INEN 1407                                   |
| Longitud de la hoja entre perforaciones (*)       | cm               | 10,0                |      | 10,0            |      | Verificación de dimensiones medición directa    |
| Ancho de hoja (*)                                 | cm               | 9,2                 |      | 9,2             |      | Verificación de dimensiones<br>medición directa |

(\*) No aplica para el papel higiénico institucional.

NOTA 1. Todas las características anteriores se determinarán en el producto final.

NOTA 2. El valor del gramaje está especificado para producto final.

Fuente: INEN INSTITUTO ECUATORIANO DE NORMALIZACIÓN, 2015.

Realizado por: Servicio Ecuatoriano de Normalización.

- ➤ **Gramaje:** También conocido como peso base, representa la cantidad de papel presente por área superficial de producto. Generalmente se expresa por unidades métricas gramo por metro cuadrado (Reyna et al., 2003, p. 50).
- ➤ Resistencia a la Rotura: Representa el esfuerzo necesario al que se somete el papel hasta producir una ruptura. Para determinar esta característica, el papel debe estar sometido a condiciones estandarizadas para que estas no afecten en el resultado final (Reyna et al., 2003, p. 51).
- ➤ **Tiempo de absorción:** Es el tiempo que demora el papel en absorber cierta cantidad de agua al ponerlos en contacto. Se mide en segundos.

#### 2.2.2.3. Parámetros adicionales de análisis

Además de los parámetros establecidos por el Instituto Ecuatoriano de Normalización, existen parámetros adicionales que están relacionadas a las características del papel, como tiempo de vida o dureza.

- ▶ pH: uno de los parámetros de calidad del papel tiene relación con el pH ya que, como mencionan León y Fuentes (2012, p. 62), papeles con pH ácido tienden a autodestruirse mientras que los de pH entre 7 a 8 tienen un mayor potencial de vida larga.
- ➤ Porcentaje de humedad: consiste en la cantidad de agua contenida con respecto al peso del papel. Un contenido de humedad alto provoca alteraciones en las propiedades del papel, mientras que un bajo contenido del mismo ocasiona que el papel se vuela quebradizo y duro (Braz, 2007, p. 117). El porcentaje adecuado se estima en alrededor del 5%.
- Espesor: es la distancia medida entra cada una de las caras de una hoja, este puede variar sin necesariamente tener una variación en el gramaje. Es uno de los parámetros que influye directamente en las propiedades del papel (Braz, 2007, p. 77).
- > Rendimiento: hace referencia a la cantidad obtenida del producto deseado a partir de la materia prima introducida al inicio del proceso (Vásquez et al., 2014, p. 284).

#### 2.2.3. Diagramas de ingeniería

Los diagramas son utilizados ampliamente en ingeniería para mostrar la disposición de equipos que se ven involucrados; estos son una descripción esquemática del proceso en una forma general o precisa lo cual sirve como fuente de información para cualquier diseño y su comparación con el rendimiento operacional (Sinnott y Towler, 2012, p. 154; Ossorio y Rivillas, 1990, p. 52).

Los diagramas varían dependiendo de la información que se desea presentar, entre están: diagrama de bloque, diagrama de flujo, diagrama de operación y diagrama P&ID.

- **Diagrama de bloque:** este diagrama muestra el proceso de una manera global, es la manera más sencilla de representar un proceso ya que se muestra etapas completas por cada bloque. En este caso, para representar flujos y corrientes pueden mostrarse diagramas adyacentes si la información a detallar es pequeña (Sinnott y Towler, 2012, p. 155).
- Diagrama de flujo: A diferencia del diagrama de bloque, muestra mayor información del proceso como los flujos y corrientes, el sentido del flujo, su potencia y destino además de mostrar una representación gráfica de los equipos con los que se trabaja más sus respectivos nombres. Para el desarrollo de este tipo de diagramas, es necesario realizar previamente los balances de masa y energía respectivos de cada equipo (Ossorio y Rivillas, 1990, p. 54).
- Diagrama de operación: también conocido como diagrama de procesos, es un esquema gráfico que sirve para describir una secuencia general en una línea de producción y cada operación involucrada en la configuración de un producto (Suñe et al., 2004, p. 88). Estas

operaciones pueden ser agrupadas en 5 categorías generales alas cuales se les asigna una simbología especial:

Tabla 5-2: Simbología para diagrama de procesos

|  | Transporte: cualquier operación que implique el desplazamiento del producto de    |  |  |  |  |
|--|-----------------------------------------------------------------------------------|--|--|--|--|
|  | un lugar a otro.                                                                  |  |  |  |  |
|  | Almacenaje (o stock): depósito del producto en un lugar fijo durante un periodo   |  |  |  |  |
|  | de tiempo en general largo                                                        |  |  |  |  |
|  | Espera (parecido al stock): el producto espera un tiempo (en general no muy       |  |  |  |  |
|  | largo) entre una operación y otra.                                                |  |  |  |  |
|  | Control: el producto sufre una inspección de cualquier tipo. En general se asocia |  |  |  |  |
|  | con comprobaciones de calidad.                                                    |  |  |  |  |
|  | Valor añadido: el producto sufre una transformación que le añade valor            |  |  |  |  |
|  |                                                                                   |  |  |  |  |
|  | Operación combinada. Se utilizan símbolos combinados para indicar operaciones     |  |  |  |  |
|  | simultáneas                                                                       |  |  |  |  |

Fuente: Suñe et al., 2004, p. 88.

• Diagrama P&ID: este tipo de diagrama es el más completo y detallado entre los diagramas de proceso ya que detalla la ingeniería del equipo, instrumentación, tuberías, válvulas y accesorios que se involucran dentro del proceso junto con su distribución. Para su elaboración es necesario tener en cuenta los diagramas de proceso anteriores, las especificaciones de los equipos y los elementos del proceso (Ossorio y Rivillas, 1990, p. 59; Sinnott y Towler, 2012, p. 230). Los símbolos estándar utilizados en este diagrama generalmente se basan en la Norma ISA S5.1 "Sistemas de Instrumentación y Automatización de la Sociedad". En la misma se detalla la numeración de equipos, su identificación; válvulas y cañerías.

#### 2.2.4. Balance de masa y energía

El balance de materia y energía se utiliza para calcular la entrada y salida del proceso. Por su parte, los balances de materia son parte fundamental en el diseño de procesos ya que permite establecer la cantidad de materia prima y aditivos necesarios o productos obtenidos durante la ejecución de cada etapa del proceso. En cuanto a los balances de materia, estos establecen una herramienta fundamental en cuanto al desarrollo de la parte tecnológica de nuevos productos (Díaz, 2017, p. 44).

El fundamento de estos balances son las Leyes de conservación de materia y energía, lo que nos indica que tanto la cantidad de masa como la de energía deben mantenerse siempre constantes, por tanto, los flujos entrantes deben ser igual a los salientes a menos que exista acumulación de algún tipo.

$$E = S$$

#### E = S + acumulación

#### 2.2.4.1. Balance de masa

El primer paso para realizar un balance de masa en un proceso es establecer las especificaciones o condiciones del sistema, es decir, delimitar el mismo. La mayoría de los procesos industriales tienen lugar en sistemas abiertos, donde las corrientes de entrada y salida están presentes, provocando intercambios con el medio (Díaz, 2017, p. 45).

El balance de masa puede realizarse de dos formas: balance total y balance por componentes. Tienen una aplicación similar, la diferencia radica en: para el balance total se toma en cuenta las entradas y salidas de masa en general como si fuese un solo componente, por el contrario, para el balance por componentes, se debe considerar el porcentaje de cada elemento de intereses presente en cada flujo de entrada y de salida. A raíz de esto, se evidencia varias ecuaciones con las cuales trabajar un mismo proceso, Díaz (2017, p. 52) establece estas ecuaciones en tres principales para un sistema de dos componentes:

Balance global

$$m_e = m_a + m_c$$

Balance del componente 1

$$m_e * x_e^{comp1} = m_c * x_c^{comp1}$$

Balance del componente 2

$$m_e * x_e^{comp2} = m_a * x_a^{comp2} + m_c * x_c^{comp2}$$

Donde:

- m<sub>e</sub>: flujo másico de entrada
- ma: flujo másico de salida "a"
- m<sub>c</sub>: flujo másico de salida "c"
- $x_e^{comp1}$ : porcentaje del componente 1 en el flujo de entrada
- x<sub>c</sub> comp1: porcentaje del componente 1 en el flujo de salida "c"
- $x_e^{comp2}$ : porcentaje del componente 2 en el flujo de entrada
- x<sub>a</sub> comp<sup>2</sup>: porcentaje del componente 2 en el flujo de salida "a"
- x<sub>c</sub> comp2: porcentaje del componente 2 en el flujo de salida "c"

#### 2.2.4.2. Balance de energía

Para la realización de los balances de energía, se debe tener en cuenta la interacción de dos sistemas donde uno cede calor y el otro lo recibe (Vásquez et al., 2014, p. 172); realizándose todo este proceso a presión constante se tiene:

$$Q_{perdido} = Q_{ganado}$$
  
 $(mC_PdT)_{perdido} = (mC_PdT)_{ganado}$ 

Esto considerando un ambiente adiabático, caso contrario, se debe considerar las pérdidas por la interacción con el entorno.

#### 2.2.5. Viabilidad técnica y económica

Los estudios de viabilidad se desarrollan con el fin de evaluar la conveniencia en la ejecución de un proyecto dado, esto se lo realiza mediante ciertos indicadores. En caso de ser tachado como no viable, el proyecto simplemente no se ejecuta; caso contrario, si se declara como viable, éste pasa a las siguientes etapas para su ejecución (ESAN, 2017). La finalidad de aplicar este análisis al proyecto es determinar los beneficios si se puede aplicar o no el proyecto para su funcionamiento mediante proyecciones de ventas y estimaciones en la tasa de recuperación de inversión.

Existen varios indicadores para calcular la viabilidad de un proyecto, sin embargo, el VAN y el TIR son considerados los más idóneos para las primeras fases de un proyecto. Como menciona Pérez (2021) el VAN se lo usa para establecer la rentabilidad del proyecto el cual debe ser siempre mayor a cero; mientras que el TIR nos indica el periodo de tiempo en el cual la inversión inicial será retornada:

Periodo de recuperación: Es el tiempo requerido para recuperar la inversión inicial, se lo calcula mediante la acumulación de los flujos de caja en relación a la inversión inicial

$$PR = n^{\circ} periodos + \frac{costo no recuperado}{A_n}$$

➤ VAN: El Valor Actual Neto (VAN) es el valor total de los flujos netos de caja donde se descuenta el aporte inicial o inversión.

$$VAN = -A_0 + \sum_{i=0}^{n} \frac{A_i}{(1+k)^i}$$

Donde:

VAN: Valor Actual Neto

• A<sub>o</sub>: Inversión inicial

• A<sub>i</sub>: Flujo de caja

• i: número de años

Criterios de evaluación:

•  $VAN > 0 \rightarrow El$  proyecto se acepta ya que generará beneficios.

 VAN = 0 → Indiferente. El proyecto permite la recuperación de la inversión inicial mas no genera beneficios ni pérdidas.

•  $VAN < 0 \rightarrow El$  proyecto se rechaza ya que solo generará pérdidas.

> TIR: Es la tasa de descuento a la cual el VAN adquiere un valor de cero, este valor debe ser mayor a la exigida inicialmente para que el proyecto sea viable.

$$VAN = 0$$

$$0 = -A_0 + \sum_{i=0}^{n} \frac{A_i}{(1 + TIR)^i}$$

Criterios de evaluación:

• TIR  $> k \rightarrow$  El proyecto se acepta ya que generará beneficios.

 TIR = k → Indiferente. El proyecto permite la recuperación de la inversión inicial mas no genera beneficios ni pérdidas.

• TIR < k  $\rightarrow$  El proyecto se rechaza ya que solo generará pérdidas.

#### CAPÍTULO III

#### 3. MARCO METODOLÓGICO

#### 3.1. Tipo de Estudio

#### 3.1.1. Estudio Exploratorio

A partir de una recopilación bibliográfica, se realiza un repaso sobre los aspectos principales de la fabricación de papel higiénico a partir de material reciclado y se analiza los tipos de papel y cartón que pueden ser utilizados como materia prima a la vez de las características que impiden que los mismos puedan ser utilizados. A su vez, se estudia los procesos de pulpaje y elaboración del producto identificando variables que tienen distinta incidencia en resultado final. La realización del diseño de proceso involucra la identificación de equipos industriales, cálculos de dimensionamiento y análisis de viabilidad.

#### 3.1.2. Estudio Experimental

Para el diseño del proceso de producción de papel higiénico se consideró algunas variaciones en las operaciones de cada etapa como lo es el destinte, desfibrado y blanqueamiento; la finalidad de estas variaciones radica en la determinación del proceso óptimo. En cuanto a los balances para el dimensionamiento de equipos se consideró como flujos principales la masa de materia prima y la cantidad de agua utilizada en cada una de las etapas y como flujos secundarios los aditivos químicos utilizados. Finalmente, para el estudio de viabilidad económica se realizó un estimado de inversión y una proyección de ventas lo que permitió identificar la rentabilidad del proyecto.

#### 3.2. Diseño del experimento

El primer paso que se realizó es el análisis de la materia prima, para ello primero se ejecutó una caracterización manual donde se separó lo apto y no apto para reciclaje; luego se analizó el nivel de humedad presente, para ello fue necesario un total de 4 repeticiones buscando obtener el mejor resultado.

Como segundo paso fue la obtención de papel higiénico a nivel de laboratorio, este se dividió en dos fases:

- La primera fase fue la obtención de la pasta celulósica, englobando a las operaciones de desfibrado, depurado, destinte, blanqueo y agregados químicos. Para esta fase se propuso 3 procedimientos diferenciados entre sí por las condiciones de trabajo en las que se aplican, el orden de dos procesos y finalmente el tipo de agregados químicos que se le añaden.
- La segunda fase se fijó en la formación de la hoja, aquí se le acondicionó a la pasta celulósica mediante procesos únicamente físicos. El procedimiento a seguir en esta fase fue el mismo para los tres tipos de pasta obtenidos en la fase 1 con lo que se consigue tres productos bajo las mismas condiciones de acabado.

Se realizó un total de 5 repeticiones en cada caso que arrojaron resultados similares acorde a las condiciones de operación a las cuales fueron sometidas. Posterior a ello, se realizó un análisis del producto en base a la normativa NTE INEN 1430 "Papeles y cartones. Papel higiénico. Requisitos", además de determinar el rendimiento. Estos datos permitieron evaluar cada experimentación e identificar el procedimiento óptimo con mayor rendimiento.

Con el procedimiento óptimo establecido se elaboró los diagramas ingenieriles pertinentes lo que permitió identificar los equipos necesarios para su desarrollo a nivel industrial mismos que fueron dimensionados mediante balances de masa y energía.

Finalmente, se realizó un análisis de inversión y una proyección de ventas considerando un porcentaje de ventas del 100%.

#### 3.3. Experimentación

#### 3.3.1. Caracterización de la materia prima

Para verificar si el cartón y papel a utilizar es el adecuado se realizó una selección previa donde se descartó cualquier cartón y papel que presente grandes cantidades de grasa o algún tipo de recubrimiento o encerado que no permita la correcta extracción de celulosa. En el caso de cartones de alimentos contaminados con grasa, fue necesario identificar el área contaminada en búsqueda de partes no expuestas como las tapas u otros.

#### 3.3.1.1. Determinación de humedad

La determinación de humedad de la materia prima fue necesaria para realizar de los balances de materia, específicamente para el balance de agua. Para esto se utilizó una termobalanza con

muestras de peso entre 1 a 2 gramos donde se le somete a una temperatura de 120°C, el cartón y papel se analizan por separado como se puede observar en el ANEXO M, literal (a) "Determinación de porcentaje de humedad".

Los datos obtenidos fueron:

Tabla 1-3: Datos para humedad de materia prima

| N°    | Cartón | Papel  | Unidad |
|-------|--------|--------|--------|
| 1     | 11.969 | 10.108 | %      |
| 2     | 12.287 | 10.714 | %      |
| 3     | 12.360 | 9.483  | %      |
| 4     | 12.996 | 11.565 | %      |
| Prom. | 12.403 | 10.468 | %      |

Realizado por: Morocho, Oscar, 2021.

La humedad total se la determinó aplicando la siguiente fórmula:

$$\%H_T = \frac{m_c * \%H_C + m_P * \%H_P}{m_T} * 100$$

Donde:

%H<sub>T</sub>: porcentaje de humedad total

• %H<sub>C</sub>: porcentaje de humedad del cartón

• %H<sub>P</sub>: porcentaje de humedad del papel

• m<sub>C</sub>: masa del cartón

• m<sub>P</sub>: masa del papel

• m<sub>T</sub>: masa total

Con fines de cálculo, el peso de la materia prima se fijó en 10 gramos, donde el cartón y el papel que se encontraron en una proporción 2:1 respectivamente. Ésta proporción se fijó a partir de los datos expuestos en la de la tabla 2-2, donde se obtuvo un valor de 6.67 gramos para el cartón y 3.33 gramos para el papel.

$$\%H_T = \frac{(6.67 g) * (\frac{12.403}{100}) + (3.33) * (\frac{10.468}{100})}{10} * 100$$

$$\%H_T = 11.76\%$$

## 3.3.2. Obtención de pulpa celulósica

La obtención de la pulpa celulósica inició a partir de los 10 gramos anteriormente mencionados, con la misma proporción expuesta. Cabe recalcar que los porcentajes de los agentes químicos como aditivos, detergentes y blanqueadores, están determinados a partir de la relación %(m/m) con la materia prima, en caso de los líquidos la masa se la determinó mediante la densidad.

#### 3.3.2.1. Desfibrado

En este proceso se hizo uso de una licuadora como equipo desfibrador. A continuación, se muestra las condiciones de operación usados para cada procedimiento.

Tabla 2-3: Condiciones de operación para desfibrado

| Variable           | Procedimiento 1 | Procedimiento 2 (post destinte) | Procedimiento 3 (post destinte) | Unidad |
|--------------------|-----------------|---------------------------------|---------------------------------|--------|
| Consistencia final | 4               | 6                               | 6                               | %      |
| Agua               | 250             | -                               | -                               | ml     |
| pН                 | 7               | 8                               | 9                               | -      |
| Temperatura        | 22              | 22                              | 40                              | °C     |
| Tiempo             | 4               | 2                               | 2                               | min    |
| Revoluciones       | 4000            | 4000                            | 4000                            | rpm    |

Realizado por: Morocho, Oscar, 2021.

Este proceso consistió báquicamente en licuar los 10 gramos de materia prima con un mínimo de 250 ml de agua hasta conseguir una pasta homogénea. En esta operación, los tres procedimientos se llevaron a cabo de la misma forma exceptuando el tratamiento previo: el procedimiento 1 no contó con tratamiento previo, mientras que el procedimiento 2 y 3 contaron con un proceso de destinte. Debido a esta diferencia, el tratamiento 1 requirió mayor cantidad de agua y tiempo en el pulper (licuadora) para facilitar el desfibrado. Esta operación puede verse representado en el ANEXO I, literal (a) "Desfibrado de cartón y papel".

#### 3.3.2.2. Depuración

El depurado de la pasta se lo realizó mediante el uso de un tamiz, para esto, primero se buscó disminuir la consistencia en al menos 3 unidades para que el tráfico de la pulpa a través del tamiz sea de mayor eficacia y los contaminantes sólidos como cintas adhesivas, metales o materia prima sin desfibrar se separen con facilidad. En el procedimiento 2 y 3 se realizó un lavado de pulpa adicional para eliminar la tinta y el detergente presente.

#### *3.3.2.3. Destinte*

Para la eliminación de la tinta, los procesos que se emplearon fueron: flotación para el procedimiento 1, y remojo previo para los procedimientos 2 y 3. En esta operación, las condiciones de pH, consistencia y porcentaje de detergente están basadas en las expuestas por Machado y Alzate (2012, p. 18) para destinte por método neutro y alcalino.

**Tabla 3-3:** Condiciones de operación para destinte

| Variable               | Procedimiento 1 | Procedimiento 2<br>(pre desfibrado) | Procedimiento 3<br>(pre desfibrado) | Unidad |
|------------------------|-----------------|-------------------------------------|-------------------------------------|--------|
| Aditivo                | -               | NaHCO <sub>3</sub>                  | NaHCO <sub>3</sub>                  | -      |
| Consistencia           | 2               | -                                   | -                                   | %      |
| Agua                   | 500             | 250                                 | 250                                 | ml     |
| Detergente             | 0.15            | 0.2                                 | 0.15                                | %      |
| Densidad<br>detergente | 1.048 -         |                                     | -                                   | g/ml   |
| pН                     | 7               | 8                                   | 9                                   | -      |
| Presión de flotación   | 40              | -                                   | -                                   | psi    |
| Temperatura            | 40              | 22                                  | 40                                  | °C     |
| Tiempo                 | 35              | 30                                  | 30                                  | min    |
| Revoluciones           | 60              | 60                                  | 60                                  | rpm    |

Realizado por: Morocho, Oscar, 2021.

En el procedimiento 1 se añadió un agente espumante siendo el nonil fenol etoxilado que, a su vez, sirvió como detergente, en un porcentaje de 0.15%, también se le añadió agua caliente para disminuir la consistencia. Una vez la mezcla fue homogénea, se realizó el proceso de flotación a una temperatura de 40°C durante 25 minutos retirando constantemente la espuma que se formó como se puede observar en el ANEXO I, literal (b) "Destinte por flotación – Proceso 1". Luego del destinte se procedió a realizar un lavado de la pasta hasta eliminar la mayor parte de la tinta desprendida y el detergente presente.

El procedimiento 2 y 3 se realizó antes del desfibrado, la materia prima se colocó en un recipiente con 250 ml de agua y detergente, 0.2% en el proceso 2 y 0.15% en el proceso 3, durante un tiempo de 40 minutos revolviéndolo constantemente, como puede observarse en el ANEXO I, literal (c) "Destinte y remojo de materia prima – Proceso 2 y 3". La diferencia entre estos procesos radicó en las condiciones de pH y temperatura de trabajo; para conseguir el pH indicado se añadió NaHCO<sub>3</sub> en los dos procedimientos, sin embargo, el para el procedimiento 3, al realizarse a una temperatura diferente a la ambiental, se utilizó un reverbero. Terminado el tiempo se procedió con el desfibrado.

#### *3.3.2.4. Blanqueo*

Para este proceso se utilizaron dos agentes blanqueadores: hipoclorito de sodio (NaClO) y peróxido de hidrógeno (H<sub>2</sub>O<sub>2</sub>); mismos que fueron adicionados en dos etapas de blanqueo con condiciones distintas. Las condiciones para las etapas se basaron en las expuestas por Teschke y Demers (1998) para el uso del hipoclorito de sodio y el peróxido de hidrógeno para blanqueo en cuanto a la consistencia, pH y temperatura.

**Tabla 4-3:** Condiciones de operación para etapa 1 de blanqueo

| Variable          | Procedimiento 1    | Procedimiento 2    | Procedimiento 3    | Unidad |
|-------------------|--------------------|--------------------|--------------------|--------|
| Aditivo           | NaHCO <sub>3</sub> | NaHCO <sub>3</sub> | NaHCO <sub>3</sub> | -      |
| Consistencia      | 10                 | 8                  | 8                  | %      |
| II O (200/)       | 15                 | -                  | -                  | %      |
| $H_2O_2$ (30%)    | 5                  | -                  | -                  | ml     |
| N. 610 (5.050()   | -                  | 4.5                | 4.5                | %      |
| NaClO (5.25%)     | -                  | 8                  | 7                  | ml     |
| Dens. blanqueador | 1.11               | 1.1                | 1.1                | g/ml   |
| pН                | 10                 | 10                 | 9                  | -      |
| Temperatura       | 50                 | 30                 | 30                 | °C     |
| Tiempo            | 45                 | 40                 | 45                 | min    |
| Revoluciones      | 120                | 120                | 120                | rpm    |

Realizado por: Morocho, Oscar, 2021.

Primero se acondicionó el medio para la acción óptima de los agentes blanqueadores drenando el exceso de agua hasta obtener una consistencia aproximada de entre 8% a 10%, luego se adicionó NaHCO<sub>3</sub> hasta alcanzar un pH alcalino entre 9 a 10. Siguiente a ello, se procedió a calentar cada solución hasta llegar a una temperatura requerida, siendo: 50°C para el procedimiento 1 y de 30°C para el procedimiento 2 y 3. Una vez obtenido el medio adecuado se agregó el agente blanqueador respectivo: H<sub>2</sub>O<sub>2</sub> en el procedimiento 1, y NaHCO<sub>3</sub> para los procedimientos 2 y 3; y, durante el tiempo establecido, se revolvió constantemente como se puede observar en el ANEXO J, literal (a) "Blanqueo con NaClO", y literal (b) "Blanqueo con H<sub>2</sub>O<sub>2</sub>".

