

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

ESTUDIO DE FACTIBILIDAD PARA LA IMPLEMENTACIÓN DE UNA PLANTA DE COMPOSTAJE PARA EL APROVECHAMIENTO DE RESIDUOS SÓLIDOS DEL CAMAL DE LA CIUDAD DE RIOBAMBA.

ALEX VINICIO GAVILANES MONTOYA

Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo, presentado ante el Instituto de Posgrado y Educación Continua de la ESPOCH, como requisito parcial para la obtención del grado de:

MAGISTER EN ECONOMÍA Y ADMINISTRACIÓN AGRÍCOLA

Riobamba - Ecuador Diciembre -2017

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

CERTIFICACIÓN

EL TRIBUNAL DE TRABAJO DE TITULACIÓN CERTIFICA QUE:

El Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo, titulado "Estudio de factibilidad para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba", de responsabilidad del Sr. Alex Vinicio Gavilanes Montoya ha sido prolijamente revisado y se autoriza su presentación.

Tribunal.

Titounui.	
Dr. Juan Vargas Guambo Mgs.	
PRESIDENTE	FIRMA
Ing. Danny Castillo Vizuete Mgs.	
DIRECTOR	FIRMA
Ing. Hannibal Brito Moina M.Sc.	
MIEMBRO	FIRMA
Ing. Luis Flores Mancheno Ph.D	
MIEMBRO	FIRMA

Riobamba, Diciembre, 2017

DERECHOS INTELECTUALES

Yo, Alex Vinicio Gavilanes Montoya, declaro que soy responsable de las ideas, doctrinas y resultados expuestos en el **Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo**, y que el patrimonio intelectual generado por la misma pertenece exclusivamente a la Escuela Superior Politécnica de Chimborazo.

Al--- Windel Conditions Montage

Alex Vinicio Gavilanes Montoya

CI: 0603676180

DECLARACIÓN DE AUTENTICIDAD

Yo, Alex Vinicio Gavilanes Montoya, declaro que el presente Trabajo de Titulación

modalidad Proyectos de Investigación y Desarrollo, es de mi autoría y que los resultados del

mismo son auténticos y originales. Los textos constantes en el documento que provienen de

otra fuente están debidamente citados y referenciados.

Como autor, asumo la responsabilidad legal y académica de los contenidos de este proyecto

de investigación de maestría.

Riobamba, Diciembre de 2017

Alan Windala Cardlana Mantana

Alex Vinicio Gavilanes Montoya

CI: 0603676180

iv

DEDICATORIA

A mis padres Rogelio y Teresita, que con su ejemplo han sabido guiarme siempre hacia el crecimiento personal y la consecución de mis objetivos de vida; a mis hermanos: Viviana, Cristian y Carolina, mi familia, parte esencial de mi fortaleza espiritual con su respaldo incondicional.

AGRADECIMIENTO

A la Escuela Superior Politécnica de Chimborazo, prestigiosa institución a la cual me debo, y me ha brindado la oportunidad de desarrollarme académica y profesionalmente, de la cual he recibido el apoyo irrestricto.

A mi tutor y asesores: Ing. Danny Castillo, Ing. Hannibal Brito y el Ing. Luis Flores; por sus acertados y valiosos consejos, para la culminación del presente proyecto de investigación.

CONTENIDO

RESU	UMEN	xiii
SUM	MARY	xiv
1.	INTRODUCCIÓN	1
1.1	Planteamiento del problema	2
1.2	Formulación del problema	5
1.3	Preguntas directrices o específicas de la investigación	5
1.4	Justificación de la investigación	5
1.5	Objetivos de la investigación	7
2.	MARCO TEÓRICO	8
2.1	Antecedentes del problema	8
2.2	Bases teóricas	9
3. N	METODOLOGIA DE LA INVESTIGACIÓN	18
3.1	Tipo y diseño de investigación	18
3.2	Métodos de investigación	18
3.3	Enfoque de la investigación	18
3.4	Alcance de la investigación	18
3.5	Viabilidad comercial	18
3.7	Estudio técnico- productivo	20
3.8	Estudio ambiental	21
3.8	Estudio administrativo- legal	21
3.8	Estudio económico- financiero	21
4.	RESULTADOS Y DISCUSIÓN	22
4.1	Análisis de la viabilidad comercial	22
4.2	Estudio técnico- productivo	43
4.3	Estudio ambiental	61
4.4	Estudio administrativo legal	65