Posterior a la etapa 1, se realizó un lavado de las muestras con la finalidad de eliminar la mayor parte de impurezas. Finalmente, se realizó un segundo proceso de blanqueo siguiendo los mismos pasos anteriores hasta llegar a las condiciones de operación respectivas a excepción del regulador de pH el cual no fue agregado en ésta etapa. En este caso se intercambiaron los blanqueadores utilizados: NaClO<sub>3</sub> para el procedimiento 1, y H<sub>2</sub>O<sub>2</sub> para el procedimiento 2 y 3.

**Tabla 5-3:** Condiciones de operación para segundo proceso de blanqueo

| Variable       | Procedimiento 1 | Procedimiento 2 | Procedimiento 3 | Unidad |
|----------------|-----------------|-----------------|-----------------|--------|
| Consistencia   | 8               | 10              | 10              | %      |
| H.O. (200/.)   | -               | 3               | 3               | %      |
| $H_2O_2$ (30%) | -               | 1               | 1               | ml     |
| N. Clo (5.25%) | 2.3             | -               | -               | %      |
| NaClO (5.25%)  | 4               | -               | -               | ml     |
| Temperatura    | 30              | 50              | 50              | °C     |
| Tiempo         | 45              | 30              | 45              | min    |
| Revoluciones   | 120             | 120             | 120             | rpm    |

El segundo proceso de blanqueo se realizó con dos propósitos principalmente: el primero, eliminar los residuos restantes del agente blanqueador anterior, y segundo, para evitar el amarillamiento posterior de la pasta. Terminado el proceso, se realizó un lavado de la pasta para eliminar los residuos restantes, donde se obtuvo una pasta que ha perdido la mayor parte del color café característico del cartón como se evidencia en el ANEXO J, literal (c) "Comparación de muestras luego del blanqueo 2".

## 3.3.2.5. Agregados químicos

En cuanto a agregados químicos, el porcentaje recomendado para el material de carga como el talco y CaCO<sub>3</sub> se encuentra entre un 15 a 25% ya que valores superiores a este disminuyen considerablemente las características físicas del papel (Braz, 2007, p. 44). El almidón es un tipo de agregado de relleno que mejora la resistencia del papel, el porcentaje recomendado es del 0.5% según Velásquez et al. (2010, p. 49).

**Tabla 6-3:** Composición de los agregados químicos para la pasta

| Variable          | Procedimiento 1 | Procedimiento 2 | Procedimiento 3 | Unidad |
|-------------------|-----------------|-----------------|-----------------|--------|
| Almidón           | 0.5             | 1.5             | 1.5             | %      |
| Talco             | 3               | 2               | 2               | %      |
| CaCO <sub>3</sub> | 2               | 0.5             | 2               | %      |
| Total             | 5.5             | 4               | 5.5             | %      |

Realizado por: Morocho, Oscar, 2021.

En un vaso de precipitación se colocó la pulpa lavada y agua hasta tener una consistencia del 2%, se adicionaron los agregados químicos y se mezclaron hasta obtener una solución homogénea como se observa en el ANEXO K, literal (a) "Agregado químico a la pasta".

#### 3.3.3. Formación de la hoja

En esta parte, se buscó dar el acabado final de la pulpa y convertirla en papel higiénico, para ello se aplicaron procedimientos mecánicos a la pulpa.

## 3.3.3.1. Prensado y secado

A la mezcla obtenida se le añadió agua hasta obtener una consistencia por debajo del 1%, con la finalidad de facilitar la formación de la hoja. Sobre una tela estirada se dispersó la mezcla hasta formar una fina lámina, luego se colocó otra tela sobre la lámina formada y con un rodillo se presionó sobre ésta hasta eliminar la mayor parte del agua presente. Se puede evidenciar este proceso en el ANEXO K, literal (b) "Formación de la hoja", y literal (c) "Prensado de la hoja". Para eliminar el agua restante, se sometió la lámina formada a calor para el secado. En este caso se utilizó una plancha para el secado hasta evaporar la mayor cantidad de agua presente, luego se procedió a secarlo a temperatura ambiente realizando presión sobre la lámina con una tela para evitar deformaciones por el secado. Se evitó el secado por estufa ya que ese tipo de secado da como resultado un papel más áspero e inflexible, contrario a las características que se busca en un papel higiénico común.

#### 3.3.3.2. *Cortado*

Finalmente, una vez seco el papel, se procedió a realizar su corte. La dimensión de la hoja se cortó según las medidas establecidas en la norma NTE INEN 1430 (2015) donde la longitud de la hoja entre perforaciones tiene un mínimo de 10 cm y un ancho de hoja de 9.2 cm. El resultado de los tres procedimientos puede observarse en el ANEXO L.

## 3.4. Determinación de parámetros de calidad del producto final

Los análisis de calidad del producto final fueron realizados en el laboratorio de orgánica de la facultad de Ciencias y en el laboratorio de Curtiembre de la Facultad de Ciencias Pecuarias de la ESPOCH.

#### 3.4.1. pH y humedad del papel

En la determinación del pH del papel, el procedimiento a seguir fue el expuesto en la normativa NTE INEN 1418 (2013) "Papeles y cartones. Determinación del pH de un extracto acuoso". Fue necesario una solución de KCl 1 M, para su elaboración se disuelve 7.4 gramos de KCl en 10 ml

de agua. Lo primero a realizar fue colocar en un matraz 2 gramos de papel junto con 100 ml de agua destilada, se dejó reposar durante 1 hora agitando por lo menos una vez, luego se filtró el extracto y se añadió 2 ml de KCl 1 M. Finalmente, con el uso de un pHmetro se determinó el pH como figura en el ANEXO M, literal (c) "Determinación del pH". La determinación de la humedad siguió el mismo procedimiento que para la materia prima. Los resultados obtenidos fueron:

Tabla 7-3: Datos para pH y porcentaje de humedad de papel

| Rep.  | Procedimiento 1 |        | Procedimiento 2 |        | Procedimiento 3 |        |
|-------|-----------------|--------|-----------------|--------|-----------------|--------|
|       | pН              | %Н     | pН              | %Н     | pН              | %Н     |
| 1     | 9.39            | 14.554 | 8.26            | 8.658  | 9.11            | 24.311 |
| 2     | 9.36            | 14.872 | 8.53            | 8.796  | 8.43            | 23.286 |
| 3     | 8.49            | 14.063 | 7.91            | 11.421 | 8.07            | 23.828 |
| 4     | 8.87            | 15.753 | 8.82            | 11.818 | 8.59            | 23.724 |
| 5     | 9.14            | 15.023 | 8.14            | 9.235  | 8.28            | 21.234 |
| Prom. | 9.05            | 14.853 | 8.33            | 9.985  | 8.49            | 23.276 |

Realizado por: Morocho, Oscar, 2021.

## *3.4.2. Gramaje*

Para la determinación del gramaje se usó la norma NTE INEN 1398 (1986) "Papeles y cartones. Determinación de gramaje". Se tomaron 5 muestras por procedimiento, con la misma área y se pesaron haciendo uso de una balanza analítica. Se puede observar éste procedimiento en el ANEXO M, literal (b) "Determinación de gramaje".

Con estos datos se calculó el gramaje aplicando lo siguiente:

$$g = \frac{m}{A} * 10000$$

Donde:

g: gramaje

• m: masa

• A: área de la pieza de ensayo

Lo primero fue calcular el área de las piezas, para esto se utilizó las dimensiones que se aplicaron para el corte en el acabado del papel.

$$A = b.a$$
  
 $A = (10 cm) * (9.2 cm)$   
 $A = 92 cm^2$ 

Con el área obtenida, lo siguiente fue obtener el gramaje para cada muestra.

Tabla 8-3: Datos para gramaje de papel

| Don   | Procedimiento 1 |             | Procedimiento 2 |             | Procedimiento 3 |             |
|-------|-----------------|-------------|-----------------|-------------|-----------------|-------------|
| Rep.  | peso (g)        | gram (g/m2) | peso (g)        | gram (g/m2) | peso (g)        | gram (g/m2) |
| 1     | 0.3187          | 34.64       | 0.2974          | 32.33       | 0.3374          | 36.67       |
| 2     | 0.2908          | 31.61       | 0.2753          | 29.92       | 0.3145          | 34.18       |
| 3     | 0.3115          | 33.86       | 0.3008          | 32.7        | 0.327           | 35.54       |
| 4     | 0.3095          | 33.64       | 0.2842          | 30.89       | 0.3784          | 41.13       |
| 5     | 0.3017          | 32.79       | 0.2741          | 29.79       | 0.3423          | 37.21       |
| prom. | 0.3064          | 33.31       | 0.2864          | 31.13       | 0.3399          | 36.95       |

Realizado por: Morocho, Oscar, 2021.

# 3.4.3. Resistencia a la rotura por tracción longitudinal y espesor de papel

La norma aplicada en esta prueba fue la NTE INEN 1405 (2013) "Papeles y cartones. Determinación de la resistencia a la ruptura por tracción en seco". La muestra de papel se cortó en dimensiones conocidas, en este caso el ancho fue de 1.5 cm y un largo de 7 cm, como figura en el literal (a) del ANEXO N; luego, mediante el uso del equipo de medición de tensión, se midió la fuerza promedio de tracción (ANEXO M, literal (b)).

La resistencia a la ruptura por tracción se calcula mediante la siguiente fórmula:

$$S = \frac{F}{W_i}$$

Donde:

S: resistencia a la tracción

• F: promedio de fuerzas máximas de tracción

• W<sub>i</sub>: ancho de la probeta (1.5 cm en este caso)

Tabla 9-3: Datos para resistencia a la rotura por tracción longitudinal y espesor de hoja

| Rep.  | Procedimiento 1       |          | Procedimiento 2       |          | Procedimiento 3       |          |
|-------|-----------------------|----------|-----------------------|----------|-----------------------|----------|
|       | <b>F</b> ( <b>N</b> ) | S (N/m2) | <b>F</b> ( <b>N</b> ) | S (N/m2) | <b>F</b> ( <b>N</b> ) | S (N/m2) |
| 1     | 2                     | 133.33   | 2.9                   | 193.33   | 2.9                   | 193.33   |
| 2     | 2.2                   | 146.67   | 2.9                   | 193.33   | 2.9                   | 193.33   |
| 3     | 2                     | 133.33   | 3.9                   | 260      | 4.9                   | 326.67   |
| 4     | 2.35                  | 156.67   | 2                     | 133.33   | 4.5                   | 300      |
| 5     | 2.41                  | 160.67   | 2                     | 133.33   | 3.5                   | 233.33   |
| prom. | 2.19                  | 146.13   | 2.74                  | 182.66   | 3.74                  | 249.33   |

En cuanto al espesor del papel, éste fue medido por el mismo equipo utilizado, dando los siguientes resultados:

Tabla 10-3: Datos de espesor de hoja

| Rep.  | Procedimiento 1 | Procedimiento 2 | Procedimiento 3 | Unidad |
|-------|-----------------|-----------------|-----------------|--------|
| 1     | 0.1             | 0.2             | 0.2             | mm     |
| 2     | 0.1             | 0.2             | 0.2             | mm     |
| 3     | 0.1             | 0.3             | 0.4             | mm     |
| 4     | 0.2             | 0.1             | 0.4             | mm     |
| 5     | 0.2             | 0.1             | 0.3             | mm     |
| Prom. | 0.14            | 0.18            | 0.3             | mm     |

Realizado por: Morocho, Oscar, 2021.

## 3.4.4. Tiempo de absorción

El procedimiento se basó en la norma NTE INEN 1407 (2013) "Papeles y cartones. Determinación de la absorción del agua en papeles porosos". En un soporte horizontal se situó la muestra del papel sin estirarlo ni distorsionarlo, aparte, se colocó en un soporte universal una bureta distanciada 1cm del centro de la muestra.

Se adicionó 0.01 ml de agua destilada, considerando que una gota de agua tiene un volumen aproximado de 0.05 ml. Una vez el agua tocó la muestra se inició el temporizador hasta que ésta fue absorbida completamente lo cual se pudo comprobar de manera visual mediante la desaparición del reflejo de la luz como figura en el ANEXO N, literal (c) "Determinación del tiempo de absorción).

Los datos obtenidos fueron:

Tabla 11-3: Datos para tiempo de absorción de papel

| Rep.  | Procedimiento 1 | Procedimiento 2 | Procedimiento 3 | Unidad |
|-------|-----------------|-----------------|-----------------|--------|
| 1     | 8.03            | 15.02           | 21.13           | S      |
| 2     | 9.42            | 14.82           | 21.78           | S      |
| 3     | 8.76            | 14.35           | 23.68           | S      |
| 4     | 11.35           | 15.52           | 22.36           | S      |
| 5     | 10.23           | 16.07           | 23.15           | S      |
| Prom. | 9.56            | 15.16           | 22.42           | S      |

#### 3.4.5. Rendimiento

El rendimiento del proceso se lo calculó mediante la relación entre la masa de materia prima usada y la cantidad de producto obtenido, para esto se pesó el producto final una vez terminado el secado, antes de realizar el corte.

Para los cálculos se aplica:

$$\%R = \frac{m_p}{m_{mp}} * 100$$

Donde:

• %R: Rendimiento del proceso

• m<sub>p</sub>: masa del producto obtenido

• m<sub>mp</sub>: masa de materia prima

Tabla 12-3: Datos de masas y rendimiento por procedimiento

| D     | Procedimiento 1 |       | Procedimiento 2 |       | Procedimiento 3 |       |
|-------|-----------------|-------|-----------------|-------|-----------------|-------|
| Rep.  | peso (g)        | R (%) | peso (g)        | R (%) | peso (g)        | R (%) |
| 1     | 6.0912          | 60.91 | 5.8916          | 58.92 | 5.2036          | 52.04 |
| 2     | 5.2353          | 52.35 | 6.6023          | 66.02 | 5.926           | 59.26 |
| 3     | 4.9131          | 49.13 | 5.0128          | 50.13 | 6.3864          | 63.86 |
| 4     | 4.8412          | 48.41 | 4.7319          | 47.32 | 5.3587          | 53.59 |
| 5     | 5.1904          | 51.9  | 5.9027          | 59.03 | 5.7902          | 57.9  |
| Prom. | 5.2542          | 52.54 | 5.6283          | 56.28 | 5.733           | 57.33 |

#### 3.4.6. Resultados

Tabla 13-3: Comparación de parámetros de calidad con la norma NTE INEN 1430

| Parámetro               | Procedimiento 1 | Procedimiento 2 | Procedimiento 3 | NTE INEN 1430    | Unidad           |
|-------------------------|-----------------|-----------------|-----------------|------------------|------------------|
| pН                      | 9.05            | 8.33            | 8.49            | -                | -                |
| Humedad                 | 14.853          | 9.985           | 23.276          | -                | %                |
| Espesor                 | 0.14            | 0.18            | 0.3             | -                | mm               |
| Gramaje                 | 33.3            | 31.1            | 36.95           | Min. 19.0<br>Máx | g/m <sup>2</sup> |
| Resistencia a la rotura | 146.13          | 182.67          | 249.33          | Min. 50.0<br>Máx | N/m              |
| Tiempo de absorción     | 9.55            | 15.16           | 22.42           | Min<br>Máx. 50   | S                |
| Dimensión               | 10 x 9.2        | 10 x 9.2        | 10 x 9.2        | 10 x 9.2         | cm               |
| Rendimiento             | 52.54           | 56.28           | 57.32           | -                | %                |

Realizado por: Morocho, Oscar, 2021.

#### 3.5. Análisis estadístico

El análisis estadístico se realizó mediante el uso del programa IBM SPSS STADISTIC.

#### 3.5.1. Análisis ANOVA

En primer lugar, se procedió a establecer las hipótesis para las variables presentes en el proceso, tomando en cuenta a  $\mu$  como el valor de las características físicas promedio poblacional,  $H_0$  como hipótesis nula y  $H_1$  hipótesis alternativa.

- $\triangleright$  H<sub>0</sub>:  $\mu_1$ =  $\mu_2$  = $\mu_3$  (Lo parámetros de calidad promedio no se diferencian en los tres procedimientos)
- H<sub>1</sub>: En al menos dos procedimientos, los parámetros de calidad presentan diferencias significativas

Cabe recalcar que la hipótesis nula y alternativa planteada, fueron usados para cada uno de parámetros de calidad expuestos.

Una vez definidas las hipótesis, se procedió a colocar los datos en el programa tomando como variable dependiente a los parámetros de calidad del papel y como factor a los tipos de procedimientos realizados. El programa arrojó los siguientes resultados:

Tabla 14-3: Tabla de resultados de análisis de varianza univariable

|                           |              | Suma de<br>cuadrados | gl | Media<br>cuadrática | F       | Sig. |
|---------------------------|--------------|----------------------|----|---------------------|---------|------|
|                           | Inter-grupos | 86.448               | 2  | 43.224              | 13.019  | .001 |
| Gramaje                   | Intra-grupos | 39.842               | 12 | 3.320               |         |      |
|                           | Total        | 126.290              | 14 |                     |         |      |
| Resistencia a la rotura   | Inter-grupos | 27381.484            | 2  | 13690.742           | 6.129   | .015 |
| por tracción longitudinal | Intra-grupos | 26803.470            | 12 | 2233.623            |         |      |
| por traccion longitudinar | Total        | 54184.954            | 14 |                     |         |      |
|                           | Inter-grupos | 415.891              | 2  | 207.945             | 198.040 | .000 |
| Tiempo de absorción       | Intra-grupos | 12.600               | 12 | 1.050               |         |      |
|                           | Total        | 428.491              | 14 |                     |         |      |
|                           | Inter-grupos | 1.416                | 2  | .708                | 5.051   | .026 |
| Nivel de pH               | Intra-grupos | 1.682                | 12 | .140                |         |      |
|                           | Total        | 3.097                | 14 |                     |         |      |
|                           | Inter-grupos | 452.166              | 2  | 226.083             | 164.840 | .000 |
| Porcentaje de humedad     | Intra-grupos | 16.458               | 12 | 1.372               |         |      |
|                           | Total        | 468.624              | 14 |                     |         |      |
|                           | Inter-grupos | .069                 | 2  | .035                | 5.200   | .024 |
| Espesor                   | Intra-grupos | .080                 | 12 | .007                |         |      |
|                           | Total        | .149                 | 14 |                     |         |      |
|                           | Inter-grupos | 63.426               | 2  | 31.713              | .916    | .426 |
| Rendimiento               | Intra-grupos | 415.354              | 12 | 34.613              |         |      |
|                           | Total        | 478.780              | 14 |                     |         |      |

En base a los datos obtenidos se pudo concluir que, debido a un p $\leq$ 0.05, la H $_0$  se rechaza en 6 de los 7 parámetros de calidad evaluados y H $_1$  se acepta, por lo que se pudo afirmar que, en al menos dos de los procedimientos realizados, existen diferencias significativas en cuanto a los parámetros de calidad. En cuanto al rendimiento, se observó un nivel de significancia de 0.426 por lo que la H $_0$  se aprueba, lo que implica que no se presenta una diferencia notoria independiente del procedimiento utilizado.

## 3.5.2. Prueba de Tukey

Debido al rechazo de la H<sub>0</sub> de la prueba ANOVA en la mayoría de los parámetros de calidad, fue necesario la realización una prueba adicional de comparación múltiple para determinar el procedimiento más adecuado. En este caso se realizó la prueba TUKEY, con lo cual se obtuvo los siguientes resultados:

# Gramaje

Tabla 15-3: Resultados prueba Tukey para gramaje

| Tipo de procedimiento                                                  | N           | Subconjunto         | para alfa = 0.05 |  |  |
|------------------------------------------------------------------------|-------------|---------------------|------------------|--|--|
|                                                                        |             | 1                   | 2                |  |  |
| Procedimiento 2                                                        | 5           | 31.1260             |                  |  |  |
| Procedimiento 1                                                        | 5           | 33.3080             |                  |  |  |
| Procedimiento 3                                                        | 5           |                     | 36.9460          |  |  |
| Sig.                                                                   |             | .183                | 1.000            |  |  |
| Se muestran las medias para los grupos en los subconjuntos homogéneos. |             |                     |                  |  |  |
| a. Usa el tamaño muestral d                                            | le la media | a armónica = 5.000. |                  |  |  |

Realizado por: Morocho, Oscar, 2021.

En la tabla se observa que, con un nivel de significancia de 0.183, los procedimientos 1 y 2 no presentan diferencias significativas en sus resultados. También puede observarse que, el valor promedio para el gramaje en el procedimiento 2 es inferior al procedimiento 1, lo que indica una presencia menor de pasta celulósica por cada hoja de papel higiénico elaborado, lo que resultaría en un aumento significativo de rollos producidos. Debido a ésta razón, en cuanto al gramaje, la opción más adecuada es el procedimiento 2.

## > Resistencia a la rotura por tracción longitudinal

**Tabla 16-3:** Resultado prueba Tukey para la resistencia a la rotura por tracción longitudinal

| Tipo de procedimiento | N | Subconjunto | Subconjunto para alfa = 0.05 |  |
|-----------------------|---|-------------|------------------------------|--|
|                       |   | 1           | 2                            |  |
| Procedimiento 1       | 5 | 146.1340    |                              |  |
| Procedimiento 2       | 5 | 182.6640    | 182.6640                     |  |
| Procedimiento 3       | 5 |             | 249.3320                     |  |
| Sig.                  |   | .463        | .106                         |  |

Se muestran las medias para los grupos en los subconjuntos homogéneos. a. Usa el tamaño muestral de la media armónica = 5.000.

Realizado por: Morocho, Oscar, 2021.

Se puede observar un nivel de significancia de 0.463 en relación al procedimiento 1 y 2, lo que significa que entre estos dos procedimientos no existen diferencias significativas; de la misma manera, se puede observar un nivel de significancia de 0.106 para el procedimiento 2 y 3, lo que, a su vez, implica que no existen diferencias significativas entre estos dos procedimientos.

El criterio a elegir se basó en el menor valor, ya que valores altos en este parámetro implica papeles con menor nivel de suavidad. En base a ello, se pudo deducir que el procedimiento 1 es el más adecuado para este parámetro.

# > Tiempo de absorción

Tabla 17-3: Resultado prueba Tukey para tiempo de absorción

| Tipo de procedimiento | N | Subconju | Subconjunto para alfa = 0.05 |         |  |
|-----------------------|---|----------|------------------------------|---------|--|
|                       |   | 1        | 2                            | 3       |  |
| Procedimiento 1       | 5 | 9.5580   |                              |         |  |
| Procedimiento 2       | 5 |          | 15.1560                      |         |  |
| Procedimiento 3       | 5 |          |                              | 22.4200 |  |
| Sig.                  |   | 1.000    | 1.000                        | 1.000   |  |

Se muestran las medias para los grupos en los subconjuntos homogéneos. a. Usa el tamaño muestral de la media armónica = 5.000.

Realizado por: Morocho, Oscar, 2021.

En relación al tiempo de absorción, se pudo observar claramente que existen diferencias significativas entre los tres procedimientos realizados ya que cada uno cuenta con su propia columna de subconjunto. Para este caso, el criterio de selección fue únicamente el del más bajo valor, siendo el procedimiento 1 el que cumple con el mismo.

# Nivel de pH

**Tabla 18-3:** Resultado prueba Tukey para nivel de pH

| Tipo de procedimiento | N | Subconjunto para alfa = 0.05 |        |
|-----------------------|---|------------------------------|--------|
|                       |   | 1                            | 2      |
| Procedimiento 2       | 5 | 8.3320                       |        |
| Procedimiento 3       | 5 | 8.4960                       | 8.4960 |
| Procedimiento 1       | 5 |                              | 9.0500 |
| Sig.                  |   | .772                         | .088   |

Se muestran las medias para los grupos en los subconjuntos homogéneos. a. Usa el tamaño muestral de la media armónica = 5.000.

Realizado por: Morocho, Oscar, 2021.

El procedimiento 2 y 3 muestran un nivel de significancia algo, mayor a 0.05, lo que indica que no existen diferencias significativas entre ellos; de igual manera sucede para el procedimiento 3 y 1. Sin embargo, los valores de los procedimientos 2 y 3 se encuentran en una columna más baja que la del 3 y 1 lo que nos demuestra que sus valores son inferiores.

Para el nivel de pH, el criterio establecido es el al rango 7 - 8 o el más cercano al mismo. La columna 1 es la que cumplió con este criterio y más específicamente, el procedimiento 2, por lo cual fue seleccionado como el más óptimo para el nivel de pH.

## Porcentaje de humedad

Tabla 19-3: Resultado prueba Tukey para porcentaje de humedad

| Tipo de procedimiento | N | Subconju | Subconjunto para alfa = 0.05 |         |  |
|-----------------------|---|----------|------------------------------|---------|--|
|                       |   | 1        | 2                            | 3       |  |
| Procedimiento 2       | 5 | 9.9856   |                              |         |  |
| Procedimiento 1       | 5 |          | 14.8530                      |         |  |
| Procedimiento 3       | 5 |          |                              | 23.2766 |  |
| Sig.                  |   | 1.000    | 1.000                        | 1.000   |  |

Se muestran las medias para los grupos en los subconjuntos homogéneos. a. Usa el tamaño muestral de la media armónica = 5.000.

Realizado por: Morocho, Oscar, 2021.

En este parámetro, al igual que en el tiempo de absorción, ninguno de los valores se encontró en la misma columna lo que indica que existen diferencias significativas para los tres procedimientos.

Al igual que en los parámetros anteriores, el criterio de selección en este caso fue el menor valor, esto debido a que porcentajes altos de humedad infieren directamente en la reducción del tiempo de vida del producto. Por lo tanto, el procedimiento adecuado para el porcentaje de humedad fue el procedimiento 2.

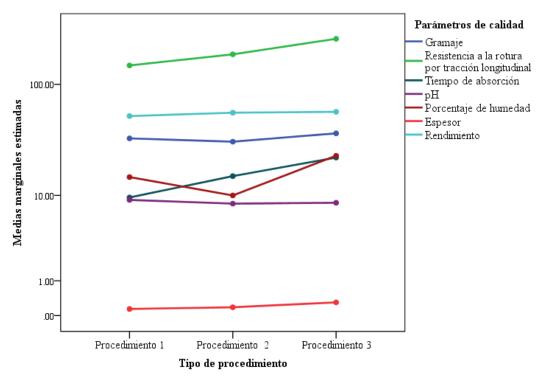

# > Espesor

Tabla 20-3: Resultado prueba Tukey para espesor

| Tipo de procedimiento | N | Subconjunt | Subconjunto para alfa = 0.05 |  |  |
|-----------------------|---|------------|------------------------------|--|--|
|                       |   | 1          | 2                            |  |  |
| Procedimiento 1       | 5 | .1400      |                              |  |  |
| Procedimiento 2       | 5 | .1800      | .1800                        |  |  |
| Procedimiento 3       | 5 |            | .3000                        |  |  |
| Sig.                  |   | .725       | .091                         |  |  |

Se muestran las medias para los grupos en los subconjuntos homogéneos. a. Usa el tamaño muestral de la media armónica = 5.000.

En cuanto al espesor, no existen diferencias significativas entre el procedimiento 1 y 2; así como tampoco existen diferencias significativas entre el procedimiento 2 y 3. De igual manera, se busca el menor valor, siendo los de la columna 1 los que cumplen con esta condición, específicamente el procedimiento 1, por lo cual fue el seleccionado como procedimiento óptimo en relación al espesor.



**Gráfico 1-3:** Medias estimadas de características físicas del papel **Realizado por:** Morocho, Oscar, 2021.

En la gráfica se puede observar claramente la relación de medías de las características por cada procedimiento aplicado, esto para cada parámetro. Se evidencia una visible alza en los resultados del procedimiento tres en la mayoría de los parámetros de calidad exceptuando el pH, cuyo valor se halla similar a la del procedimiento 2. En cuanto a la relación entre los procedimientos 1 y 2, presentan diferencias en tres parámetros de calidad, que son: resistencia a la rotura por tracción longitudinal y tiempo de absorción, donde el valor para el segundo procedimiento es mayor; mientras que, en el porcentaje de humedad, el valor del mismo es menor.

## 3.5.3. Selección de procedimiento

La selección del procedimiento idóneo se basa en tres aspectos fundamentales: cumplimiento de la norma INEN 1430, valores bajos en los parámetros adicionales a excepción del rendimiento, y finalmente, alto rendimiento. En este caso, los tres procedimientos planteados se mantienen

dentro de los límites establecidos por la norma vigente, sin embargo, la prueba ANOVA demostró que existen diferencias significativas entre los mismos, es decir, la influencia del procedimiento sobre los parámetros de calidad es notoria para al menos dos procedimientos, por lo cual fue necesario realizar la prueba de comparaciones múltiples de Tukey lo cual arrojó como resultados una similitud entre el procedimiento 1 y 2, siendo exactamente 3 los parámetros en los cuales cada procedimiento se vio favorable; por otro lado, se dedujo que el procedimiento 3 es el menos adecuado ya que en ninguno de los parámetros de calidad se vio favorecido.

Debido a esta similitud, fue necesario implementar un criterio más para la selección, el cual fue el alto rendimiento, parámetro en el cual ninguno de los tres procedimientos presentó diferencias significativas, pero, debido a que el procedimiento 3 se descartó por ser el menos adecuado, solo se tomó en cuenta al procedimiento 1 y 2; y entre los procedimientos restantes, el procedimiento 2 es el que mayor rendimiento presente, por ende, éste es el idóneo para la obtención de papel higiénico a partir de cartón y papel reciclado. En base a este procedimiento se realizarán los diagramas y balances de masa.

# 3.6. Diagramas

# 3.6.1. Diagrama de bloques de proceso

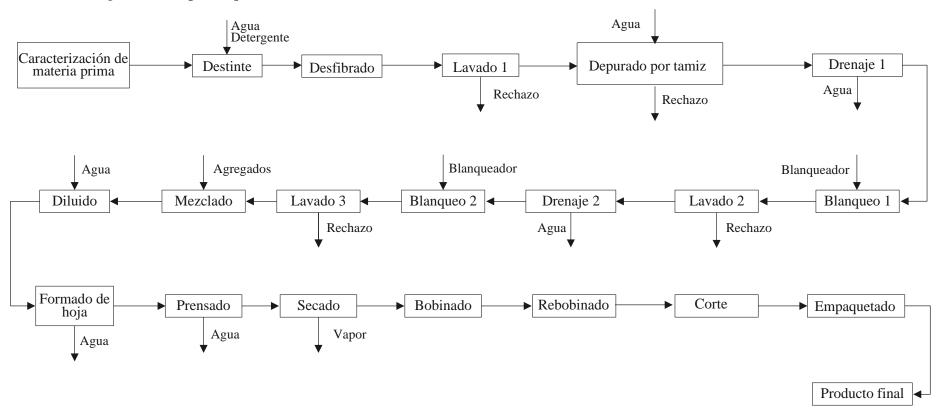



Gráfico 2-3: Diagrama de bloque del proceso

# 3.6.2. Diagrama de flujo de procesos

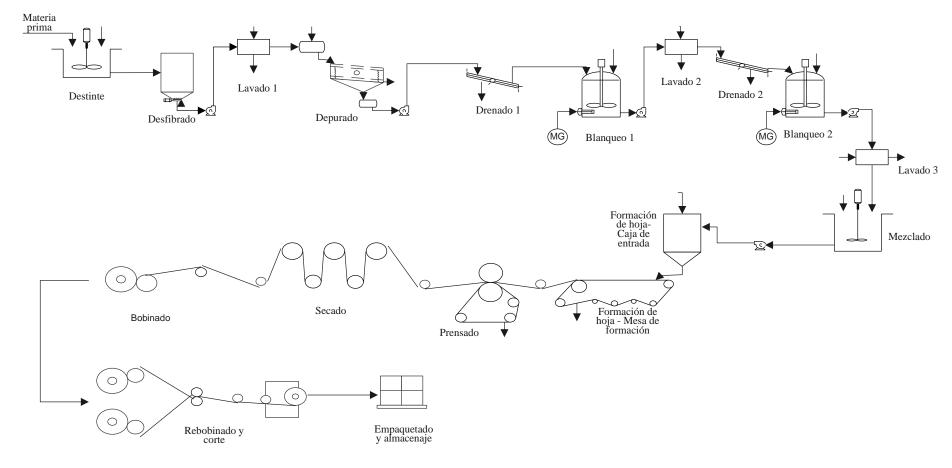



Figura 1-3: Diagrama de flujo de procesos

# 3.7. Identificación de equipos

# 3.7.1. Principales

Estos equipos son los que realizan las operaciones principales del sistema, por ello, su identificación se basa en las operaciones del diagrama de operaciones.

Tabla 21-3: Distribución de equipos por tipo de proceso

| Operación           | Equipo                      | Descripción                                                                                                                                                                        |
|---------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desfibrado          | Pulper                      | Aparato de forma cilíndrica con una hélice en su interior que cumple con la función de desintegración de la materia prima mediante el frote continuo de la pasta contra la hélice. |
| Depuración          | Depurador<br>probabilístico | Se basa en un tamiz donde partículas de gran tamaño son separadas de la pasta principal                                                                                            |
| Destinte            | Tanque de destinte          | Tanque con agitador que facilita el desprendimiento de la tinta y más contaminantes con la ayuda de un detergente.                                                                 |
| Blanqueo            | Tanque de blanqueo          | Tanque con agitador y un sistema que calienta la pulpa durante todo el proceso de blanqueo.                                                                                        |
| Lavado              | Lavador                     | Tamiz de luz baja que evita el paso de la fibra de celulosa pero si permite el paso del agua                                                                                       |
| Adición de aditivos | Tina de mezcla              | Equipo donde se agregan los aditivos finales para que la pasta tenga las condiciones requeridas y mediante aspas se mezcla hasta tener una solución homogénea.                     |
| Formación de        | Caja de entrada             | Equipo encargado de despachar la pasta sobre la mesa de fabricación en forma de una lámina delgada.                                                                                |
| la hoja             | Mesa de fabricación         | Donde se forma la hoja y se elimina una parte del agua contenida en la pasta.                                                                                                      |
| Prensado            | Prensas circulares          | Elimina un 20% del agua presente en la pasta luego de pasar por la mesa de fabricación.                                                                                            |
| Secado              | Cilindros calentados        | Consiste en una serie de cilindros de diámetro variable calentados por vapor que entran en contacto directo con la hoja de papel calentando el agua hasta su evaporación.          |
| Bobinado            | Bobinadora                  | Transforma la bobina madre en bobinas de diámetro más pequeño.                                                                                                                     |
| Cortado             | Cortadora                   | Convierte la bobina de papel en rollos pequeños aptos para su comercialización.                                                                                                    |

Realizado por: Morocho, Oscar, 2021.

## 3.7.2. De transporte

Los equipos de transporte dependen del tipo de sustancia a transportar, para ello, se tienen las siguientes sustancias involucradas en el proceso:

Tabla 22-3: Equipo necesario para transporte de fluidos

| Sustancia | Equipo                         | Descripción                                                              |
|-----------|--------------------------------|--------------------------------------------------------------------------|
| Agua      | Tubería – plástico             | Permite el paso de agua desde la cisterna hasta los equipos.             |
| Pulpa     | Tubería – Acero inoxidable 304 | Permite el paso de la pulpa entre equipos conectados con flujo continuo. |
| Vapor     | Tubería – Acero inoxidable 304 | Lleva el vapor desde la caldera hasta el cilindro secador.               |

## 3.7.3. De servicio

Son los equipos que suministran o almacenan el material necesario para la operación de los equipos principales.

Tabla 23-3: Distribución de equipos de servicio por sustancia de trabajo

| Sustancia | Equipo  | Descripción                                          |
|-----------|---------|------------------------------------------------------|
| Agua      | Bomba   | Facilita el traspaso de sustancias entre equipos.    |
| Vapor     | Caldera | Crea vapor que es utilizado en el sistema de secado. |

Realizado por: Morocho, Oscar, 2021.

#### 3.8. Cálculos de ingeniería

## 3.8.1. Balance de masa y energía

Para el balance de masa se utilizaron los datos brindados por la EMMAIPC para la materia prima y los recolectados en la experimentación para las demás variables.

## Cálculo de flujo

Teniendo en cuenta 260 días laborales al año:

$$\begin{split} M_P &= m_{papel} + m_{cart\acute{o}n} \\ M_P &= 25.47 \frac{Tn}{a\~{n}o} + 42.4 \frac{Tn}{a\~{n}o} \\ M_P &= \frac{67.87 \ Tn/a\~{n}o}{260 \ dias/a\~{n}o} * \frac{1000 \ kg}{1 \ Tn} = 261.04 \ kg/d\~{n}a \end{split}$$

Tabla 24-3: Datos para balance de masa

| Variable           | Valor      | Unidad |
|--------------------|------------|--------|
| Materia prima      | 261.04     | Kg/día |
| %H materia prima   | 11.76      | %      |
| %H producto final  | 9.98       | %      |
| Agregados químicos | 4 (sólido) | %      |
| Rendimiento        | 56.282     | %      |

Realizado por: Morocho, Oscar, 2021.

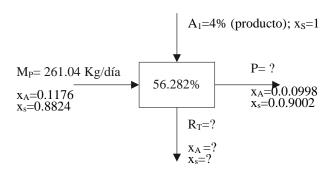

En cuanto a los balances de energía, los datos necesarios para su realización son los calores específicos del papel y el agua por tratarse de los componentes mayoritarios.

Tabla 25-3: Calores específicos de componentes mayoritarios

| Variable                                                                   | Valor | Unidad   |
|----------------------------------------------------------------------------|-------|----------|
| Calor específico del papel (C <sub>Pp</sub> )                              | 1.30  | KJ/Kg.°C |
| Calor específico del agua (C <sub>Pa</sub> )                               | 4.19  | KJ/Kg.°C |
| Capacidad calorífica del NaClO (CPB1)                                      | 3.48  | KJ/Kg.°C |
| Capacidad calorífica del H <sub>2</sub> O <sub>2</sub> (C <sub>PB2</sub> ) | 2.629 | KJ/Kg.°C |

**Fuente:** Hernández et al., 2021, p. 179; UNE-EN 901, 2007; Delgado, 2008, p. 12. **Realizado por:** Morocho, Oscar, 2021.

## Balance de masa general



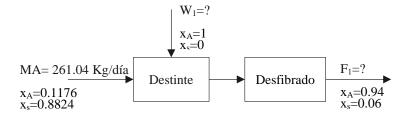
$$\begin{split} M_P + A_1 &= R_T + P \\ P &= 261.04 \frac{Kg}{dia} \Big( \frac{56.282}{100} \Big) = 146.92 \, Kg/dia \\ A_1 &= 146.92 \, \Big( \frac{4}{100} \Big) = 5.88 \, Kg/dia \\ R_T &= 261.04 + 5.88 - 146.92 = 120 \, Kg/dia \end{split}$$

Balance de agua:

$$261.04(0.1176) + 5.88(0) = 146.92(0.0998) + 120x_A$$
  
 $x_A = 0.13$   
 $x_S = 0.87$ 

Tabla 26-3: Resultados del balance general del proceso

| Flujo          | Descripción                | Valor  | Unidad |
|----------------|----------------------------|--------|--------|
| MP             | Materia prima              | 261.04 | Kg/día |
| P              | Producto final             | 146.92 | Kg/día |
| $A_1$          | Agregados químicos sólidos | 5.88   | Kg/día |
| R <sub>T</sub> | Rechazo total              | 120    | Kg/día |


La taza de rechazo obtenido se distribuye en los procesos de lavado y depurado: para la operación de lavado se considera el rechazo del 4% de la materia prima en seco, valor basado en el porcentaje de rechazo tomado por Vásconez (2018, p. 45); en la operación de depurado se resta el rechazo en seco del lavado al rechazo en seco general del proceso, para esto se toma en cuenta los tres procesos de lavado y el proceso de depurado. Los valores obtenidos son:

**Tabla 27-3:** Taza de rechazo en seco a nivel general y por procesos

| Variable              | Valor | Unidad |
|-----------------------|-------|--------|
| Taza de rechazo total | 120   | Kg/día |
| Lavado                | 9.21  | Kg/día |
| Depurado              | 76.76 | Kg/día |

Realizado por: Morocho, Oscar, 2021.

## • Destinte y desfibrado



Balance general:

$$M_P + W_1 = F_1$$

Balance de sólidos:

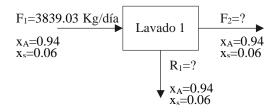

$$M_P * x_s + W_1 * x_s = F_1 * x_s$$
  
 $261(0.8824) + W_1(0) = F_1(0.06)$   
 $F_1 = 3839.03 \, Kg/dia$   
 $W_1 = 3577.99 \, Kg/dia$ 

Tabla 28-3: Resultados de balance en destinte y desfibrado

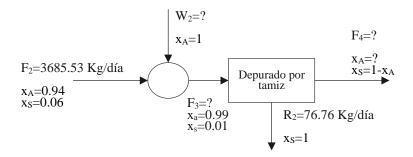
| Flujo          | Descripción             | Valor   | Unidad |
|----------------|-------------------------|---------|--------|
| MA             | Materia prima           | 261.04  | Kg/día |
| $\mathbf{W}_1$ | Agua                    | 3577.99 | Kg/día |
| F <sub>1</sub> | Producto del desfibrado | 3839.03 | Kg/día |

#### • Lavado 1

Para fines de cálculo se considera que el flujo de rechazo tiene la misma consistencia que el flujo de entrada.



$$R_1 = \frac{9.21}{0.06} = 153.50 \, Kg/dia$$


Tabla 29-3: Resultados del lavado 1

| Flujo          | Descripción             | Valor   | Unidad |
|----------------|-------------------------|---------|--------|
| F <sub>1</sub> | Producto del desfibrado | 3839.03 | Kg/día |
| F <sub>2</sub> | Producto lavado         | 3685.53 | Kg/día |
| R <sub>1</sub> | Rechazo                 | 153.50  | Kg/día |

Realizado por: Morocho, Oscar, 2021.

## • Depurado 1

Se considera al rechazo producto sólido como clips, cinta adhesiva, metales presentes, entre otros.



$$x_A = \frac{F_3 * x_A - R_3 * x_A}{F_4} = 0.9921$$
$$x_S = 0.0079$$

Tabla 30-3: Resultados del depurado por tamiz

| Flujo          | Descripción                     | Valor    | Unidad |
|----------------|---------------------------------|----------|--------|
| F <sub>2</sub> | Producto lavado                 | 3685.53  | Kg/día |
| $\mathbf{W}_2$ | Agua                            | 14628.03 | Kg/día |
| F <sub>3</sub> | Producto diluido                | 18313.56 | Kg/día |
| F <sub>4</sub> | Producto libre de contaminantes | 18236.8  | Kg/día |
| R <sub>2</sub> | Rechazo                         | 76.76    | Kg/día |

# Drenaje 1

Se acondiciona la pulpa a la consistencia requerida para el blanqueo 1 en el procedimiento 2.

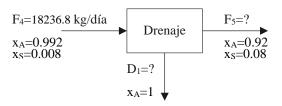



Tabla 31-3: Resultados del espesado

| Flujo          | Descripción                                     | Valor    | Unidad |
|----------------|-------------------------------------------------|----------|--------|
| F <sub>4</sub> | Producto libre de contaminantes de menor tamaño | 18236.8  | Kg/día |
| F <sub>5</sub> | Producto de mayor consistencia                  | 1800.88  | Kg/día |
| $D_1$          | Agua drenada                                    | 16435.92 | Kg/día |

Realizado por: Morocho, Oscar, 2021.

# • Blanqueo 1

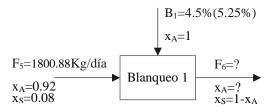
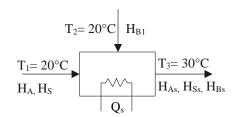
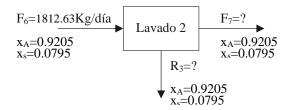




Tabla 32-3: Resultados de primer blanqueamiento


| Flujo          | Descripción                    | Valor   | Unidad |
|----------------|--------------------------------|---------|--------|
| F <sub>5</sub> | Producto de mayor consistencia | 1800.88 | Kg/día |
| F <sub>6</sub> | Producto de blanqueamiento     | 1812.63 | Kg/día |
| B <sub>1</sub> | Agente blanqueador             | 11.75   | Kg/día |

Balance de energía:



$$\begin{split} Q_{entrada} &= Q_{salida} \\ H_A + H_S + H_{B1} + Q_S &= H_{AS} + H_{SS} + H_{B1S} \\ Q_S &= (H_{AS} - H_A) + (H_{SS} - H_S) + (H_{B1S} - H_{B1}) \\ Q_S &= F_5 * x_A * C_{Pa}(T_3 - T_1) + F_5 * x_S * C_{Pp}(T_3 - T_1) + B_1 * C_{B1}(T_3 - T_2) \\ Q_S &= \left(1800.88 \frac{\text{kg}}{\text{dia}}\right) (0.92) \left(4.19 \frac{KJ}{kg^\circ C}\right) (30 - 20)^\circ C + \left(1800.88 \frac{\text{kg}}{\text{dia}}\right) (0.08) \left(1.3 \frac{KJ}{kg^\circ C}\right) (30 - 20)^\circ C \\ &+ (11.75) \left(3.48 \frac{KJ}{kg^\circ C}\right) (30 - 20)^\circ C \\ Q_S &= 717002.14 \; KJ/dia \end{split}$$

#### Lavado 2



$$R_3 = \frac{9.21}{0.0795} = 115.85 \, Kg/dia$$

Tabla 33-3: Resultados del segundo lavado

| Flujo          | Descripción                | Valor   | Unidad |
|----------------|----------------------------|---------|--------|
| F <sub>6</sub> | Producto de blanqueamiento | 1812.63 | Kg/día |
| F <sub>7</sub> | Producto lavado            | 1696.78 | Kg/día |
| R <sub>3</sub> | Rechazo                    | 115.85  | Kg/día |

Realizado por: Morocho, Oscar, 2021.

#### • Drenaje 2

Se acondiciona la pulpa a la consistencia requerida para el blanqueo 2 en el procedimiento 2.

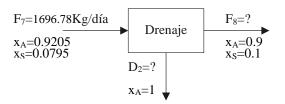



Tabla 34-3: Resultados de segundo espesado

| Flujo          | Descripción                    | Valor   | Unidad |
|----------------|--------------------------------|---------|--------|
| F <sub>7</sub> | Producto lavado                | 1696.78 | Kg/día |
| F <sub>8</sub> | Producto de mayor consistencia | 1348.94 | Kg/día |
| $D_2$          | Agua drenada                   | 347.84  | Kg/día |

# • Blanqueo 2

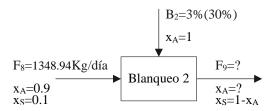



Tabla 35-3: Resultados de segundo blanqueamiento

| Flujo          | Descripción                    | Valor   | Unidad |
|----------------|--------------------------------|---------|--------|
| F <sub>8</sub> | Producto de mayor consistencia | 1348.94 | Kg/día |
| F <sub>9</sub> | Producto de blanqueamiento     | 1356.77 | Kg/día |
| B <sub>2</sub> | Agente blanqueador             | 7.83    | Kg/día |

Realizado por: Morocho, Oscar, 2021.

## Balance de energía:

$$T_{4}=20^{\circ}\text{C}$$
 $H_{B2}$ 

$$T_{5}=50^{\circ}\text{C}$$
 $H_{As}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{As}$ 
 $H_{Bs}$ 
 $H_{As}$ 
 $H_{As}$ 

#### • Lavado 3

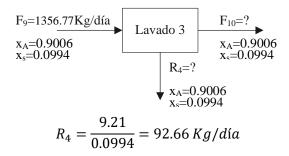



Tabla 36-3: Resultados de tercer lavado

| Flujo           | Descripción                | Valor   | Unidad |
|-----------------|----------------------------|---------|--------|
| F <sub>9</sub>  | Producto de blanqueamiento | 1356.77 | Kg/día |
| F <sub>10</sub> | Producto lavado            | 1264.11 | Kg/día |
| R <sub>4</sub>  | Rechazo                    | 92.66   | Kg/día |

Realizado por: Morocho, Oscar, 2021.

#### Mezclado

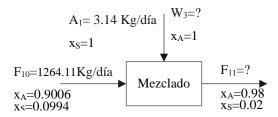



Tabla 37-3: Resultados del tanque de mezcla

| Flujo           | Descripción     | Valor   | Unidad |
|-----------------|-----------------|---------|--------|
| F <sub>10</sub> | Producto lavado | 1264.11 | Kg/día |
| $A_1$           | Agregado sólido | 5.88    | Kg/día |
| F <sub>11</sub> | Mezcla final    | 6576.47 | Kg/día |
| $W_3$           | Agua            | 5306.48 | Kg/día |

Realizado por: Morocho, Oscar, 2021.

#### • Diluido

Se reduce la consistencia a al menos el 1% para facilitar la formación de la hoja.

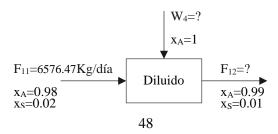



Tabla 38-3: Resultados de diluido

| Flujo           | Descripción    | Valor    | Unidad |
|-----------------|----------------|----------|--------|
| F <sub>11</sub> | Mezcla final   | 6576.47  | Kg/día |
| F <sub>12</sub> | Mezcla diluida | 13152.94 | Kg/día |
| $W_4$           | Agua           | 6576.47  | Kg/día |

# • Formado de papel

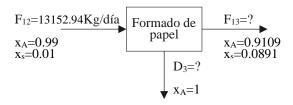



Tabla 39-3: Resultados de formado de papel

| Flujo           | Descripción     | Valor    | Unidad |
|-----------------|-----------------|----------|--------|
| F <sub>12</sub> | Mezcla diluida  | 13152.94 | Kg/día |
| F <sub>13</sub> | Lámina de papel | 1476.2   | Kg/día |
| D <sub>3</sub>  | Agua drenada    | 11676.74 | Kg/día |

Realizado por: Morocho, Oscar, 2021.

## • Prensado

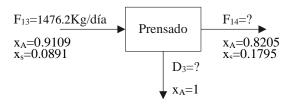



Tabla 40-3: Resultados de prensado de lámina

| Flujo           | Descripción              | Valor  | Unidad |
|-----------------|--------------------------|--------|--------|
| F <sub>13</sub> | Lámina de papel          | 1476.2 | Kg/día |
| F <sub>14</sub> | Lámina de papel prensada | 732.75 | Kg/día |
| D <sub>4</sub>  | Agua drenada             | 743.45 | Kg/día |

#### Secado

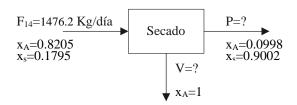
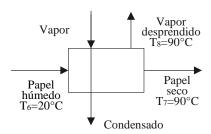




Tabla 41-3: Resultados de secado

| Flujo           | Descripción              | Valor  | Unidad |
|-----------------|--------------------------|--------|--------|
| F <sub>14</sub> | Lámina de papel prensada | 733.19 | Kg/día |
| V               | Vapor evaporado          | 586.64 | Kg/día |
| P               | Producto final           | 146.11 | Kg/día |

Realizado por: Morocho, Oscar, 2021.

Balance de energía:



Para este balance se considera h<sub>fg</sub>=2282.5 KJ/kg, a 90°C;

$$\begin{split} Q_{secado} &= Q_{Papel\,seco} + Q_{Agua} + Q_{evaporación} \\ Q_{secado} &= F_{14} * x_s * C_{Pp}(T_7 - T_6) + F_{14} * x_A * C_{Pa}(T_7 - T_6) + V * \lambda \\ Q_{secado} &= \left(732.75 \, \frac{kg}{día}\right) * (0.1795) * \left(1.3 \, \frac{KJ}{Kg^\circ C}\right) * (90 - 20)^\circ C + \left(732.75 \, \frac{kg}{día}\right) * (0.8205) \\ &* \left(4.19 \, \frac{KJ}{Kg^\circ C}\right) * (90 - 20)^\circ C + \left(586.64 \, \frac{Kg}{día}\right) * (2282.5 \, \frac{KJ}{kg}) \\ Q_{secado} &= 1527313.13 \, Kj/día \end{split}$$

Para mantener la suavidad y una superficie pareja en la hoja, se considera una presión de trabajo de 6 bar (Estrada, 2013, p. 11).

$$Q_{secado} = Q_{vapor} - Q_{Condensado}$$

Los valores de entalpía se calculan mediante tablas a una p= 6 bar o 600 kpa con una  $T_{sat}$ =158.83°C siendo:

$$h_{vapor} = 2756.2 \, KJ/kg$$
  
$$h_{condensado} = 670.38 \, KJ/kg$$

**Entonces:** 

$$\begin{aligned} Q_{secado} &= m_{vapor}(h_{vapor} - h_{condensado}) \\ m_{vapor} &= \frac{Q_{secado}}{h_{vapor} - h_{condensado}} \\ m_{vapor} &= \frac{1527313.13 \ KJ/día}{2756.2 \ KJ/kg - 670.38 \ KJ/kg} \\ m_{vapor} &= 732.24 \ kg/día \end{aligned}$$

## 3.8.1.1. Resultados

Tabla 42-3: Tabla de resultados del balance de masa

| Flujo           | Valor             | Unidad |  |  |
|-----------------|-------------------|--------|--|--|
| Flujo de papel  |                   |        |  |  |
| $M_{ m P}$      | 261.04            | kg/día |  |  |
| F <sub>1</sub>  | 3839.03           | kg/día |  |  |
| F <sub>2</sub>  | 3685.53           | kg/día |  |  |
| F <sub>3</sub>  | 18275.18          | kg/día |  |  |
| F <sub>4</sub>  | 18236.8           | kg/día |  |  |
| F <sub>5</sub>  | 1800.88           | kg/día |  |  |
| F <sub>6</sub>  | 1812.63           | kg/día |  |  |
| F <sub>7</sub>  | 1696.78           | kg/día |  |  |
| F <sub>8</sub>  | 1348.94           | kg/día |  |  |
| F <sub>9</sub>  | 1356.77           | kg/día |  |  |
| F <sub>10</sub> | 1264.11           | kg/día |  |  |
| F <sub>11</sub> | 6576.47           | kg/día |  |  |
| F <sub>12</sub> | 13152.94          | kg/día |  |  |
| F <sub>13</sub> | 1476.2            | kg/día |  |  |
| F <sub>14</sub> | 732.75            | kg/día |  |  |
| P               | 146.11            | kg/día |  |  |
|                 | Flujo de agregado |        |  |  |
| $A_1$           | 5.8768            | kg/día |  |  |
| Flujo de vapor  |                   |        |  |  |
| V               | 586.64            | kg/día |  |  |
|                 | Flujo de agua     |        |  |  |
| $\mathbf{W}_1$  | 3577.99           | kg/día |  |  |
| $W_2$           | 14628.03          | kg/día |  |  |

| $W_3$                | 5306.48          | kg/día |  |  |
|----------------------|------------------|--------|--|--|
| W <sub>4</sub>       | 6576.47          | kg/día |  |  |
| Flujo de drenado     |                  |        |  |  |
| $D_1$                | 16435.92         | kg/día |  |  |
| $D_2$                | 347.84           | kg/día |  |  |
| $D_3$                | 11676.74         | kg/día |  |  |
| D <sub>4</sub>       | 743.45           | kg/día |  |  |
|                      | Flujo de rechazo |        |  |  |
| $R_1$                | 153.5            | kg/día |  |  |
| $R_2$                | 76.76            | kg/día |  |  |
| R <sub>3</sub>       | 115.85           | kg/día |  |  |
| R <sub>4</sub>       | 92.66            | kg/día |  |  |
| Flujo de blanqueador |                  |        |  |  |
| $B_1$                | 11.75            | kg/día |  |  |
| $B_2$                | 7.83             | kg/día |  |  |

Tabla 43-3: Tabla de resultados del balance de energía

| Flujo                                 | Valor      | Unidad |
|---------------------------------------|------------|--------|
| Calor añadido al tanque de blanqueo 1 | 71702.14   | KJ/día |
| Calor añadido al tanque de blanqueo 2 | 158484     | KJ/día |
| Calor añadido al equipo de secado     | 1527313.13 | KJ/día |
| Masa de vapor                         | 732.24     | Kg/día |

Realizado por: Morocho, Oscar, 2021.

# 3.8.2. Dimensionamiento de equipos

Los parámetros a tomar en cuenta para el dimensionamiento de los equipos son: cantidad de materia a trabajar (flujos de salida), dos interacciones en un día y el tipo de flujo (continuo o discontinuo). La densidad para los equipos de flujo discontinuo se determina a partir del análisis de la pulpa durante la experimentación.

Cuatro equipos tienen el diseño de tanque de agitación por lo que se realizarán los cálculos en el mismo apartado.

## 3.8.2.1. Tanque de destinte, equipo de blanqueo 1 y 2, tanque de mezclado

El tanque de destinte trabaja con la misma cantidad de materia que el desfibrador  $(F_1)$ , de forma discontinua, entonces:

$$m_{operación} = 3839.03 \frac{kg}{día} * \frac{1 \ día}{8 \ h} * \frac{0.5 \ h}{interacción} = 239.94 \ kg/interacción$$

Considerando a la densidad de la mezcla como densidad del agua y un factor de seguridad del 20% se tiene:

$$v_{TD} = \frac{239.94 \, kg}{998 \frac{kg}{m^3}} * (1.2) = 0.289 \, m^3$$

## • Diseño interno del tanque agitador:

Para el diseño de un agitador, McCabe et al. (2007, p. 262) detalla los siguientes parámetros estándares de diseño:

Tabla 44-3: Parámetros de diseño de agitadores tipo turbina

| Parámetro    | Valor                                                                                                                        |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Velocidad    | 20 – 150 rpm                                                                                                                 |  |  |
| Proporciones | $\frac{D_a}{D_t} = \frac{1}{3} \qquad \frac{H}{D_t} = 1 \qquad \qquad \frac{J}{D_t} = \frac{1}{12}$ $E  1  W  1 \qquad L  1$ |  |  |
|              | $\frac{E}{D_t} = \frac{1}{3} \qquad \frac{W}{D_a} = \frac{1}{5} \qquad \qquad \frac{E}{D_a} = \frac{1}{4}$                   |  |  |

**Fuente:** McCabe et al., 2007, p. 262. **Realizado por:** Morocho, Oscar, 2021.

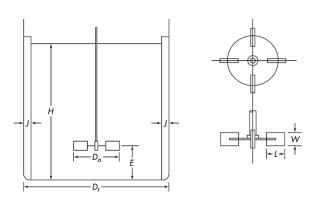



Figura 2-3: Mediciones de turbina

Fuente: McCabe et al., 2007, p. 263.

#### Determinación del radio

 $\frac{H}{D_t} = 1$   $D_t = H = 2r$   $v_{DT} = \pi r^2 H = \pi r^2 (2r)$   $r = \sqrt[3]{\frac{v_{DT}}{2\pi}} = 0.36 m$   $D_t = H = 0.72 m$  53

Diámetro del rodete:

$$\frac{D_a}{D_t} = \frac{1}{3}$$

$$D_a = \frac{0.72}{3} = 0.24 \, m$$

Largo de la paleta:

$$\frac{L}{D_a} = \frac{1}{4}$$

$$L = \frac{0.24}{4} = 0.06 \, m$$

Ancho de la paleta:

$$\frac{W}{D_a} = \frac{1}{5}$$

$$W = \frac{0.24}{5} = 0.048 \, m$$

Largo del eje:

Se asume que el largo del eje es el 50% más que la altura del tanque.

$$L_{eie} = h_{TD} + h_{TD} * 50\% = 1.07 m$$

Distancia con respecto al fondo:

$$\frac{E}{D_t} = \frac{1}{3}$$

$$E = \frac{0.72}{3} = 0.24 \, m$$

Espesor de las placas deflectoras:

$$\frac{j}{D_t} = \frac{1}{12}$$
$$j = \frac{0.72}{12} = 0.06 \, m$$

54

• Potencia del agitador:

Según McCabe et al. (2007, p. 277), el consumo de potencia está dada por:

$$P = N_P * n^3 * D_a^5 * \rho$$

Donde:

• P: potencia del agitador (W)

• N<sub>P</sub>: número de potencia

• n: velocidad del giro (rps)

• D<sub>a</sub>: diámetro del tanque (m)

• ρ: densidad (kg/m³)

Para calcular el  $N_p$  es necesario determinar el número de Reynolds de la mezcla, para el tanque de destinte se considera la mezcla como agua, por lo tanto:

$$Re = \frac{n * D_a^2 * \rho}{\mu}$$
$$\mu = 0.001002 Pa. s$$
$$Re = 57370$$

Con este dato se determina  $N_p$  mediante la siguiente gráfica para un W/D=1/5 turbina de pala simple (curva 2) dando un valor de 4:

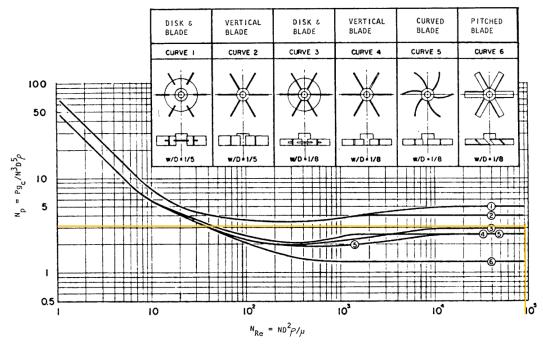



Figura 3-3: Número de potencia vs número de Reynolds de algunos impulsores de turbina.

Fuente: Couper et al., 2012, p. 283.

**Entonces:** 

$$P = (4) * \left(60 \frac{rev}{min} * \frac{1 min}{60 s}\right)^3 * (0.24 m)^5 * \left(998 \frac{kg}{m^3}\right) = 3.18 W$$

$$P = 3.18 W * \frac{1 Hp}{745.7 W} = 0.00426 Hp$$

La potencia determinada es muy baja por lo que se considera la potencia de trabajo más cercano de un motor que 0.5 Hp.

## • Cálculo de consumo energético:

En el procedimiento se establece un tiempo de trabajo para el destinte de 30 minutos, por lo tanto:

$$Consumo\ energ\'etico = 0.5\ Hp * \frac{745.7\ W}{1\ Hp} * \frac{1\ kW}{1000\ W} * \frac{8\ h}{1\ d\'{\text{u}}}$$
 
$$Consumo\ energ\'etico = 2.9828\ kWh/d\'{\text{u}}$$

Bajo este mismo procedimiento se dimensionan los equipos de blanqueo y mezclado a que tienen el mismo tipo de diseño. La viscosidad para el tanque de mezclado se determina a partir del método de Stoke, las viscosidades para los demás tanques están extrapolados para fines de cálculo.

Tabla 45-3: Valores para el dimensionamiento de equipos de blanqueo y mezclado

| Variable            | Destinte | Blanqueo 1 | Blanqueo 2 | Mezclado | Unidad            |
|---------------------|----------|------------|------------|----------|-------------------|
|                     |          | Paráme     | etro       | ·        | ·                 |
| Densidad            | 998      | 1194.17    | 1219.18    | 1057.55  | Kg/m <sup>3</sup> |
| Viscosidad          | 0.001002 | 2.1395     | 2.4121     | 0.6501   | Pa.s              |
| N <sub>Re</sub>     | 57370    | 36         | 26         | 255      | -                 |
| N <sub>P</sub>      | 4        | 4.2        | 4.8        | 3.5      | -                 |
| revoluciones        | 60       | 120        | 120        | 120      | rpm               |
| Factor de seguridad | 20       | 20         | 30         | 20       | %                 |
| Radio               | 0.36     | 0.27       | 0.24       | 0.42     | m                 |
| Moperacional        | 239.94   | 126.54     | 85.97      | 411.28   | kg                |
|                     | 1        | Resulta    | dos        |          |                   |
| Voperacional        | 0.289    | 0.127      | 0.092      | 0.467    | m <sup>3</sup>    |
| Altura del equipo   | 0.72     | 0.54       | 0.48       | 0.84     | m                 |
| Dt                  | 0.72     | 0.54       | 0.48       | 0.84     | m                 |
| Da                  | 0.24     | 0.18       | 0.16       | 0.28     | m                 |
| Н                   | 0.72     | 0.54       | 0.48       | 0.84     | m                 |
| j                   | 0.06     | 0.05       | 0.04       | 0.07     | m                 |
| Е                   | 0.24     | 0.18       | 0.16       | 0.28     | m                 |
| W                   | 0.048    | 0.036      | 0.032      | 0.056    | m                 |
| L                   | 0.06     | 0.05       | 0.04       | 0.07     | m                 |
| Leje                | 1.08     | 0.81       | 0.72       | 1.26     | m                 |
| Potencia            | 3.18     | 7.58       | 4.91       | 50.96    | W                 |
| Нр                  | 0.00426  | 0.01016    | 0.00658    | 0.06834  | Нр                |
| Hp estimado         | 0.5      | 0.5        | 0.5        | 0.5      | Нр                |
| Consumo de energía  | 2.9828   | 2.9828     | 2.9828     | 2.9828   | kWh/día           |

Fuente: Morocho, Oscar, 2021.

#### 3.8.2.2. Desfibrador

El desfibrador trabaja con la misma cantidad de materia que el tanque de destinte, pero el factor de seguridad aumenta debido al volumen de burbujas que se produce por el detergente presente. Además, el desfibrador presenta en la parte inferior una figura troncocónica que facilita la extracción de la pulpa del equipo. Para un desfibrado del 100% en consistencias inferiores al 6% el tiempo de operación se mantiene en 12 minutos (Martínez, 2017, p. 233).

En este caso, se considera un factor de seguridad del 30% y se supone que la parte troncocónica ocupa un 20% del volumen total.

$$m_{operación} = 411.28 \ kg$$
 
$$v_D = \frac{411.28 \ kg}{998 \ kg/m^3} * 1.3 = 0.5357 \ m^3$$
 
$$v_{forma\ troncónica} = 0.5357 \ m^3 * (0.2) = 0.1071 m^3$$

$$v_{cilindrica} = 0.5357 - 0.1071 = 0.4286 \ m^3$$

Forma cilíndrica: para un radio similar al tanque de destinte:

$$h_c = \frac{0.4286 \ m^3}{\pi * (0.36 \ m)^2} = 1.05 \ m$$

Forma troncocónica: suponiendo un diámetro del rotor de 40 cm.

$$v_{forma\ tronc\'onica} = \frac{h_t * \pi}{3} \left( r_{cilindro}^2 + r_{rotor}^2 + r_{cilindro} * r_{rotor} \right)$$
$$h_t = 0.4233\ m$$

#### • Potencia del rotor:

La potencia necesaria para el rotor se establece en 18.5 kW, valor que la empresa Fujian Light Industry Machinery & Equipment Co. Ltd (2021) estipula en su tabla de especificaciones del hidrodesintegrador vertical de pulpa de papel de diámetro de rotor de 400 mm y volumen máximo de 1 m³, valor cercano al determinado para el desfibrador.

#### • Consumo energético

Consumo energético = 
$$18.5 \text{ kW} * \frac{3.2 \text{ h}}{1 \text{ día}}$$
  
Consumo energético =  $64.75 \text{ kWh/día}$ 

#### 3.8.2.3. Depurador por tamiz

Las luces de los tamices se determinaron experimentalmente, donde se dedujo que los valores apropiados son 0.371 in para el tamiz superior y 0.221 in para el tamiz inferior.

#### Dimensiones del tamiz:

Las dimensiones que se proponen para el tamiz son 1 metro de ancho y 1.5 metros de largo. Las paredes de seguridad de 30 cm de algo en el tamiz superior para evitar derrames, la distancia del tamiz inferior con respecto al superior es de 50 cm. Para mejorar el proceso, los tamices tienen una inclinación de 20°.

Volumen del recipiente:

Como el depurador trabaja con flujo continuo, el recipiente inferior debe contener al menos la mitad del volumen de trabajo como medida de seguridad. Para ello, primero se determina el volumen de trabajo del recipiente a partir del flujo másico del proceso.

$$F_3 = 18275.18 \frac{kg}{dia} * \frac{1 \, dia}{8 \, h} * \frac{1 \, h}{2 \, interacción} = 1142.2 \frac{kg}{interaccion}$$

Suponiendo que tiene una densidad similar que el agua por su baja consistencia, entonces:

$$v = \frac{1142.2 \ kg}{998 \frac{kg}{m^3}} = 1.14 \ m^3$$
$$v_{operación} = 0.57 \ m^3$$

Se establece que la parte rectangular abarca el 80% del volumen:

$$v_{operación} = v_R + v_p$$
 $v_R = 0.57(0.8) = 0.456 \, m^3$ 
 $v_R = a * b * h$ 
 $h = 0.304 \, m$ 
 $v_p = 0.114 \, m$ 
 $v_p = \frac{a * b * h_p}{3}$ 
 $h_p = 0.30 \, m$ 

### 3.8.2.4. *Lavador*

Los equipos de lavado trabajan de forma discontinua, por ello deben soportar la carga total por interacción:

$$Lavado_{1} = 3839.03 \frac{kg}{d\acute{a}} * \frac{1 d\acute{a}}{8 h} * \frac{1 h}{2 interacci\acute{o}n} = 239.94 \frac{kg}{interacci\acute{o}n}$$

$$Lavado_{2} = 2024.63 \frac{kg}{d\acute{a}} * \frac{1 d\acute{a}}{8 h} * \frac{1 h}{2 interacci\acute{o}n} = 126.53 \frac{kg}{interacci\acute{o}n}$$

$$Lavado_{3} = 1375.54 \frac{kg}{d\acute{a}} * \frac{1 d\acute{a}}{8 h} * \frac{1 h}{2 interacci\acute{o}n} = 85.97 \frac{kg}{interacci\acute{o}n}$$

$$59$$

Las densidades de los flujos dependen del equipo del que provienen, si se considera un 20% como factor de seguridad, entonces:

$$v_1 = \frac{239.94 \, kg}{998 \, kg/m^3} * 1.2 = 0.2885 \, m^3$$

$$v_2 = \frac{126.53 \, kg}{1194.17 \, kg/m^3} * 1.2 = 0.1271 \, m^3$$

$$v_3 = \frac{85.97 \, kg}{1219.18 \, kg/m^3} * 1.2 = 0.0846 \, m^3$$

El alto de la pared se establece en 15 cm, y la relación entre el ancho y el largo es 2:1.

$$v = 0.15 * h * 2h$$
   
  $Lavador_1: h_1 = 0.98 \ m; \ a_1 = 1.96 \ m$    
  $Lavador_2: h_2 = 0.65 \ m; \ a_2 = 1.30 \ m$    
  $Lavador_3: h_3 = 0.53 \ m; \ a_3 = 1.06 \ m$ 

#### 3.8.2.5. Prensador

Se estima un radio externo de 15 cm y un radio interno de 3 cm, con un largo de 2.4 m.

$$v = v_{ext} - v_{int}$$
 
$$v = 2.4 * \pi * (r_1^2 - r_2^2) = 0.1628 m^3$$

El rodillo de prensado se ubica sobre la cama de formación por lo que no hace uso de un motor.

#### 3.8.2.6. Formación de la hoja

El ancho de la cama de formación se la designa en relación al ancho deseado del rollo final para reducir las pérdidas en el cortado, se estableció un ancho de 2.3 metros para un total de 25 rollos por bobina final.

Se procede a establecer las dimensiones de la caja de entrada tomándolo como una figura cúbica rectangular donde el ancho es el ancho de la cama de formación.

$$F_{12} = 13160.76 \, kg/dia$$

$$m_{operación} = 822.55 \ kg$$
 $v = \frac{822.55 \ kg}{998 \ kg/m^3} = 0.8242 \ m^3$ 
 $v = a * b * h$ 
 $h = a$ 
 $a = \sqrt{\frac{v}{h}} = 0.5986 \ m = h$ 

Con un factor de seguridad del 20% para la altura de la caja:

$$h_c = 0.7183 \, m$$

Velocidad de chorro:

$$velocidad_{chorro} = \sqrt{2gh} = 3.427 \, m/s$$

La velocidad lineal del chorro debe ser la misma de la tela:

$$velocidad_{chorro} = velocidad_{tela}$$

Por lo tanto, los rpm para un rodillo de retorno de radio 25 cm, que mueve la tela, es:

$$rpm = \frac{velocidad_{tela}}{r} = 13.708 \, rpm$$

Potencia del rodillo:

Según Forbo Movement Systems (2014, p. 5) en su publicación sobre bandas de transporte y procesamiento, establece la potencia como:

$$P = \frac{F * v}{1000}$$

Donde:

- P: potencia (kW)
- F: fuerza tangencial (N)
- v: velocidad de la banda (m/s)

La fuerza tangencial se la calcula mediante:

$$F = \mu * g * (m + m_p + m_B + m_R)$$

Donde:

- µ: coeficiente de fricción de marcha sobre el rodillo
- g: gravedad (m/s²)
- m: masa del producto (kg)
- m<sub>p</sub>: masa del rodillo de prensa
- m<sub>B</sub>: masa de la banda
- m<sub>R</sub>: maza de todos los tambores menos el tambor motriz (kg)

$$\mu = 0.033$$

Masa del producto:

$$A_{mesa} = (2.3 m)(5 m) = 11.5 m^{2}$$
 
$$m_{papel} = gramaje * A_{mesa} = 31.13 \frac{g}{m^{2}} * 11.5 m^{2} = 357.99 g$$
 
$$m = \frac{m_{papel} * \% H_{diluido}}{\% H_{papel}} = 3551.25 g = 3.55 kg$$

Masa del rodillo de masa:

$$densidad_{acero} = 7913 \ kg/m^3$$
 
$$m = 7913 \frac{kg}{m^3} * 0.1628 \ m^3 = 1288.23 \ kg$$

Masa de la banda:

El largo de la banda se estima en 11 metros. El peso de la masa se estima en los datos expuestos por Forbo Movement Systems, donde la banda se estima en 2.5 kg/m².

$$A_{banda} = (11 m)(2.3 m) = 25.3 m^{2}$$

$$m_{B} = (25.3 m^{2}) \left(2.5 \frac{kg}{m^{2}}\right) = 63.25 kg$$

Masa de tambores:

Para la cama de formación se determinan 6 rodillos fuera del motriz, 3 de diámetro igual al tambor motriz y 3 con la mitad del diámetro. La longitud de los rodillos son 2.4 m.

$$v_1 = \pi r_1^2 * L = 0.4712 \, m^3$$

$$v_2 = \pi r_2^2 * L = 0.1178 \, m^3$$

$$m_R = densidad_{acero}(3 * v_1 + 3 * v_2) = 13982.27 \, kg$$

$$F = (0.033) * (9.81 \frac{m}{s^2}) * (3.55 + 1288.23 + 63.25 + 13982.27) kg = 4965.14 \, N$$

$$P = \frac{(4965.14 \, N)(3.427 \frac{m}{s})}{1000} = 17.02 \, kW$$

# 3.8.2.7. Secador por rodillo

La longitud es la misma que el rodillo de prensa, el radio se determina a partir del calor suministrado para la evaporación considerándolo como un sistema adiabático. Según Estrada (2013, p. 19) transferencia de calor del cilindro hacia el papel está dado por:

$$Q_{s} = \frac{T_{v} - T_{p,prom}}{\frac{e_{s}}{k_{s}} + \frac{e_{c}}{k_{c}} + \frac{1}{h_{p} * \varphi}} * A_{c}$$

Donde:

- A<sub>c</sub>: área del cilindro
- T<sub>v</sub>: Temperatura del vapor
- T<sub>p,prom</sub>: temperatura promedio del papel
- e<sub>s</sub>: espesor del condensado
- e<sub>c</sub>: espesor del cilindro
- k<sub>s</sub>: coeficiente de conducción del condensado
- k<sub>c</sub>: coeficiente de conducción del cilindro
- h<sub>p</sub>: coeficiente de convección del papel

•  $\varphi$ : fracción superficial de contacto entre el cilindro y el papel (0.5)

Temperatura promedio del papel:

$$T_{p,prom} = \frac{90 + 20}{2} = 55^{\circ}C$$

Área del cilindro:

$$A_c = 2\pi r L = 2\pi r (2.4)$$

Los valores para el espesor del condensado y del cilindro se estiman en 6 y 38 mm respectivamente (Estrada, 2013, p. 32). Por otro lado, los coeficientes de conducción se determinan a partir de tablas expuestas por Cengel (2007) dando como resultados:

$$k_s = 0.682 \frac{W}{m^{\circ}C}$$
$$k_c = 15.6 \frac{W}{m^{\circ}C}$$

En cuanto al coeficiente de transferencia por convección, López y Vera (2008, p. 99) mencionan que, para papeles de gramaje 60 gr/m<sup>2</sup> o inferiores, el coeficiente está determinado por:

$$h_p = 200 + 800 * \% H_{prom}$$

Donde %H<sub>prom</sub> se establece por la humedad de entrada y salida del papel en el secador.

$$h_P = 200 + 800 \left( \frac{0.8205 + 0.0998}{2} \right) = 568.12 \frac{W}{m^2 {}^{\circ}C}$$

El valor de  $Q_s$  debe estar en W por lo que se determina del valor encontrado en los balances de energía.

$$Q_{s} = 1528225.08 \frac{KJ}{d\acute{a}} * \frac{1 \ d\acute{a}}{8 \ h} * \frac{1 \ h}{3600 \ s} = 53.06 \ kW$$

$$53060 \ W = \frac{(158.83 - 55)^{\circ} C}{\frac{0.006 \ m}{0.682 \frac{W}{m^{\circ} C}} + \frac{0.038 \ m}{15.6 \frac{W}{m^{\circ} C}} + \frac{1}{568.12 \frac{W}{m^{2} {\circ} C}} * 0.5}$$

$$r = 0.5 \ m$$

$$r_{interno} = 0.462 m$$

# 3.8.2.8. Empaquetado

El empaquetado se realiza de manera manual e individual, con papel que cubre todo el rollo. Para determinar la cantidad de papel de recubrimiento primero se debe calcular el área de superficie del rollo. El tubo interno de cartón tiene un diámetro de 5 cm con un espesor de 3 mm.

$$m_{papel} = (18 m * 0.092 m) * 31.13 \frac{g}{m^2} = 51.55 g$$

$$d_{papel} = 0.93 g/cm^3$$

$$v_{papel} = \frac{51.55}{0.93} = 55.43 cm^3$$

$$v_{papel} = \pi * L * (r_1^2 - r_2^2)$$

$$r_1 = \sqrt{\frac{v_{papel}}{\pi * L} + r_2^2} = 2.99 cm$$

Debido a las propiedades del papel higiénico, se establece un factor de expansión del 80%:

Con un factor de seguridad de 20%:

$$A = 538.48 cm^2$$
  
 $a = \sqrt{A} = 23.2 cm$ 

# 3.8.2.9. Resultados

Tabla 46-3: Resultados de dimensionamiento de equipos

|                      | Tanque                | de destinte, b          | lanqueo y mez           | zclado                                       |                |  |
|----------------------|-----------------------|-------------------------|-------------------------|----------------------------------------------|----------------|--|
| Variable             | Tanque de destinte    | Equipo de<br>blanqueo 1 | Equipo de<br>blanqueo 2 | Tanque de<br>mezclado                        | Unidad         |  |
| Voperacional         | 0.289                 | 0.127                   | 0.092                   | 0.467                                        | m <sup>3</sup> |  |
| Altura del<br>equipo | 0.72                  | 0.54                    | 0.48                    | 0.84                                         | m              |  |
| Dt                   | 0.72                  | 0.54                    | 0.48                    | 0.84                                         | m              |  |
| Da                   | 0.24                  | 0.18                    | 0.16                    | 0.28                                         | m              |  |
| Н                    | 0.72                  | 0.54                    | 0.48                    | 0.84                                         | m              |  |
| j                    | 0.06                  | 0.05                    | 0.04                    | 0.07                                         | m              |  |
| Е                    | 0.24                  | 0.18                    | 0.16                    | 0.28                                         | m              |  |
| W                    | 0.048                 | 0.036                   | 0.032                   | 0.056                                        | m              |  |
| L                    | 0.06                  | 0.05                    | 0.04                    | 0.07                                         | m              |  |
| Leje                 | 1.08                  | 0.81                    | 0.72                    | 1.26                                         | m              |  |
| Consumo de energía   | 2.9828                | 2.9828                  | 2.9828                  | 2.9828                                       | kWh/día        |  |
| <u>U</u>             |                       | Desfibr                 | ador                    | 1                                            | •              |  |
| Vari                 | able                  | Va                      | lor                     | Uni                                          | dad            |  |
| volu                 | men                   | 0.5                     | 357                     | m                                            | 3              |  |
| Diámetro             | de rotor              | 4                       | 00                      | m                                            | m              |  |
| Altura de la pa      | arte cilíndrica       | 1.                      | 05                      | m                                            |                |  |
| Altura de            |                       |                         |                         | n                                            | 1              |  |
| Consumo              | energético            | 64                      | .75                     | kWh/día                                      |                |  |
|                      |                       | Lava                    | dor                     | •                                            |                |  |
| Vari                 | able                  | Lavador 1               | Lavador 2               | Lavador 3                                    | Unidad         |  |
| Volu                 | men                   | 0.2885                  | 0.1271                  | 0.0846                                       | $m^3$          |  |
| Al                   | to                    | 0.15                    | 0.15                    | 0.15                                         | m              |  |
| And                  | cho                   | 1.96                    | 1.30                    | 1.06                                         | m              |  |
| Lat                  | :go                   | 0.98                    | 0.65                    | 0.53                                         | m              |  |
|                      |                       | Depurador               | por tamiz               | <u>,                                    </u> |                |  |
| Variable             | Tamiz s               | uperior                 | Tamiz i                 | nferior                                      | Unidad         |  |
| Luz                  | 0.3                   | 71                      | 0.2                     | 21                                           | in             |  |
| Volumen              |                       | 0.5                     | 57                      |                                              | $m^3$          |  |
| Largo                | 1                     | -                       | 1                       |                                              | m              |  |
| Ancho                | 1.                    | 5                       | 1.                      | 5                                            | m              |  |
| Altura rectangular   |                       | 0.30                    | 04                      |                                              | m              |  |
| Altura<br>piramidal  | 0.3                   |                         |                         |                                              | m              |  |
| piramidai            |                       | Prensa                  | ador                    |                                              |                |  |
| Vari                 | Variable Valor Unidad |                         |                         | lad                                          |                |  |
| Radio 0.15           |                       |                         | 5                       | m                                            |                |  |
| Radio i              | nterno                | 0.0                     |                         | m                                            |                |  |
|                      |                       | Formación               |                         |                                              |                |  |
| Vari                 |                       | Val                     |                         | Unidad                                       |                |  |
| Altura e             | en caja               | 0.59                    | 986                     | m                                            |                |  |

| Ancho              | 2.3    | m   |  |  |  |
|--------------------|--------|-----|--|--|--|
| Largo              | 5      | m   |  |  |  |
| Velocidad de rotor | 13.708 | rpm |  |  |  |
| Potencia           | 17.02  | kWh |  |  |  |
| Secador de rodillo |        |     |  |  |  |
| Largo              | 2.4    | m   |  |  |  |
| Radio              | 0.5    | m   |  |  |  |
| Radio interno      | 0.462  | m   |  |  |  |

Realizado por: Morocho, Oscar, 2021.

Tabla 47-3: Tabla resumen de equipos

| Código    | Descripción                      | Cap. teórica (Kg/h) | Cap. real (Kg/h) | Observaciones                                                                           |
|-----------|----------------------------------|---------------------|------------------|-----------------------------------------------------------------------------------------|
| TK-101    | Tanque de almacenamiento de agua | 3760                | 4512-5000        | Capacidad 5000 litros, acero inoxidable.                                                |
| TK-102    | Tanque de destinte               | 480                 | 575              | Acero inoxidable, altura 0.72 m, radio 0.36 m                                           |
| SR-101    | Desfibrador                      | 480                 | 624              | Acero inoxidable, altura 1.5 m, radio rotor 0.2 m                                       |
| PH-101    | Bomba de para pulpa              | 560                 | 700              | Acero inoxidable                                                                        |
| P-101 A/B | Bomba de agua                    | 960                 | 1200             | Acero inoxidable                                                                        |
| TL-101    | Equipo de lavado                 | 480                 | 624              | Acero inoxidable, alto 0.15 m, ancho 0.98 m, largo 1.96 m                               |
| TD-101    | Depurador                        | 460                 | 550              | Luz tamiz superior 0.371, Luz tamiz inferior 0.221, alto 0.3 m, ancho 1.5 m, largo 1.5m |
| TL-201    | Equipo de lavado                 | 253                 | 304              | Acero inoxidable, alto 0.15 m, ancho 0.65 m, largo 1.30 m                               |
| TB-201    | Equipo de blanqueo etapa 1       | 253                 | 304              | Acero inoxidable, altura 0.54m, radio 0.27 m                                            |
| TL-202    | Equipo de lavado                 | 172                 | 206              | Acero inoxidable, alto 0.15 m, ancho 0.53 m, largo 1.06 m                               |
| TB-202    | Equipo de blanqueo etapa 2       | 168                 | 201              | Acero inoxidable, altura 0.48 m, radio 0.24 m                                           |
| TK-301    | Tanque de mezclado               | 822                 | 987              | Acero inoxidable, altura 0.84 m, radio 0.42 m                                           |
| S-301     | Equipo de formado de hoja        | 1645                | 1974             | Acero inoxidable, ancho 2.3 m                                                           |
| R-301     | Prensa                           | 185                 | 222              | Acero inoxidable, radio externo 0.15 m, radio interno 0.03 m.                           |
| RS-301    | Secador por rodillo              | 92                  | 110              | Acero inoxidable, largo 2.4 m, radio int. 0.462, radio ext. 0.5 m                       |
| RB-301    | Bobinadora                       | 92                  | 110              | Acero inoxidable, largo 2.4 m                                                           |
| RC-401    | Rebobinadora y cortadora         | 92                  | 110              | Acero inoxidable                                                                        |
| BR-501    | Caldera                          | 1000                | 1250             | Acero inoxidable                                                                        |

Realizado por: Morocho, Oscar, 2021.

# 3.9. Análisis económico

#### 3.9.1. Inversión

Tabla 48-3: Cotización de equipos

| Equipos             | N°   | Valor/U      | Costo        |
|---------------------|------|--------------|--------------|
|                     | Prin | cipales      |              |
| Tanque de destinte  | 1    | \$ 660.00    | \$ 660.00    |
| Pulper              | 1    | \$ 1,200.00  | \$ 1,200.00  |
| Lavador             | 3    | \$ 150.00    | \$ 450.00    |
| Depurador por tamiz | 1    | \$ 750.00    | \$ 750.00    |
| Tanque de blanqueo  | 2    | \$ 1,000.00  | \$ 2,000.00  |
| Sistema de drenaje  | 2    | \$ 3,500.00  | \$ 7,000.00  |
| Tanque de mezclado  | 1    | \$ 800.00    | \$ 800.00    |
| Formador de hoja    | 1    | \$ 10,000.00 | \$ 10,000.00 |
| Prensa              | 1    | \$ 3,200.00  | \$ 3,200.00  |
| Sistema de secado   | 1    | \$ 5,000.00  | \$ 5,000.00  |
| Bobinador           | 1    | \$ 1,680.00  | \$ 1,680.00  |
| Cortador            | 1    | \$ 3,800.00  | \$ 3,800.00  |
|                     | Ser  | vicios       |              |
| Tanque de agua      | 3    | \$ 1,715.15  | \$ 5,145.45  |
| Bomba               | 6    | \$ 141.40    | \$ 848.40    |
| Caldera             | 1    | \$ 4,000.00  | \$ 4,000.00  |
|                     | Tran | sporte       |              |
| Tuberías vapor (m)  | 40   | \$ 8.90      | \$ 356.00    |
| Tuberías agua (m)   | 60   | \$ 2.83      | \$ 169.80    |
|                     |      | Total        | \$ 47,059.65 |

Realizado por: Morocho, Oscar, 2021.

# 3.9.2. *Ventas*

Para determinar las ventas anuales primero se especifica las características de cada rollo y se considera un porcentaje de ventas del 100%.

Tabla 49-3: Características del papel higiénico por rollo

| Característica | Valor | Unidad           |
|----------------|-------|------------------|
| Gramaje        | 31.12 | g/m <sup>2</sup> |
| Longitud       | 18    | m                |
| Ancho          | 9.2   | cm               |
| Precio         | 0.15  | USD              |

Realizado por: Morocho, Oscar, 2021.

Número de rollos anuales

$$N^{\circ} = \frac{m_{anual}}{m_{rollo}}$$
 
$$N^{\circ} = \frac{146.2 \frac{kg}{dia} * \frac{260 \ dias}{a\~no}}{51.55 \frac{g}{rollo} * \frac{1 \ kg}{1000 \ g}}$$
 
$$N^{\circ} = 737381 \ rollos/a\~no}$$

➤ Ventas al 100%

$$Ventas = \left(737381 \frac{rollos}{a\tilde{n}o}\right) * \left(0.15 \frac{USD}{rollo}\right)$$
$$Ventas = 110607.15 USD/a\tilde{n}o$$

#### 3.9.3. Impuestos

$$impuestos = 22\% * Ventas$$
 
$$impuestos = 110607.15 \frac{USD}{a\~no} * 22\% = 24333.57 \frac{USD}{a\~no}$$

#### 3.9.4. Inversión anual

# 3.9.4.1. Materia prima y material de empaque

El precio de la materia prima se basa en el precio en expuesto por el Ministerio del Ambiente, Agua y Transición Ecológica (2014), este valor es tentativo y depende del mercado y la calidad del material entregado. En cuanto al valor del material de empaque, el valor se designa por valores similares estipulados en el mercado. Para el tubo de cartón se toma en cuenta un valor de 6 g/rollo, por otro lado, para el papel de empaque se toma en cuenta un papel de gramaje 30 g/m<sup>2</sup>.

$$\begin{aligned} Cantidad_{tubo} &= 6\frac{g}{rollo}*737381 \frac{rollos}{a\~no}*\frac{1\ kg}{1000\ g}*\frac{1\ Tn}{1000\ kg} = 4.42 \frac{Tn}{a\~no} \\ Cantidad_{empaque} &= 30\frac{g}{m^2}*(23.2*23.2) \frac{m^2}{rollo} = 1.62 \frac{g}{rollo} \\ Cantidad_{empaque} &= 1.62 \frac{g}{rollo}*737381 \frac{rollos}{a\~no}*\frac{1\ kg}{1000\ g}*\frac{1\ Tn}{1000\ kg} = 1.194 \frac{Tn}{a\~no} \end{aligned}$$

Tabla 50-3: Cotización de materia prima y material de empaque anual

| Materia             |                               | Cantidad<br>(Tn/año) | Valor<br>(USD/I |      |    | or<br>D/año) |
|---------------------|-------------------------------|----------------------|-----------------|------|----|--------------|
| Mataria             | Papel cuaderno                | 25.47                | \$              | 0.10 | \$ | 2,547.00     |
| Materia prima       | Cartón                        | 42.4                 | \$              | 0.11 | \$ | 4,664.00     |
| 36                  | Tubo de cartón                | 4.42                 | \$              | 2.00 | \$ | 8,840.00     |
| Material de empaque | Papel empaque                 | 1.194                | \$              | 2.00 | \$ | 2,388.00     |
| Blanqueadores       | NaHClO                        | 3.06                 | \$              | 0.57 | \$ | 1,744.20     |
| -                   | H <sub>2</sub> O <sub>2</sub> | 2.04                 | \$              | 0.65 | \$ | 1,326.00     |
|                     | -                             | -                    | Total           |      | \$ | 18,459.40    |

Realizado por: Morocho, Oscar, 2021.

# *3.9.4.2. Aditivos*

Tabla 51-3: Cotización anual de agregados químicos

| Aditivos          | kg/año | USD/kg |      | USD/año |          |
|-------------------|--------|--------|------|---------|----------|
| Almidón           | 570.18 | \$     | 1.32 | \$      | 752.64   |
| Talco             | 760.24 | \$     | 2.00 | \$      | 1,520.48 |
| CaCO <sub>3</sub> | 190.06 | \$     | 5.00 | \$      | 950.30   |
|                   |        | Total  |      | \$      | 3,223.42 |

Realizado por: Morocho, Oscar, 2021.

# 3.9.4.3. Gasto energético

Tabla 52-3: Costo anual por gasto energético de equipos

| Equipo                     | Diario | Anual     | Valo | or (USD) | Valo | r (USD/año) |
|----------------------------|--------|-----------|------|----------|------|-------------|
|                            |        | Principal |      |          |      |             |
| Tanque de destinte (kWh)   | 2.9828 | 775.528   | \$   | 0.08     | \$   | 62.04       |
| Desfibrador (kWh)          | 64.75  | 16835     | \$   | 0.08     | \$   | 1,346.80    |
| Tanque de blanqueo 1 (kWh) | 2.9828 | 775.528   | \$   | 0.08     | \$   | 62.04       |
| Tanque de blanqueo 2 (kWh) | 2.9828 | 775.528   | \$   | 0.08     | \$   | 62.04       |
| Tanque mezclador (kWh)     | 2.9828 | 775.528   | \$   | 0.08     | \$   | 62.04       |
| Cama de formación (kWh)    | 136.16 | 35401.6   | \$   | 0.08     | \$   | 2,832.13    |
| Secador (kWh)              | 17.6   | 4576      | \$   | 0.08     | \$   | 366.08      |
| Bobinador (kWh)            | 17.6   | 4576      | \$   | 0.08     | \$   | 366.08      |
| Cortador (kWh)             | 17.6   | 4576      | \$   | 0.08     | \$   | 366.08      |
| Servicio                   |        |           |      |          |      |             |
| Caldera (L)                | 40     | 10400     | \$   | 0.42     | \$   | 4,399.20    |
| Bomba (kWh)                | 8.95   | 2327      | \$   | 0.08     | \$   | 186.16      |
|                            |        |           |      | Total    | \$   | 10,110.69   |

Realizado por: Morocho, Oscar, 2021.

# 3.9.4.4. Consumo total de agua

Tabla 53-3: Costo anual por consumo de agua

| Flujo | kg/día    | kg/año     | Total      | Precio   | Valor       |       |            |
|-------|-----------|------------|------------|----------|-------------|-------|------------|
| W1    | 3577.99   | 930277.4   | 7823133.03 |          |             |       |            |
| W2    | 14628.03  | 3803287.8  | (kg/año)   | (kg/año) | (kg/año)    | ¢ 124 | ¢ 0.720.12 |
| W4    | 5306.4832 | 1379685.63 | 7838.81    | \$ 1.24  | \$ 9,720.13 |       |            |
| W3    | 6576.47   | 1709882.2  | (m³/año)   |          |             |       |            |

Realizado por: Morocho, Oscar, 2021.

#### 3.9.4.5. Recursos humanos

Tabla 54-3: Costo por recursos humanos

| Trabajadores           | °N | Sueldo |        | do año |           |
|------------------------|----|--------|--------|--------|-----------|
| Operario               | 2  | \$     | 400.00 | \$     | 9,600.00  |
| Administrador          | 1  | \$     | 700.00 | \$     | 8,400.00  |
| Técnico de laboratorio | 1  | \$     | 700.00 | \$     | 8,400.00  |
|                        |    |        | Total  | \$     | 26,400.00 |

Realizado por: Morocho, Oscar, 2021.

# 3.9.5. Total, ingreso neto

Tabla 55-3: Ingreso Neto

| Parámetro                   | Valor |            |  |
|-----------------------------|-------|------------|--|
| Venta                       | \$    | 110,539.05 |  |
| Impuesto                    | \$    | 24,318.59  |  |
| Materia prima y empaquetado | \$    | 18,459.40  |  |
| Aditivos                    | \$    | 3,221.43   |  |
| Gasto energético            | \$    | 10,110.69  |  |
| Consumo de agua             | \$    | 9,720.13   |  |
| Recursos humanos            | \$    | 26,400.00  |  |
| Total                       | \$    | 18,308.81  |  |

Realizado por: Morocho, Oscar, 2021.

# 3.9.6. Indicadores de viabilidad y rentabilidad

Para realizar el análisis del VAN y el TIR se toma en consideración un estimado de tres años con la misma tasa de venta y una rentabilidad esperada del 15%.

Tabla 56-3: Variables para determinación

del VAN y TIR

| Variable       | Valor    |
|----------------|----------|
| A <sub>0</sub> | 47059.65 |
| A <sub>1</sub> | 18308.81 |
| $A_2$          | 18308.81 |
| A <sub>3</sub> | 18308.81 |
| A4             | 18308.81 |
| k              | 15%      |

Realizado por: Morocho, Oscar, 2021.

> VAN

$$VAN = -A_0 + \sum_{i=0}^{n} \frac{A_i}{(1+k)^i}$$

$$VAN = -47059.56 + \frac{18308.81}{(1+0.15)} + \frac{18308.81}{(1+0.15)^2} + \frac{18308.81}{(1+0.15)^3} + \frac{18308.81}{(1+0.15)^4} = 5211.62$$

$$VAN > 0; Se \ acepta$$

> TIR

$$VAN = 0$$

$$0 = -A_0 + \sum_{i=0}^{n} \frac{A_i}{(1+TIR)^i}$$

$$0 = -47059.56 + \frac{18308.81}{(1+TIR)} + \frac{18308.81}{(1+TIR)^2} + \frac{18308.81}{(1+TIR)^3} + \frac{18308.81}{(1+TIR)^4}$$

$$TIR = 20\%$$

$$TIR > K; genera ingresos$$

# Periodo de recuperación

Para determinar el periodo de recuperación, primero se determina el periodo previo a recuperar la inversión, para ello se realiza la siguiente tabla:

Tabla 57-3: Tabla de saldos actualizados

|                             | 0         | 1         | 2         | 3        | 4        |
|-----------------------------|-----------|-----------|-----------|----------|----------|
| Flujo Fondo                 | -47059.65 | 18308.81  | 18308.81  | 18308.81 | 18308.81 |
| Saldo Actualizado 15%       | -47059.65 | 15920.71  | 13844.09  | 12038.34 | 10468.12 |
| Saldo actualizado Acumulado | -47059.65 | -31138.94 | -17294.85 | -5256.51 | 5211.61  |

Realizado por: Morocho, Oscar, 2021

Como se puede observar en la tabla, el periodo previo a la recuperación es el 3, por lo que se tiene:

$$PR = 3 + \frac{5256.51}{105010.82} = 3.5$$

#### 3.9.7. Resultados

Tabla 58-3: Resultados de análisis económico

| Parámetro | Valor        |
|-----------|--------------|
| Inversión | \$ 47,059.65 |
| Ingresos  | \$ 18,308.81 |
| VAN       | 5256.51      |
| TIR       | 20%          |
| PR        | 3.5          |

Realizado por: Morocho, Oscar, 2021

#### 3.10. Análisis y discusión de resultados

Los datos de calidad obtenidos de los procedimientos realizados se encuentran dentro de los parámetros establecidos por la norma, aunque son relativamente altos considerando que se trata de una hoja de una capa. Los valores para el gramaje son: 33.3 g/m², 31.1 g/m² y 36.95 g/m²; resistencia a la ruptura por tracción se encuentra entre: 146.13 N/m, 182.67 N/m y 249.33 N/m; y el tiempo de absorción entre: 9 .55 s, 15.16 s y 22 s. Puede observarse claramente una relación entre estos parámetros, a mayor resistencia a la tracción, mayor tiempo de absorción y mayor gramaje. Sin embargo, se nota una diferencia de esta afirmación en el resultado del procedimiento 2, que tiene el gramaje más bajo, pero sigue con una resistencia alta, esto se lo puede explicar debido al uso el almidón, ya que, como menciona Velásquez et al. (2010, p. 46), este aditivo proporciona un refuerzo en las uniones interfibra de la pulpa de celulosa lo que confiere mayor resistencia al papel. Esto se puede corroborar ya que en el procedimiento 1 se trabajó solamente con 0,5% y se obtuvo un resultado bastante bajo, mientras que en el procedimiento 2 y 3 se utilizó la misma cantidad de almidón y se obtuvieron los resultados ya mencionados, reafirmando la relación existente entre los tres parámetros establecidos.

Además de estos parámetros, para determinar el proceso más adecuado, se consideró el pH y el rendimiento. En cuando al pH se obtuvieron los valores de: 9.05 para el procedimiento 1, 8.33 para el procedimiento 2 y 8.49 para el procedimiento 3. Se puede notar la tendencia alcalina del producto obtenido proveniente de los agentes blanqueadores utilizados lo cual puede neutralizarse añadiendo al lavado final detergente, sin embargo, esto aumentaría la cantidad de agua utilizada. Otro método para bajar el pH puede ser el uso de aditivos químicos en el tanque de mezclado. La importancia del pH radica en el tiempo de vida útil, siendo los papeles de pH cercano a 7 los que tienen mejor oportunidad de vida, mientras los que tienen un pH de entre 7 a 8 poseen un potencial de larga vida (León y Fuentes, 2012, p. 62). El procedimiento que mayormente se acerca a estas condiciones es el número 2 con un valor de 8.33. En cuanto al rendimiento de los procesos, estos se encuentran en: 52.542%, 56.282% y 57.329%, respectivamente. Siendo un valor relativamente bajo en comparación con el rendimiento obtenido por Vásconez (2018, p. 64) el cual se establece entre el 72 – 80%. Esta diferencia puede deberse al tamiz utilizado para el lavado de la pulpa durante el proceso ya que el uso de tamices con diámetros relativamente altos permite el paso considerable de fibra, además se considera una posible fuente de pérdida la cama de formación de la hoja. Para evitar este problema se puede trabajar mallas de diámetro inferior a 0.850 mm, sin embargo, se debe tener en cuenta que un diámetro menor del tamiz infiere en tiempos más prolongados en el lavado y un posible taponamiento de la malla por lo que se vería necesario implementar fuerza de agitación adicional.

A partir de estos datos, y mediante las pruebas ANOVA y Tukey, se determinó que el procedimiento óptimo para ser utilizado es el número dos ya que cuenta con los mejores parámetros de calidad y un rendimiento no muy inferior al más alto. Una vez identificado el proceso se determinan las variables implicadas en los balances de masa y energía mediante un diagrama de bloques de proceso que a su vez sirve para identificar y dimensionar los equipos necesarios. Para los balances de masa se tomó como base un flujo másico de 261.04 kg/día mismo que fue determinado a partir de los datos proporcionados por la EMMAIPC para la recolección anual de cartón y papel. Se identificó que, para este flujo másico, era necesario 30088.97 kg de agua, 19.58 kg de blanqueadores, 5.8768 kg de agregados químicos y 732.24 kg de vapor, todo esto por día por día, siendo el agua el componente más utilizado durante el procedimiento.

Una vez establecidas todas las variables necesarias para una aplicación del proyecto tale como materia prima, flujos adicionales, equipos, consumo energético y recursos humanos, se procedió a plantear un monto mínimo de inversión que se estableció en \$47059.65, lo cual generaría \$18,308.81 anuales suponiendo unas ventas al 100%, donde los valores del TIR y el VAN establecieron que el proyecto es rentable con un periodo de recuperación relativamente corto, esta afirmación se debe a que el valor del VAN resultó ser positivo lo que indica que el proyecto

genera ganancias en el lapso establecido, además, el valor del TIR se encontró mayor que la tasa de descuento asumida lo que indica que el proyecto es rentable hasta un 20% en la tasa de descuento.

#### **CONCLUSIONES**

- En la elaboración del papel higiénico se propusieron tres procedimientos diferentes basados en datos obtenidos mediante revisión bibliográfica, para ello, se dedujo que la forma óptima de plantear los procedimientos era dividir el proceso general en dos subprocesos: la obtención de la pulpa: desfibrado, destinte, depurado, blanqueo, agregados químicos; y la formación de la hoja: formación de la hoja, prensado, secado y cortado. La diferencia para cada procedimiento radicó en la etapa de obtención de la pulpa de donde depende las características del producto final.
- Los datos obtenidos durante la realización de los tres procedimientos se encuentran dentro de los parámetros establecidos por la norma NTE INE 1430 "Papeles y cartones. Papel higiénico. Requisitos". Sin embargo, con base en los resultados obtenidos a partir de las pruebas de ANOVA y Tukey, se pudo establecer de manera óptima el segundo procedimiento como el más adecuado, donde los valores para los parámetros de calidad son: gramaje (31.1 g/m²), resistencia a la rotura por tracción longitudinal (182.67 N/m), tiempo de absorción (15.16 s), longitud de la hoja entre perforaciones (10 cm), ancho de la hoja (9.2 cm) con un rendimiento del 56.282%.
- Una vez identificado el procedimiento óptimo, se procedió a realizar los diagramas ingenieriles pertinentes, estos diagramas permitieron identificar las variables que interfieren durante el proceso: entradas y salidas de materia prima, agua, agregados químicos y rechazo. Además de ello, ayudó a identificar los equipos que son necesarios para el correcto funcionamiento del sistema, tanto principales: tanque de destinte y mezclado, desfibrador, tamices de depurado, equipos de lavado, equipos de blanqueo, equipo para formación de hoja, prensa de rodillo, secador de rodillo, bobinadoras y equipo de corte; de servicio: caldera y bombas; y de transporte: tuberías de acero y plástico.
- El dimensionamiento de los equipos partió de los balances de masa y energía, mismos que sirvieron para identificar los volúmenes y la potencia necesaria de los equipos, de ahí se concluye que, para que el proceso de elaboración de papel higiénico se desarrolle es necesario: un tanque para destinte de 0.289 m³, un tanque de blanqueo de 0.127 m³, un tanque de blanqueo de 0.092 m³, un tanque de mezclado de 0.467 m³, estos equipos con un agitador de 0.5 Hp de potencia; un desfibrador de 0.5357 m³; tres equipos de lavado de 0.2885 m³, 0.1271 m³, 0.0846 m³ respectivamente, mismos que pueden ser usados para el drenaje de la pulpa; un depurador de doble tamiz de luz 0.371 in par el tamiz superior y 0.221 in para el tamiz inferior, ambos de dimensiones 1 m por 1.5 m; un equipo de formación de hoja de 2.3 m de ancho por 5 m de largo con una potencia de 17.02 kWh; un rodillo prensador de radio 0.15 m y 2.4 m de largo; y finalmente un equipo secador de radio 0.5 m y largo de 2.4 m con una alimentación de vapor de 732.24 kg/día.

• A partir de los datos determinados en la identificación de equipos y en los balances realizados se pudo establecer un mínimo de inversión y una proyección de ventas al 100%, con estos datos y proponiendo una tasa descuento del 15% se obtuvo un VAN de 5211.62 en un estimado de 4 periodos; también se estableció un TIR del 20% y un periodo de recuperación de 3.5 dando como resultado 4 periodos de recuperación. Estos datos verifican que el proyecto es rentable para una posible implementación.

#### RECOMENDACIONES

- Se recomienda probar con distintos aditivos químicos que mejoren el medio de acción de los agentes blanqueadores para buscar disminuir el porcentaje de uso y así aminorar una etapa de blanqueo.
- El lavado realizarlo con tamices de diámetro bajo para evitar en lo posible el desperdicio de las fibras celulósicas, además, tratar el agua resultante de este proceso a un filtrado para recuperar la mayor cantidad de fibra desperdiciada.
- Realizar un análisis de desfibrado y destinte con papeles y cartones que presenten contaminantes con el fin de ampliar el margen de materia prima que se utiliza.
- Al momento de la formación de la hoja, se recomienda trabajar con diluciones mayores al 99% y distintas telas que faciliten la dispersión de la mezcla, esta tela debe tener altas propiedades absorbentes de ser posible, esto con la finalidad de obtener un producto más uniforme.
- Para facilitar el secado, tratar la lámina de celulosa a aire caliente, cubriendo su superficie con una tela delgada y estirando en lo posible la tela de formación para evitar pliegues en la hoja.

#### BIBLIOGRAFÍA

- **ANCHAPAXI, M.**, *Propuesta para mejorar la comercialización de la empresa Absorpelsa S.A* (papeles absorventes) en la parroqia Chillogallo Guajalo de la ciudad de Quito [en línea]. Quito: Universidad Central del Ecuador. 2012. [Consulta: 28 julio 2021]. Disponible en: http://www.dspace.uce.edu.ec/bitstream/25000/172/1/T-UCE-0005-23.pdf.
- ARÍZAGA, F. y MARÍN, A., Análisis de un modelo para medir la productividad en el sector de tratamiento de papel en la ciudad de Ambato. Empresa de estudio: PAPELMAR [en línea]. Quito: Pontificia Universidad Católica del Ecuador. 2011. [Consulta: 28 julio 2021]. Disponible en: http://repositorio.puce.edu.ec/bitstream/handle/22000/3076/T-PUCE-3468.pdf;jsessionid=D700E38CABE8CB48B23A5A6894BA6BFE?sequence=1.
- **AROCENA, A.**, Reciclaje de otros componentes. Residuos sólidos urbanos: Manual de gestión integral. S.l.: CEMPRE URUGUAY, 1998. pp. 209-219.
- **ARRIOLS, E.**, *Qué tipo de papel se recicla. Ecología Verde* [en línea]. 2020. [Consulta: 29 julio 2021]. Disponible en: https://www.ecologiaverde.com/que-tipo-de-papel-se-recicla-1570.html.
- **BERNAL, A.**, Diseño E Implementación De Un Sistema De Producción Para Incrementar La Productividad En El Proceso De Fabricación De La Línea De Rollos De Papel Higiénico En La Planta Productos Tissue Ecuador S.a. Autor [en línea]. Guayaquil: Universidad de Guayaquil. 2014. Disponible en: http://repositorio.ug.edu.ec/bitstream/redug/6612/1/TESIS INCREMENTO DE PRODUCTIVOIDAD O SISTEMAS PRODUCTIVOS.pdf.
- **BONILLA, F.**, Estudio de la tensión de papel tissue en la Empresa Familia Sancela S.A planta Lasso y su incidencia en la compactación del papel higiénico. [en línea]. Ambato: Universidad técnica de Ambato. 2015. [Consulta: 28 julio 2021]. Disponible en: http://repositorio.uta.edu.ec/bitstream/123456789/13873/1/Tesis I.M. 296 Bonilla Chiluisa Fabián Enrique.pdf.
- BRAZ, A., El libro del papel Diccionario práctico. 1. Buenos Aires: CANSON. 2007.
- **CENGEL, Y.**, *Transferencia de calor y masa. Un enfoque práctico*. 3ra. México: McGraw Hill. 2007.

- COUPER, J., PENNEY, W., FAIR, J. y WALAS, S., Chemical Process Equipment: Selection and Design. 3. S.l.: Elsevier Inc. 2012. ISBN 9781119130536.
- **DELGADO, M.**, Síntesis, Caracterización y Evaluación catalítica de óxidos metálicos nanoestructurados para la descomposición de H2O2 [en línea]. Chihuahua: Centro de investigación en materiales avanzados. 2008. [Consulta: 6 septiembre 2021]. Disponible en: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/415/1/Tesis Manuel David Delgado Vigil .pdf.
- **DÍAZ, A.,** *Papel y cartón: volumen de producción 2006-2017. Statista* [en línea]. 2020. [Consulta: 3 junio 2021]. Disponible en: https://es.statista.com/estadisticas/600577/volumen-de-produccion-de-papel-y-carton-anivel-mundial/.
- **DÍAZ, R.**, Fundamentos Básicos de Cálculos de Ingeniería Química con enfoque en alimentos. Fundamentos Básicos de Cálculos de Ingeniería Química con enfoque en alimentos. S.l.: s.n., 2017. pp. 44-65. ISBN 9789942241184.
- **EMMAIPC**, 2021a. Producción Per Cápita y composición de los desechos y/o residuos Sólidos. S.l.:
- **EMMAIPC**, *Relleno sanitario tendrá más vida útil. 21 Abril* [en línea]. 2021b. [Consulta: 3 junio 2021]. Disponible en: http://www.emmaipc-ep.gob.ec/index.php/component/content/article/8-noticias/4-relleno-sanitario-tendra-mas-vida-util?Itemid=124.
- **ESAN**, ¿Qué son los estudios de viabilidad? | Gestión de Proyectos | Apuntes empresariales | ESAN. Conexión ESAN [en línea]. 2017. [Consulta: 21 junio 2021]. Disponible en: https://www.esan.edu.pe/apuntes-empresariales/2017/03/que-son-los-estudios-deviabilidad/.
- **ESTRADA, P.**, *Optimización del consumo energético en el secador de papel tissue con capota de aire caliente* [en línea]. Santiago de chile: Universidad de chile. 2013. [Consulta: 6 septiembre 2021]. Disponible en: http://repositorio.uchile.cl/bitstream/handle/2250/113704/Optimizacion-del-consumo-energetico-en-el-secado-de-papel-tissue-con-capota-de-aire-caliente.pdf?sequence=3&isAllowed=y.

- FORBO MOVEMENT SYSTEMS, 2014. Cálculo de la banda transportadora. [en línea]. S.l.: [Consulta: 28 agosto 2021]. Disponible en: https://sistemamid.com/panel/uploads/biblioteca/2014-06-21\_09-06-57105684.pdf.
- **FUJIAN LIGHT INDUSTRY MACHINERY & EQUIPMENT CO.**, *Hidro-desintegrador vertical de pulpa de papel,Separador de fibras,Equipo de tamizado de desechos. FJLIME* [en línea]. 2021. [Consulta: 7 septiembre 2021]. Disponible en: http://fjlime.es/1-9-vertical-hydrapulper.html.
- GOOGLE, *Google Maps*. [en línea]. 2021. [Consulta: 3 junio 2021]. Disponible en: https://www.google.com/maps/place/Cañar/@-2.5606832,-78.944885,5532m/data=!3m1!1e3!4m9!1m2!2m1!1zY2HDsWFy!3m5!1s0x91cd60d9f878 41ad:0xf83edf3cdbdd986!8m2!3d-2.555705!4d-78.9344501!15sCgZjYcOxYXKSAQhsb2NhbGl0eQ.
- **HERNÁNDEZ, J., RODRÍGUEZ, L. y GARCÍA, A.**, Evaluación de oportunidades para la conservación de la energía en una máquina de papel. Tecnología química [en línea], vol. 41, no. 1, pp. 174-192. 2021. [Consulta: 5 septiembre 2021]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci\_arttext&pid=S2224-61852021000100174&lng=es&tlng=es.
- **LEÓN, C. y FUENTES, M.**, *Diseño de un proceso para la fabricación de papel reciclado ecológico a escala laboratorio usando peróxido de hidrógeno* [en línea]. Cartagena: Universidad de Catagena. 2012. [Consulta: 18 agosto 2021]. Disponible en: https://repositorio.unicartagena.edu.co/bitstream/handle/11227/112/TESIS

  DE GRADO.pdf?sequence=1&isAllowed=y.
- **LÓPEZ, P. y VERA, A.**, Sistematización del balance térmico en la máquina 4 de Propal S.A [en línea]. Santiago de Cali: Universidad autónoma de occidente. 2008. [Consulta: 13 septiembre 2021]. Disponible en: https://red.uao.edu.co/bitstream/handle/10614/7602/T05603.pdf?sequence=1&isAllowed=y.
- MACHADO, A. y ALZATE, H., Métodos utilizados en el destintado de papel desperdicio. Revista Investigaciones Aplicadas [en línea], vol. 6, no. 1, pp. 9-25. 2012. [Consulta: 16 agosto 2021]. ISSN ISSN-e 2011-0413. Disponible en: http://revistas.upb.edu.co/index.php/investigacionesaplicadas/article/view/15.

- **MARTÍNEZ, M.**, Cálculo de un púlper y sus instalaciones complementarias en una fábrica de papel. S.l.: Universidad de Valladolid. 2017.
- MCCABE, W., SMITH, J. y HARRIOT, P., Operaciones unitarias en ingenieria química Mcabe, Smith an Harriott 7ed. 7ma. Mexico: McGraw-Hill Interamericana. 2007. ISBN 0-07-284823-5.
- MINISTERIO DEL AMBIENTE AGUA Y TRANSICIÓN ECOLÓGICA, E., Precios de Mercado Referenciales para Materiales Reciclables. Gobierno del encuentro [en línea]. 2014. [Consulta: 22 agosto 2021]. Disponible en: https://www.ambiente.gob.ec/precios-demercado-referenciales-para-materiales-reciclables/.
- MINISTERIO DEL MEDIO AMBIENTE CHILE, 2010. Diagnóstico producción importación y distribución de envases y envalajes. [en línea]. S.l.: Disponible en: https://rechile.mma.gob.cl/wp-content/uploads/2019/06/DIAGNOSTICO-PRODUCCION-IMPORTACION-Y-DISTRIBUCION-DE-ENVASES-Y-EMBALAJES-CyV-Medioambiente-2010.pdf.
- **MORÁN, S.**, *Basura: los números rojos de Ecuador. Plan V* [en línea]. 2018. [Consulta: 3 junio 2021]. Disponible en: https://www.planv.com.ec/historias/sociedad/basura-numeros-rojos-ecuador.
- NORUEGA, B., Proceso de reciclaje del papel y del cartón. IQR Ingeniería Química [en línea]. 2020. [Consulta: 3 junio 2021]. Disponible en: https://www.ingenieriaquimicareviews.com/2020/05/reciclaje-papel-carton.html#Purificacion.
- **NTE INEN 1398**, *Papeles y cartones*. *Determinación del gramaje*.
- NTE INEN 1405, PAPELES Y CARTONES. DETERMINACIÓN DE LA RESISTENCIA A LA RUPTURA POR TRACCIÓN EN SECO.
- NTE INEN 1407, Papeles y cartones. Determinación de la absorción del agua en papeles porosos.
- NTE INEN 1418, Papeles y cartones. Determinación de pH de un extracto acuoso.

- NTE INEN 1430, Papeles y cartones. Papel higiénico. Requisitos.
- **OSSORIO, J. y RIVILLAS, H.**, *Ingeniería de proyectos para plantas de proceso*. S.1.: Coorporación Universitaria Autónoma de Occidente. 1990.
- **PÉREZ, A.**, VAN y TIR, dos herramientas para la viabilidad y rentabilidad de una inversión. OBS Business School [en línea]. 2021. [Consulta: 21 junio 2021]. Disponible en: https://www.obsbusiness.school/blog/van-y-tir-dos-herramientas-para-la-viabilidad-y-rentabilidad-de-una-inversion.
- PUICAN, A., Propuesta de una planta de reciclaje de residuos de papel, cartón, vidrio y plástico para la reducción del impacto ambiental en la ciudad Eten. [en línea]. Chiclayo: Universidad Católica Santo Toribio de Mogrovejo. 2018. [Consulta: 28 julio 2021]. Disponible en: https://tesis.usat.edu.pe/bitstream/20.500.12423/1597/1/TL\_PuicanOlivosAna.pdf.
- REYNA, L., ROBLES, R., TOYOHAMA, L. y CANALES, V., ELABORACIÓN DE CARTÓN A PARTIR DE PAPEL RECICLADO. Revista Peruana de Química e Ingeniería Química [en línea], vol. 6, no. 1, pp. 50-54. 2003. [Consulta: 28 julio 2021]. ISSN 1726-2208. Disponible en: https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4487.
- ROBLES M., N.F., SAUCEDO C., A.R., DELGADO F., E., SANJUÁN D., R. y TURRADO S., J., Efecto de las microfibras de celulosa sobre papel con alto contenido de fibra reciclada TT Effect of cellulose microfibers on paper with high contents of recycled fiber. Revista mexicana de ciencias forestales [en línea], vol. 5, no. 24, pp. 70-79. 2014. ISSN 2007-1132. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S2007-
  - 11322014000400007&lang=pt%0Ahttp://www.scielo.org.mx/pdf/remcf/v5n24/v5n24a7.pdf.
- **SINNOTT, R. y TOWLER, G.**, *Diseño en ingeniería química*. V. España: Editorial Reverté S.A. 2012. ISBN 978-84-291-7199-0.
- SOLÍZ, F., DURANGO, S., SOLANO, J. y YÉPEZ, M., Cartografía de los residuos sólidos en Ecuador 2020. Quito, Ecuador: Unidad Andina Simón Bolivar, Sede Ecuador. 2020.

- SUÑE, A., GIL, F. y ARCUSA, I., Manual práctico de diseño de sistemas productivos. Madrid, España: Díaz de Santos, S.A. 2004. ISBN 8479786426.
- **TESCHKE, K. y DEMERS, P.**, *Industria de papel y de la pasta de papel. Enciclopedia de salud y seguridad en el trabajo* [en línea]. 3ra. Madrid: Chantal Dufresne, 1998. [Consulta: 18 agosto 2021]. ISBN 84-7434-995-8. Disponible en: https://www.insst.es/documents/94886/161971/Capítulo+72.+Industria+del+papel+y+de+l a+pasta+de+papel.
- **UNE-EN 901**, Productos químicos utilizados en el tratamiento del agua destinada al consumo humano.
- VÁSCONEZ, S., OPTIMIZACIÓN DEL PROCESO DE ELABORACIÓN DE PAPEL TISSUE EN LA FÁBRICA DE PAPEL HIGIÉNICO DEL VALLE FAVALLE CIA. LTDA. [en línea]. Riobamba: Escuela Superior Politécnica del Chimborazo. 2018. [Consulta: 3 junio 2021]. Disponible en: http://dspace.espoch.edu.ec/bitstream/123456789/8659/1/96T00461.PDF.
- VÁSQUEZ, R., ROMERO, M., MIRANDA, M. y MUÑOZ, G., Balance de Materia y Energía. Procesos industriales. 1ra. México: Grupo Editorial Patria. 2014. ISBN 9786074388954.
- VELÁSQUEZ, J.A., ACEVEDO, M.F. y VILLA, A., PRODUCCIÓN DE ALMIDÓN ZWITTERIÓNICO A PARTIR DE ALMIDÓN DE PAPA PARA LA INDUSTRIA PAPELERA. Revista Investigaciones Aplicadas [en línea], vol. 4, no. 2, pp. 46-59. 2010. [Consulta: 31 agosto 2021]. ISSN 2011-0413. Disponible en: http://revistas.upb.edu.co/index.php/investigacionesaplicadas/article/view/696.

#### ANEXO A: "INFORME AMBIENTAL N. 004-UTGA-2021



Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar, Biblián, El Tambo y Suscal UNIDAD TECNICA DE GESTION AMBIENTAL

> Informe ambiental N.- 004-UTGA-2021. 28 de junio del 2021

Respuesta a trámite: Entrega de información para el desarrollo de una tesis.

De: Irving Ordóñez Loja.

TECNICO DE GESTION AMBIENTAL.

Para: Oscar Morocho

ESTUDIANTE DE LA UNIVERSIDAD POLITECNICA NACIONAL.

#### Asunto

ENTREGA DE INFORMACIÓN PARA TRABAJO DE TESIS DEL ESTUDIANTE OSCAR MOROCHO.

#### INFORME TECNICO.

#### Antecedentes.

Con fecha 24 de junio del 2021 de parte de la Dirección Técnica se solicita de manera escrita que se proporcione la información solicitada por su persona para el desarrollo del trabajo de tesis "Diseño de un proceso industrial para la producción de papel higiénico para el GADIC Cañar"

Para lo cual me permito informar lo siguiente.

#### Actividades realizadas.

- 1. Preparación de la información.
- 2. Procesamiento de la información
- 3. Entrega de la información al Estudiante.

#### Información entregada.

Producción Per Cápita y composición de los desechos y/o residuos sólidos.

| Cantila          |        | AÑO    |        |        |  |  |  |  |
|------------------|--------|--------|--------|--------|--|--|--|--|
| Cantón           | 2013   | 2014   | 2018   | 2019   |  |  |  |  |
| NACIONAL         | 0,5600 | 0,5700 | 0,7400 | 0,7500 |  |  |  |  |
| Cañar            |        | 0,7702 | 0,5520 | 0,6568 |  |  |  |  |
| PROMEDIO GENERAL | 0,6024 | 0,7702 | 0,5147 | 0,6470 |  |  |  |  |



# Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar, Biblián, El Tambo y Suscal



|          | MATERIALES                              | 2014     | 2018    | 2019   |
|----------|-----------------------------------------|----------|---------|--------|
| CARTÓN   | Plegadizo                               | 0,09%    | 0,09%   | 0,22%  |
|          | Grueso                                  | 2,86%    | 1,75%   | 0,28%  |
|          | Periódico                               | 0,56%    | 0,58%   | 0,289  |
|          | Kraft                                   | 0,00%    | 0,09%   | 0,009  |
| PAPEL    | Bond y blanqueado impreso               | 3,30%    | 0,50%   | 0,039  |
|          | Bond y blanque ado sin imprimir         | 0,00%    | 0,00%   | 0,029  |
|          | Papel de cuaderno                       | - 30     | 0,88%   | 1,759  |
|          | Revista                                 | 10       | 1,19%   | 0,999  |
|          | ORGANICO                                | 65,02%   | 63,29%  | 57,099 |
|          | PET (Polietileno)                       | 1,96%    | 1,63%   | 1,02%  |
|          | HDPE (Polietileno de alta densidad)     | 1,85%    | 3,34%   | 2,749  |
|          | PVC (Policloruro de vinilo)             | 1,52%    | 0,00%   | 0,009  |
| PLASTICO | LDPE (Polietileno de baja densidad)     | 2,82%    | 2,41%   | 14,839 |
|          | PP (Polipropileno)                      | 0,08%    | 1,19%   | 0,449  |
|          | PS - expandido (Poliestireno expandido) | 0,08%    | 0,53%   | 0,239  |
|          | PS (Poliestireno)                       | 1,45%    | 1,10%   | 0.009  |
|          | Hierro y acero                          | 1,42%    | 0,00%   | 0.649  |
|          | Bronce                                  | 30 13    | 0,05%   | 0,009  |
| METALES  | Cobre                                   | - 3      | 0,00%   | 0,019  |
|          | Aluminio                                | 0,13%    | 0,87%   | 0,009  |
|          | Transparente                            | 1,85%    | 0,30%   | 1,009  |
| VIDRIO   | Verde                                   |          | 0.00%   | 0.279  |
|          | Otros color                             | 0.16%    | 0,08%   | 1,009  |
|          | DESECHOS COMUNES (Papel de baño)        | 0,73%    | 4,70%   | 4,199  |
|          | TETRAPACK                               | 0,37%    | 0.93%   | 0.039  |
|          | MADERA                                  | 0.05%    | 0,42%   | 0,03%  |
|          |                                         | 0,0376   |         |        |
|          | FOCOS COMUNES                           | _        | 0,04%   | 0,029  |
|          | FOCOS AHORRADORES<br>Pilas Boton        | -        | 0,09%   | 0,009  |
| PILAS    |                                         | 7.       | 0,00%   | 0,009  |
| PILAS    | Pilas Prismaticas y de Petaca           | -        | 0,00%   | 0,009  |
|          | Pilas Cilndricas                        | - 2      | 0,08%   | 0,019  |
| BATERIAS | Vehiculos                               | 150      | 0,00%   | 0,009  |
|          | Celular                                 | 21.25.2  | 0,00%   | 0,009  |
|          | TELAS Y MATERIALES TEXTILES             | 2,30%    | 0,65%   | 1,98%  |
|          | PAÑALES                                 | 3,51%    | 5,70%   | 5,149  |
|          | TOALLAS SANITARIAS Y TOALLAS HUMEDAS    |          | 0,93%   | 0,649  |
|          | LOZAS Y CERAMICAS                       |          | 0,41%   | 0,359  |
|          | TIERRA                                  | - Second | 3,91%   | 3,629  |
|          | CAUCHO                                  | 0,03%    | 0,99%   | 0,009  |
|          | CUERO                                   | 0,00%    | 0,05%   | 0,209  |
|          | MEDICAMENTOS                            | 183      | 0,29%   | 0,039  |
|          | DESECHOS ELECTRONICOS                   | 13.      | 0,10%   | 0,009  |
|          | LONA                                    | 17.      | 0,00%   | 0,009  |
|          | ENVASES AGROQUIMICOS                    |          | 0,00%   | 0,009  |
|          | TOTAL                                   | 100,00%  | 100,00% | 100,00 |



# Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar, Biblián, El Tambo y Suscal COMPOSICIÓN NACIONAL VS COMPOSICIÓN DE CADA UNO DE LOS CANTONES MANCOMUNADOS 2018

| TIPO DE DESECHOS                                         | 201      | .8      | 2019     |         |  |
|----------------------------------------------------------|----------|---------|----------|---------|--|
| TIPO DE DESECHOS                                         | NACIONAL | CAÑAR   | NACIONAL | CAÑAR   |  |
| Orgánico                                                 | 56,18%   | 63,29%  | 56,59%   | 57,09%  |  |
| Cartón                                                   | 4,75%    | 2,44%   | 5,03%    | 0,51%   |  |
| Papel                                                    | 4,25%    | 3,29%   | 4,29%    | 3,08%   |  |
| Plástico rigido                                          | 5,80%    | 4,97%   | 4,71%    | 3,76%   |  |
| Plástico suave                                           | 5,63%    | 5,29%   | 6,38%    | 15,49%  |  |
| Vidrio                                                   | 2,97%    | 0,44%   | 2,88%    | 2,93%   |  |
| Madera                                                   | 0,74%    | 0,42%   | 0,73%    | 0,28%   |  |
| Metal                                                    | 1,37%    | 0,05%   | 1,18%    | 0,64%   |  |
| Chatarra                                                 | 1,51%    | 0,87%   | 1,65%    | 0,01%   |  |
| Caucho                                                   | 1,10%    | 0,99%   | 0,84%    | 0,00%   |  |
| Textil                                                   | 2,17%    | 0,65%   | 2,32%    | 1,98%   |  |
| Lámparas desechables/ focos comunes/ focos ahorradores   | 0,59%    | 0,13%   | 0,48%    | 0,02%   |  |
| Pilas                                                    | 0,46%    | 0,08%   | 0,43%    | 0,01%   |  |
| Pañales Desechables, papel higiénico, toallas sanitarias | 6,71%    | 11,34%  | 6,74%    | 9,97%   |  |
| Otros                                                    | 5,77%    | 5,75%   | 5,75%    | 4,23%   |  |
| TOTAL                                                    | 100,00%  | 100,00% | 100,00%  | 100,00% |  |



Dirección: Av. Ingapirca y Pozo de Chávez Toléfono: 2427001 www.emmaipc-ep.gob.ec



Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar, Biblián, El Tambo y Suscal



| MATERIAL RECICLADO 2019 (Tn) |       |         |       |       |      |       |      |        |            |         |           |           |            |
|------------------------------|-------|---------|-------|-------|------|-------|------|--------|------------|---------|-----------|-----------|------------|
| TIPO DE MATERIAL             | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO | JUUO | AGOSTO | SEPTIEMBRE | OCTUBRE | NOVIEMBRE | DICIEMBRE | TOTAL 2019 |
| Papel cuademo                | 2,28  | 4,4     | 3,96  | 0     | 0    | 2,14  | 2,61 | 1,86   | 1,04       | 3,35    | 1,24      | 2,59      | 25,47      |
| Cartón                       | 7,29  | 3,29    | 5,69  | 0,83  | 3,54 | 0     | 1,23 | 4,6    | 4,26       | 4,35    | 4,02      | 3,3       | 42,40      |

| MATERIAL RECICLADO 2020 (Tn) |       |         |       |       |      |       |       |        |            |         |           |           |            |
|------------------------------|-------|---------|-------|-------|------|-------|-------|--------|------------|---------|-----------|-----------|------------|
| TIPO DE MATERIAL             | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO | JULIO | AGOSTO | SEPTIEMBRE | OCTUBRE | NOVIEMBRE | DICIEMBRE | TOTAL 2020 |
| Papel cuaderno               | 2,21  | 1,16    | 0     |       | 0    |       | 0     | 0      | 0 2,85     | 0,81    | 0         | 0,75      | 7,78       |
| Cartón                       | 3,26  | 3,97    | 1,44  | - 1   | 1,41 |       | 0     | 0      | 0 2,92     | 3,16    | 3,24      | 3,17      | 22,57      |

|                  |       |         |       |       | MATER | IAL RECI | CLADO 20 | 121 (Tn) |            |         |           |           |            |
|------------------|-------|---------|-------|-------|-------|----------|----------|----------|------------|---------|-----------|-----------|------------|
| TIPO DE MATERIAL | ENERO | FEBRERO | MARZO | ABRIL | MAYO  | JUNIO    | JUUO     | AG05T0   | SEPTIEMBRE | OCTUBRE | NOVIEMBRE | DICIEMBRE | TOTAL 2021 |
| Papel cuademo    | 0,61  | 0,81    | 1,12  | 1,27  | 0,700 | . 0      | 0        |          | 0          |         | 0         | 0         | 4,51       |
| Cartón           | 4,20  | 3,46    | 413   | 3,72  | 3,41  | 0,00     | 0,00     | 0,00     | 0,00       | 0,00    | 0,00      | 0,00      | 18,92      |

Cabe indicar que la información proporcionada referente al material reciclado corresponde al territorio mancomunado ya que los desechos sólidos son tratados en el mismo lugar para los municipios de Cañar, Biblián, El Tambo y Suscal.

Dirección: Av. Ingapirca y Pozo de Chávez Teléfono: 2427001 www.emmaipc-ep.gob.ec



Empresa Pública Municipal Mancomunada de Aseo Integral de Cañar, Biblián, El Tambo y Suscal

Es todo cuanto podemos proporcionarle en base a su solicitud de requerimiento.

Atentamente.

DE UTATION OF THE OFFICE ANTONIO ORDONEZ LOJA

Ing. Irving Ordóñez Loja. TECNICO DE GESTIÓN AMBIENTAL.

# **ANEXO B:** "NTE INEN 1430: PAPELES Y CARTONES. PAPEL HIGIÉNICO. REQUISITOS"



NORMA TÉCNICA ECUATORIANA NTE INEN 1430 Segunda revisión 2015-03

# PAPELES Y CARTONES. PAPEL HIGIÉNICO. REQUISITOS

PAPER AND CARDBOARD. TOILET PAPER REQUIREMENT.

# **ANEXO C:** "NTE INEN-ISO 12625-6 PAPEL TISÚ Y PRODUCTOS DE TISÚ. PARTE 6: DETERMINACIÓN DEL GRAMAJE (ISO 12625-6:2005, IDT)"



Quito - Ecuador

NORMA TÉCNICA ECUATORIANA

# NTE INEN-ISO 12625-6

Primera edición 2014-01

PAPEL TISÚ Y PRODUCTOS DE TISÚ. PARTE 6: DETERMINACIÓN DEL GRAMAJE (ISO 12625-6:2005, IDT)

TISSUE PAPER AND TISSUE PRODUCTS. PART 6: DETERMINATION OF GRAMMAGE (ISO 12625-6:2005, IDT)

Correspondencia:

Esta Norma Técnica Ecuatoriana es una traducción idéntica de la Norma Internacional ISO 12625-6:2005.

DESCRIPTORES: Papel, tisú, productos, determinación, gramaje. ICS: 65.060 15 Páginas

© ISO 2005 - Todos los derechos reservados © INEN 2014

# **ANEXO D:** "NTE INEN 1405:2013 PAPELES Y CARTONES. DETERMINACION DE LA RESISTENCIA A LA RUPTURA POR TRACCIÓN EN SECO"



Quito - Ecuador

| NODMA   | TECNICA | ECUATORIANA |
|---------|---------|-------------|
| NURIVIA | LECNICA | ECUATORIANA |

NTE INEN 1405:2013 Primera revisión

# PAPELES Y CARTONES. DETERMINACIÓN DE LA RESISTENCIA A LA RUPTURA POR TRACCIÓN EN SECO

#### Primera edición

PAPER AND PAPERBOARD. DETERMINATION OF RESISTANCE TO CLEAVAGE BY DRY TRACTION

First edition

# **ANEXO E:** "NTE INEN 1407:2013 PAPELES Y CARTONES. DETERMINACIÓN DE LA ABSORCIÓN DEL AGUA EN PAPELES POROSOS"



Quito - Ecuador

| NODMA    | TECNICA | FCUATORIANA   |  |
|----------|---------|---------------|--|
| NURSIVIA | LECKING | ECUA I URIANA |  |

NTE INEN 1407:2013 Primera revisión

# PAPELES Y CARTONES. DETERMINACIÓN DE LA ABSORCIÓN DEL AGUA EN PAPELES POROSOS

#### Primera edición

PAPER AND PAPERBOARD. DETERMINATION OF WATER ABSORPTION IN POROUS PAPERS.

First edition

CDU: 676.017 ICS: 65.060

# **ANEXO F:** "NTE INEN 1418:2013 PAPELES Y CARTONES. DETERMINACIÓN DE PH DE UN EXTRACTO ACUOSO"



Quito - Ecuador

| MODMA   | TECNICA  | ECUATORIANA   |
|---------|----------|---------------|
| NURIVIA | LECINICA | ECUA I UKIANA |

NTE INEN 1418:2013 Primera revisión

# PAPELES Y CARTONES. DETERMINACIÓN DEL PH DE UN EXTRACTO ACUOSO

#### Primera edición

PAPER AND BOARD. DETERMINATION OF PH OF AQUEOUS EXTRACT

First edition

DESCRIPTORES; Tecnología del papel, papel, cartón, pH, extracto acuoso. QU 07.01-322 CDU: 676.017:676.4:676.633 ICS: 85.060

## ANEXO G: "TABLA PROPIEDADES DE MATERIALES DE CONSTRUCCIÓN"

### TABLA A-5

Propiedades de materiales de construcción (conclusión) (a una temperatura media de 24°C)

| Material                                                     | Espesor,<br>L mm | Densidad, ρ<br>kg/m³ | Conductividad<br>térmica, k<br>W/m - K | Calor<br>especifico, c,<br>kJ/kg - K | Valor R (para<br>los espesores<br>de la lista, L/k),<br>K - m²/W |
|--------------------------------------------------------------|------------------|----------------------|----------------------------------------|--------------------------------------|------------------------------------------------------------------|
| Material para techos                                         |                  |                      |                                        | 7.8                                  |                                                                  |
| Tejas de asbesto-cemento                                     |                  | 1 900                | _                                      | 1.00                                 | 0.037                                                            |
| Asfalto en rollos                                            |                  | 1 100                | -                                      | 1.51                                 | 0.026                                                            |
| Tejas de asfalto                                             |                  | 1 100                | -                                      | 1.26                                 | 0.077                                                            |
| Techado incorporado                                          | 10 mm            | 1 100                | -                                      | 1.46                                 | 0.058                                                            |
| Pizarra                                                      | 13 mm            | _                    | _                                      | 1.26                                 | 0.009                                                            |
| Tejas de madera (simples o<br>con cara de plástico/película) |                  |                      | _                                      | 1.30                                 | 0.166                                                            |
| Materiales para revoque                                      |                  |                      |                                        | 17777                                |                                                                  |
| Revoque de cemento,                                          |                  |                      |                                        |                                      |                                                                  |
| agregado de arena                                            | 19 mm            | 1 860                | 0.72                                   | 0.84                                 | 0.026                                                            |
| Revoque de veso:                                             | 4.5 (100)        | 1 000                | 0.72                                   | 0.04                                 | 0.020                                                            |
| Agregado ligero                                              | 13 mm            | 720                  | _                                      | _                                    | 0.055                                                            |
| Agregado de arena                                            | 13 mm            | 1 680                | 0.81                                   | 0.84                                 | 0.016                                                            |
| Agregado de perlita                                          | -                | 720                  | 0.22                                   | 1.34                                 | -                                                                |
| Material para forro exterior                                 |                  |                      |                                        |                                      |                                                                  |
| (sobre superficies planas)                                   |                  |                      |                                        |                                      |                                                                  |
| Tejas de asbesto-cemento                                     | -                | 1 900                | _                                      |                                      | 0.037                                                            |
| Forro de tablero duro                                        | 11 mm            |                      | -                                      | 1.17                                 | 0.12                                                             |
| Forro de madera (rebajada)                                   | 25 mm            | _                    | _                                      | 1.30                                 | 0.139                                                            |
| Forro de madera (contrachapada),                             |                  |                      |                                        |                                      |                                                                  |
| traslapada                                                   | 10 mm            | ===                  | _                                      | 1.21                                 | 0.111                                                            |
| Forro de aluminio o acero (sobre encofrado):                 |                  |                      |                                        |                                      |                                                                  |
| Con respaldo hueco                                           | 10 mm            |                      | -                                      | 1.22                                 | 0.11                                                             |
| Con respaldo de tablero aislante                             | 10 mm            | _                    | _                                      | 1.34                                 | 0.32                                                             |
| Vidrio arquitectónico                                        |                  | 2 530                | 1.0                                    | 0.84                                 | 0.018                                                            |
| Maderas                                                      |                  |                      |                                        |                                      |                                                                  |
| Maderas duras (arce, roble, etc.)                            | -                | 721                  | 0.159                                  | 1.26                                 | -                                                                |
| Maderas suaves (abeto, pino, etc.)                           | -                | 513                  | 0.115                                  | 1.38                                 |                                                                  |
| Metales                                                      |                  |                      |                                        |                                      |                                                                  |
| Aluminio (1 100)                                             | -                | 2 739                | 222                                    | 0.896                                |                                                                  |
| Acero dulce                                                  | -                | 7 833                | 45.3                                   | 0.502                                | -                                                                |
| Acero inoxidable                                             | -                | 7 9 1 3              | 15.6                                   | 0.456                                | -                                                                |

Fuente: Las tablas A-5 y A-6 se adaptaron fornándolas del Handbook of Fundamentals de la ASHRAE (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1993), Cap. 22, tabla 4. Usadas con autorización.

### ANEXO H: "TABLA PROPIEDADES DEL AGUA SATURADA"

### TABLA A-5

|                 | Temp. sat., T <sub>sat</sub> °C |                     | n específico,<br>m³/kg           | , Energia interna,<br>k.l/kg    |        |                                  | Entalpía,<br>kJ/kg |        |                                  | Entropia,<br>kJ/kg + K |        |                                  |
|-----------------|---------------------------------|---------------------|----------------------------------|---------------------------------|--------|----------------------------------|--------------------|--------|----------------------------------|------------------------|--------|----------------------------------|
| Pres.,<br>P kPa |                                 | Liq.<br>sat.,<br>v, | Vapor<br>sat.,<br>v <sub>e</sub> | Liq.<br>sat.,<br>u <sub>r</sub> | Evap., | Vapor<br>sat.,<br>u <sub>g</sub> | Liq.<br>sat,<br>h, | Evap., | Vapor<br>sat.,<br>h <sub>e</sub> | Liq.<br>sat.,<br>s,    | Evap., | Vapor<br>sat.,<br>s <sub>r</sub> |
| 1.0             | 6.97                            | 0.001000            | 129.19                           | 29.302                          | 2355.2 | 2384.5                           | 29.303             | 2484.4 | 2513.7                           | 0.1059                 | 8.8690 | 8.974                            |
| 1.5             | 13.02                           | 0.001001            | 87.964                           | 54.080                          | 2338.1 | 2392.8                           | 54.688             | 2470.1 | 2524.7                           | 0.1956                 | 8.6314 | 8.827                            |
| 2.0             | 17.50                           | 0.001001            | 66.990                           | 73.431                          | 2325.5 | 2398.9                           | 73.433             | 2459.5 | 2532.9                           | 0.2606                 | 8.4621 | 8.722                            |
| 2.5             | 21.08                           | 0.001002            | 54.242                           | 88.422                          | 2315.4 | 2403.8                           | 88.424             | 2451.0 | 2539.4                           | 0.3118                 | 8.3302 | 8.642                            |
| 3.0             | 24.08                           | 0.001003            | 45,654                           | 100.98                          | 2306.9 | 2407.9                           | 100.98             | 2443.9 | 2544.8                           | 0.3543                 | 8.2222 | 8.576                            |
| 4.0             | 28.96                           | 0.001004            | 34.791                           | 121.39                          | 2293.1 | 2414.5                           | 121.39             | 2432.3 | 2553.7                           | 0.4224                 | 8.0510 | 8.473                            |
| 5.0             | 32.87                           | 0.001005            | 28.185                           | 137.75                          | 2282.1 | 2419.8                           | 137.75             | 2423.0 | 2560.7                           | 0.4762                 | 7.9176 | 8,393                            |
| 7.5             | 40.29                           | 0.001008            | 19.233                           | 168.74                          | 2261.1 | 2429.8                           | 168.75             | 2405.3 | 2574.0                           | 0.5763                 | 7.6738 | 8.250                            |
| 10              | 45.81                           | 0.001010            | 14.670                           | 191.79                          | 2245.4 | 2437.2                           | 191.81             | 2392.1 | 2583.9                           | 0.6492                 | 7.4996 | 8.148                            |
| 15              | 53.97                           | 0.001014            | 10.020                           | 225.93                          | 2222.1 | 2448.0                           | 225.94             | 2372.3 | 2598.3                           | 0.7549                 | 7.2522 | 8.007                            |
| 20              | 60.06                           | 0.001017            | 7.6481                           | 251.40                          | 2204.6 | 2456.0                           | 251.42             | 2357.5 | 2008.9                           | 0.8320                 | 7.0752 | 7.907                            |
| 25              | 64.96                           | 0.001020            | 6.2034                           | 271.93                          | 2190.4 | 2462.4                           | 271.96             | 2345.5 | 2617.5                           | 0.8932                 | 6.9370 | 7.830                            |
| 30              | 69.09                           | 0.001022            | 5.2287                           | 289.24                          | 2178.5 | 2467.7                           | 289.27             | 2335.3 | 2624.6                           | 0.9441                 | 6.8234 | 7.767                            |
| 40              | 75.85                           | 0.001026            | 3.9933                           | 317.58                          | 2158.8 | 2476.3                           | 317.62             | 2318.4 | 2636.1                           | 1.0261                 | 6.6430 | 7.669                            |
| 50              | 81.32                           | 0.001030            | 3.2403                           | 340.49                          | 2142.7 | 2483.2                           | 340.54             | 2304.7 | 2645.2                           | 1.0912                 | 6.5019 | 7.593                            |
| 75              | 91.76                           | 0.001037            | 2.2172                           | 384.36                          | 2111.8 | 2496.1                           | 384.44             | 2278.0 | 2002.4                           | 1.2132                 | 6.2426 | 7.455                            |
| 100             | 99.61                           | 0.001043            | 1.6941                           | 417.40                          | 2088.2 | 2505.6                           | 417.51             | 2257.5 | 2675.0                           | 1.3028                 | 6.0562 | 7.358                            |
| 101.325         | 99.97                           | 0.001043            | 1.6734                           | 418.95                          | 2087.0 | 2506.0                           | 419.00             | 2256.5 | 2675.6                           | 1.3069                 | 6.0476 | 7.354                            |
| 125             | 105.97                          | 0.001048            | 1.3750                           | 444.23                          | 2068.8 | 2513.0                           | 444.36             | 2240.6 | 2684.9                           | 1.3741                 | 5.9100 | 7.284                            |
| 150             | 111.35                          | 0.001053            | 1.1594                           | 466.97                          | 2052.3 | 2519.2                           | 467.13             | 2226.0 | 2693.1                           | 1.4337                 | 5.7894 | 7.223                            |
| 175             | 116.04                          | 0.001057            | 1.0037                           | 486.82                          | 2037.7 | 2524.5                           | 487.01             | 2213.1 | 2700.2                           | 1.4850                 | 5.6865 | 7.171                            |
| 200             | 120.21                          | 0.001061            | 0.88578                          | 504.50                          | 2024.6 | 2529.1                           | 504.71             | 2201.6 | 2706.3                           | 1.5302                 | 5.5968 | 7.127                            |
| 225             | 123.97                          | 0.001064            | 0.79329                          | 520.47                          | 2012.7 | 2533.2                           | 520.71             | 2191.0 | 2711.7                           | 1.5706                 | 5.5171 | 7.087                            |
| 250             | 127.41                          | 0.001067            | 0.71873                          | 535.08                          | 2001.8 | 2536.8                           | 535.35             | 2181.2 | 2716.5                           | 1.6072                 | 5,4453 | 7.052                            |
| 275             | 130.58                          | 0.001070            | 0.65732                          | 548.57                          | 1991.6 | 2540.1                           | 548.86             | 2172.0 | 2720.9                           | 1.6408                 | 5.3800 | 7.020                            |
| 300             | 133.52                          | 0.001073            | 0.60582                          | 561.11                          | 1982.1 | 2543.2                           | 561.43             | 2163.5 | 2724.9                           | 1.6717                 | 5.3200 | 6.991                            |
| 325             | 136.27                          | 0.001076            | 0.56199                          | 572.84                          | 1973.1 | 2545.9                           | 573.19             | 2155.4 | 2728.6                           | 1.7005                 | 5.2645 | 6.965                            |
| 350             | 138.86                          | 0.001079            | 0.52422                          | 583.89                          | 1964.6 | 2548.5                           | 584.26             | 2147.7 | 2732.0                           | 1.7274                 | 5.2128 | 6.940                            |
| 375             | 141.30                          | 0.001081            | 0.49133                          | 594.32                          | 1950.0 | 2550.9                           | 594.73             | 2140.4 | 2735.1                           | 1.7526                 | 5.1645 | 6.917                            |
| 400             | 143.61                          | 0.001084            | 0.46242                          | 604.22                          | 1948.9 | 2553.1                           | 604.66             | 2133.4 | 2738.1                           | 1.7765                 | 5,1191 | 6.895                            |
| 450             | 147.90                          | 0.001088            | 0.41392                          | 622.65                          | 1934.5 | 2557.1                           | 623.14             | 2120.3 | 2743.4                           | 1.8205                 | 5.0356 | 6.856                            |
| 500             | 151.83                          | 0.001093            | 0.37483                          | 639.54                          | 1921.2 | 2560.7                           | 640.09             | 2108.0 | 2748.1                           | 1.8504                 | 4.9603 | 6.820                            |
| 550             | 155.46                          | 0.001097            | 0.34261                          | 655.16                          | 1908.8 | 2563.9                           | 655.77             | 2096.6 | 2752.4                           | 1.8970                 | 4.8916 | 6,788                            |
| 000             | 158.83                          | 0.001101            | 0.31560                          | 669.72                          | 1897.1 | 2566.8                           | 670.38             | 2085.8 | 2756.2                           | 1.9308                 | 4.8285 | 6.759                            |
| 650             | 161.98                          | 0.001104            | 0.29260                          | 683.37                          | 1886.1 | 2569.4                           | 684.08             | 2075.5 | 2759.6                           | 1.9623                 | 4.7099 | 6.732                            |
| 700             | 164.95                          | 0.001108            | 0.27278                          | 696.23                          | 1875.6 | 2571.8                           | 697.00             | 2065.8 | 2762.8                           | 1.9918                 | 4.7153 | 6.707                            |
| 750             | 167.75                          | 0.001111            | 0.25552                          | 708.40                          | 1865.6 | 2574.0                           | 709.24             | 2056.4 | 2765.7                           | 2.0195                 | 4.0042 |                                  |

## **ANEXO I:** "DESFIBRADO Y DESTINTE DE PAPEL"

a) b) c)







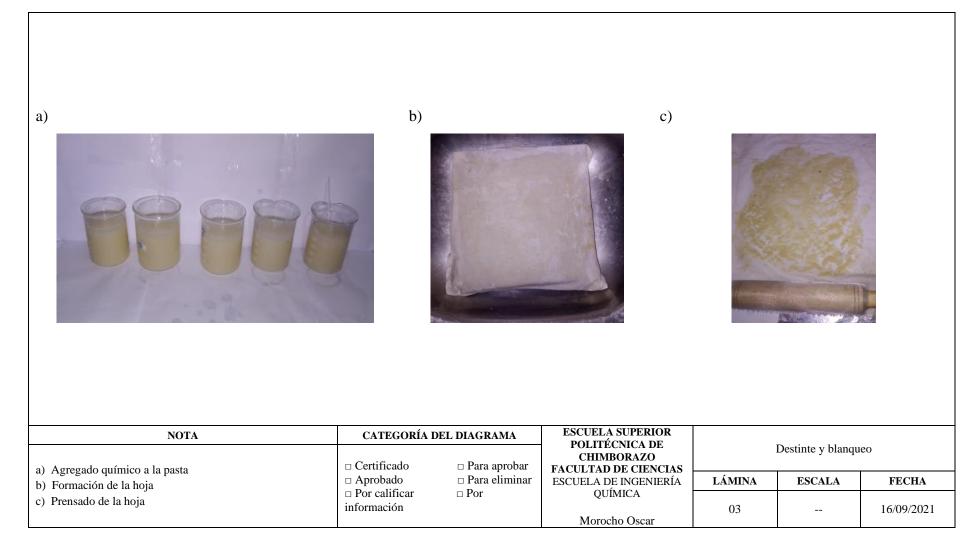
| NOTA                                    | CATEGORÍ        | ÍA DEL DIAGRAMA                       | ESCUELA SUPERIOR POLITÉCNICA DE    |                                |        |            |
|-----------------------------------------|-----------------|---------------------------------------|------------------------------------|--------------------------------|--------|------------|
| a) Desfibrado de cartón y papel         | 1               |                                       | CHIMBORAZO<br>FACULTAD DE CIENCIAS | Desfibrado y destinte de papel |        |            |
| b) Destinte por flotación – Proceso 1   |                 | · · · · · · · · · · · · · · · · · · · | ESCUELA DE INGENIERÍA QUÍMICA      |                                |        | 1          |
| c) Destinte y remojo de materia prima – |                 |                                       | ESCUELA DE INGENIERIA QUIMICA      | LÁMINA                         | ESCALA | FECHA      |
| Proceso 2 y 3                           | □ Por calificar |                                       | Morocho Oscar                      | 01                             |        | 16/09/2021 |

## ANEXO J: "BLANQUEO"

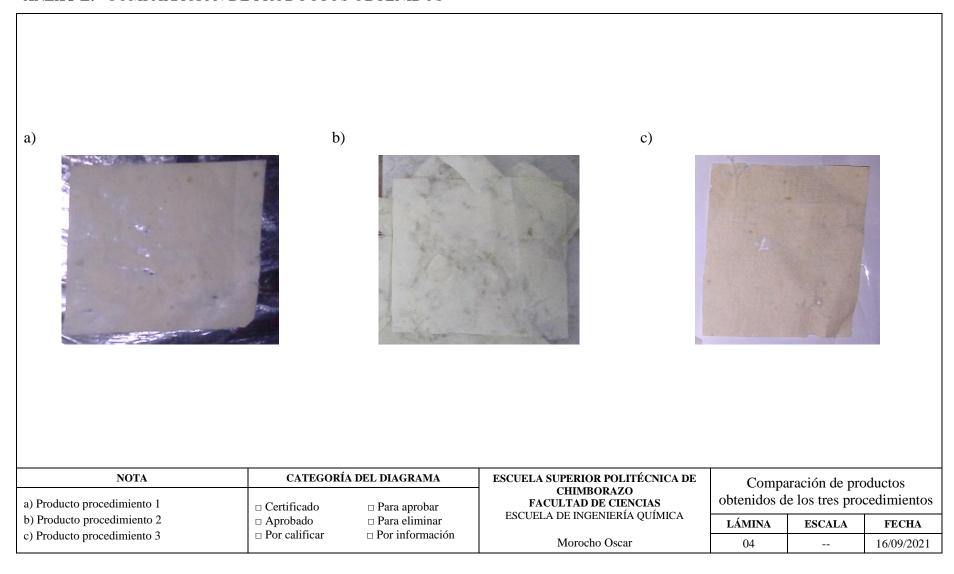
a)



b)




c)




| NOTA                                                                                                      | CATEGORÍA DE                                    | L DIAGRAMA                   | ESCUELA SUPERIOR POLITÉCNICA          |        |        |            |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|---------------------------------------|--------|--------|------------|--|--|
| a) Blanqueo con NaClO                                                                                     | ☐ Certificado<br>☐ Aprobado                     | □ Para aprobar<br>□ Para     | DE CHIMBORAZO<br>FACULTAD DE CIENCIAS |        |        |            |  |  |
| <ul><li>b) Blanqueo con H<sub>2</sub>O<sub>2</sub></li><li>c) Comparación de muestras luego del</li></ul> | eliminar                                        | ESCLIELA DE INGENIEDÍA OLIÍN | ESCUELA DE INGENIERÍA QUÍMICA         | LÁMINA | ESCALA | FECHA      |  |  |
| blanqueo 2                                                                                                | <ul> <li>□ Por calificar información</li> </ul> | □ Por                        | Morocho Oscar                         | 02     |        | 16/09/2021 |  |  |

#### ANEXO K: "ACABADO FINAL DE LA HOJA"



### ANEXO L: "COMPARACIÓN DE PRODUCTOS OBTENIDOS"



# **ANEXO M:** "ANÁLISIS DE PARÁMETROS DE CALIDAD I"

a)



b)



c)



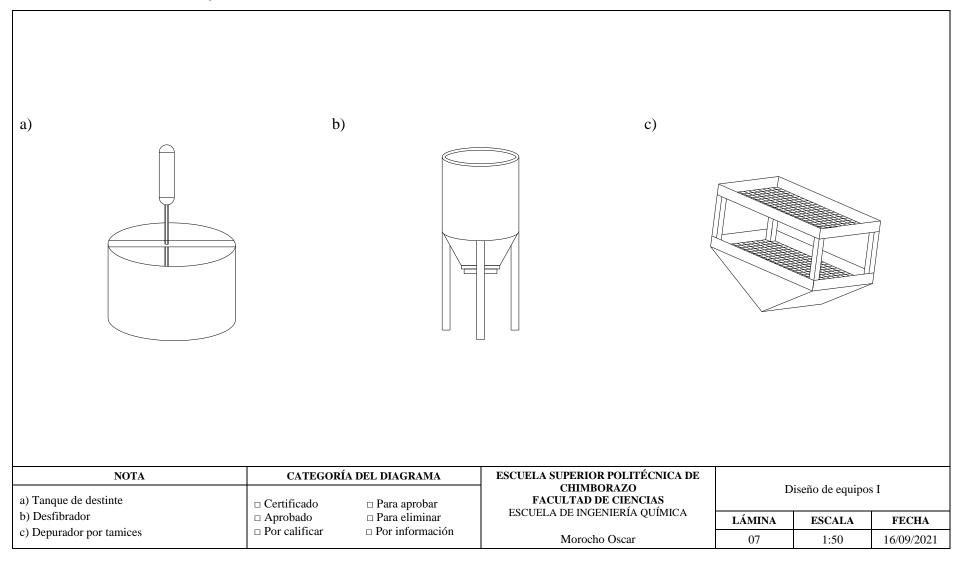
| NOTA                                      | CATEGOR                                | ÍA DEL DIAGRAMA                 | ESCUELA SUPERIOR POLITÉCNICA DE |        |            |       |
|-------------------------------------------|----------------------------------------|---------------------------------|---------------------------------|--------|------------|-------|
| a) Determinación de porcentaje de humedad | 5 Ectaticado E tara aprobar            | CHIMBORAZO FACULTAD DE CIENCIAS |                                 |        |            |       |
| b) Determinación de gramaje               | □ Aprobado                             | r                               | ESCUELA DE INGENIERÍA QUÍMICA   | LÁMINA | ESCALA     | FECHA |
| c) Determinación de pH                    | e pH □ Por calificar □ Por información | Morocho Oscar                   | 05                              |        | 16/09/2021 |       |

# **ANEXO N:** "ANÁLISIS DE PARÁMETROS DE CALIDAD II"

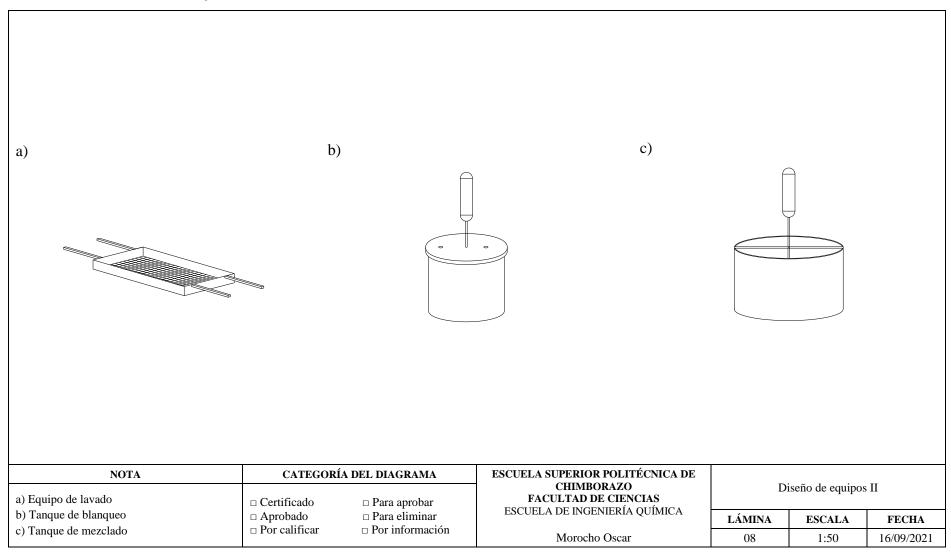
a)



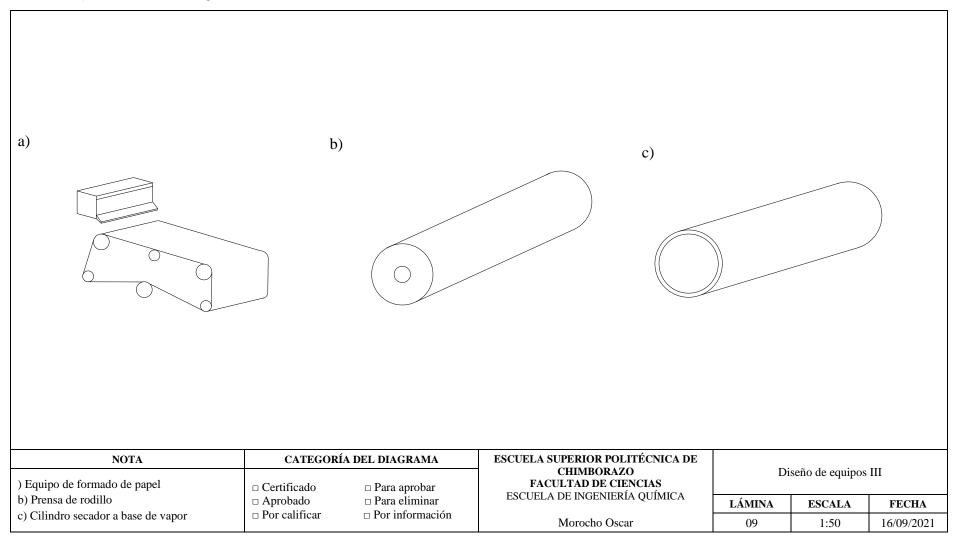
b)



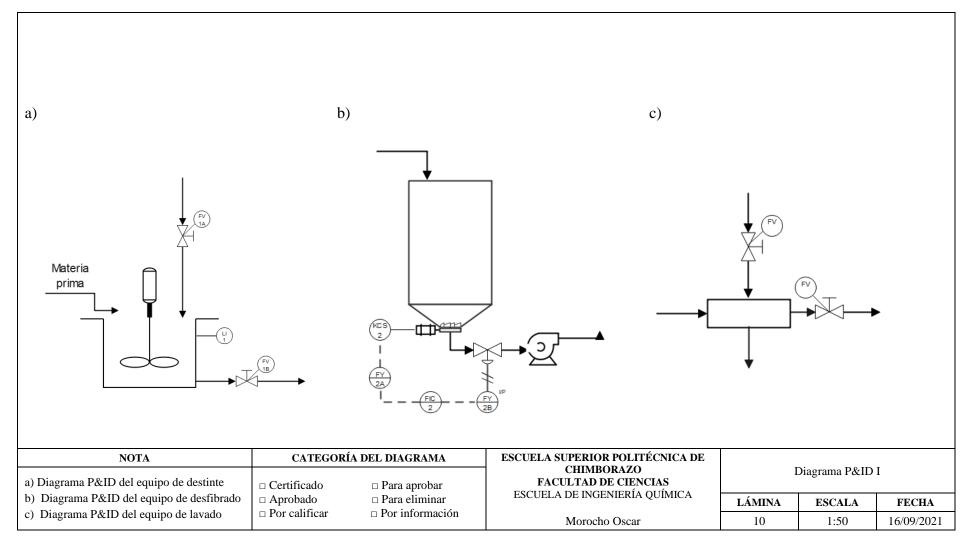

c)



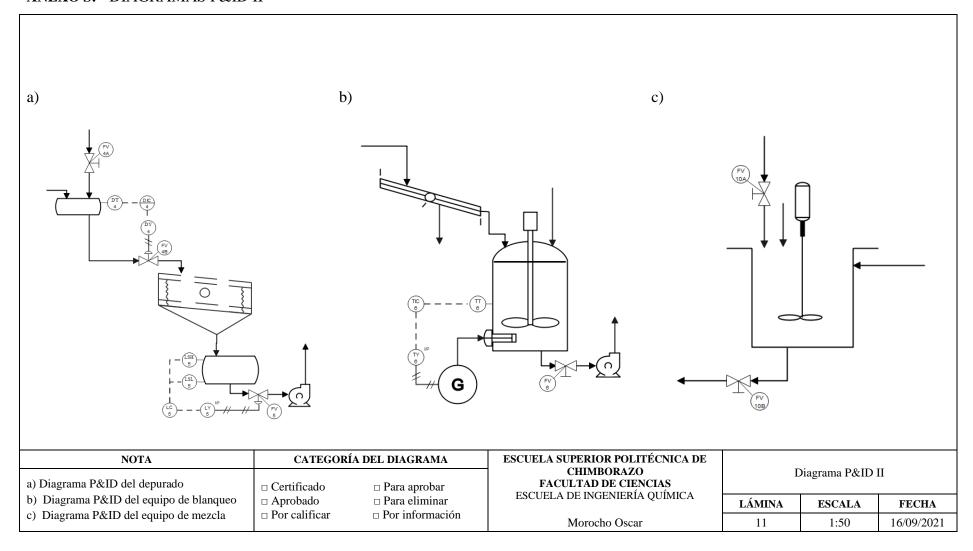

| NOTA                                        | CATEGOR                    | ÍA DEL DIAGRAMA        | ESCUELA SUPERIOR POLITÉCNICA DE                    |        |        |                  |            |
|---------------------------------------------|----------------------------|------------------------|----------------------------------------------------|--------|--------|------------------|------------|
| a) Producto de los tres procedimientos      | □ Certificado              | □ Para aprobar         | FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA |        |        | le parámetros de | calidad II |
| b) Determinación de resistencia a la rotura | □ Aprobado □ Para eliminar |                        | ESCUELA DE INGENIERIA QUIMICA                      | LÁMINA | ESCALA | FECHA            |            |
| c) Determinación de tiempo de absorción     | □ Por calificar            | icar □ Por información | Morocho Oscar                                      | 06     |        | 16/09/2021       |            |


## **ANEXO O:** "DISEÑO DE EQUIPOS I"

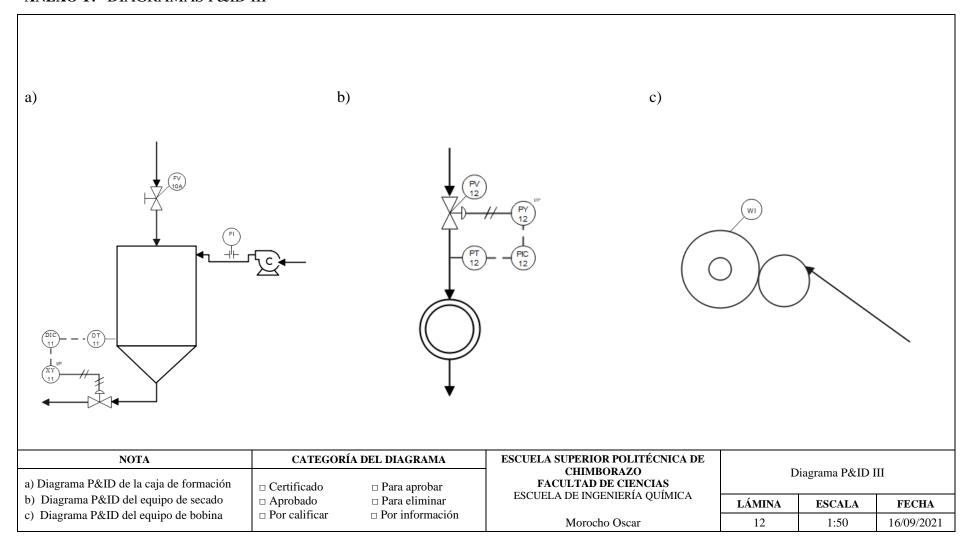



## ANEXO P: "DISEÑO DE EQUIPOS II"

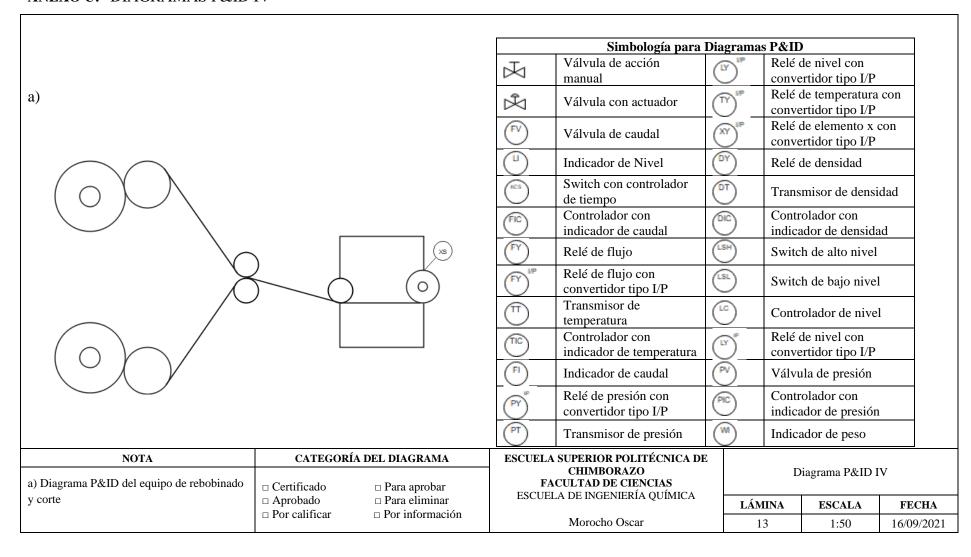



## ANEXO Q: "DISEÑO DE EQUIPOS III"

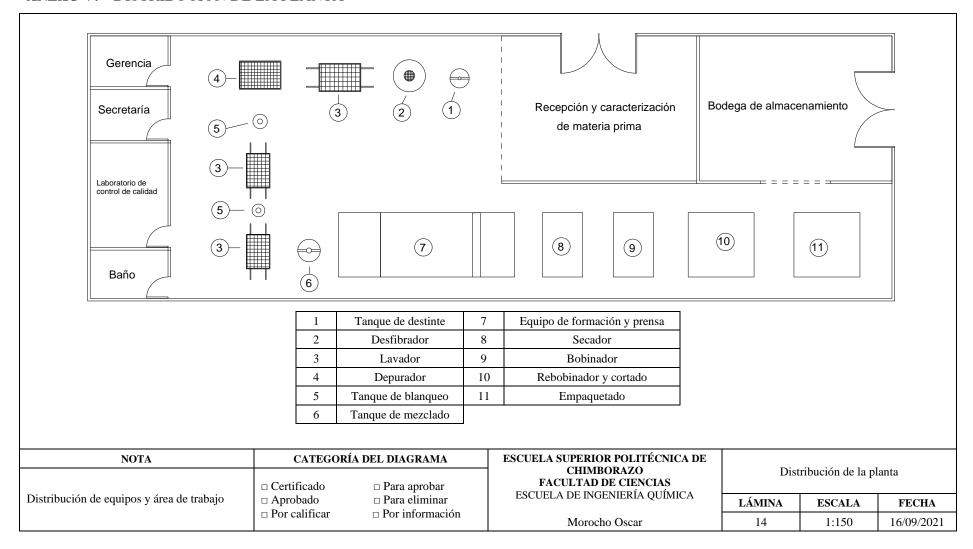



### ANEXO R: "DIAGRAMAS P&ID I"




#### ANEXO S: "DIAGRAMAS P&ID II"




#### ANEXO T: "DIAGRAMAS P&ID III"



#### ANEXO U: "DIAGRAMAS P&ID IV"



### ANEXO V: "DISTRIBUCIÓN DE LA PLANTA"