4.5 Estudio económico- financiero	78
CONCLUSIONES	84
RECOMENDACIONES	85
BIBLIOGRAFÍA	
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1-2: Panorama del mercado mundial de la carne	13
Tabla 2-2: Número estimado de cabezas de ganado en el mundo (en millones)	14
Tabla 3-2: Opciones para el manejo de residuos	17
Tabla 1-4: Control de la aireación	48
Tabla 2-4: Parámetros de humedad óptimos	49
Tabla 3-4: Parámetros de temperatura óptimos	49
Tabla 4-4: Parámetros de pH óptimos	50
Tabla 5-4: Parámetros de la relación carbono/ nitrógeno	51
Tabla 6-4: Control del tamaño de la partícula	51
Tabla 7-4: Parámetros del compostaje	52
Tabla 8-4: Parámetros del compostaje	53

ÍNDICE DE GRÁFICOS

Gráfico 1-2: El estudio de factibilidad dentro del ciclo de vida del proyecto	9
Gráfico 2-2: Proceso de compostaje	12
Gráfico 1-4: Utilización de abono orgánico en la producción	22
Gráfico 2-4: Tipos de abono orgánico	23
Gráfico 3-4: Aceptación para la implementación de la planta de compostaje	24
Gráfico 4-4: Aceptación de compra del compost	24
Gráfico 5-4: Cantidad de consumo.	25
Gráfico 6-4: Presentación de compra	26
Gráfico 7-4: Precio por quintal de compost	26
Gráfico 8-4: Medios Informativos	27
Gráfico 9-4: Logotipo Nutricompost	32
Gráfico 10-4: Diseño página web	34
Gráfico 11-4: Diseño página web	35
Gráfico 12-4: Diseño página web	36
Gráfico 13-4: Diseño página web	37
Gráfico 14-4: Diseño tríptico parte externa	38
Gráfico 15-4: Diseño tríptico parte interna	39
Gráfico 16-4: Logotipo Nutricompost	40
Gráfico 17-4: Localización	44
Gráfico 18-4: Flujograma del producto	56
Gráfico 19-4: Flujograma del servicio	57
Gráfico 20-4: Distribución de la planta	58
Gráfico 21-4: Fluiograma del servicio	69

ÍNDICE DE CUADROS

Cuadro 1-4: Utilización de abono orgánico en la producción	22
Cuadro 2-4: Tipos de abono orgánico	23
Cuadro 3-4: Aceptación para la implementación de la planta de compostaje	23
Cuadro 4-4: Aceptación de compra del compost	24
Cuadro 5-4: Cantidad de consumo	25
Cuadro 6-4: Presentación de compra	25
Cuadro 7-4: Precio por quintal de compost	26
Cuadro 8-4: Medios informativos	27
Cuadro 9-4: Perfil del consumidor	28
Cuadro 10-4: Cálculo de la demanda potencial	28
Cuadro 11-4: Proyección demanda potencial	29
Cuadro 12-4: Matriz de análisis de la competencia	30
Cuadro 13-4: Proyección de la competencia	30
Cuadro 14-4: Determinación de la demanda insatisfecha	31
Cuadro 15-4: Proyección de la demanda insatisfecha	31
Cuadro 16-4: Determinación de la demanda objetiva	31
Cuadro 17-4: Proyección de la demanda objetiva	32
Cuadro 18-4: Talento Humano área comercial	41
Cuadro 19-4: Activos Fijos- bienes muebles área comercial	41
Cuadro 20-4: Activos Fijos- bienes inmuebles área comercial	41
Cuadro 21-4: Activos Diferidos área comercial	42
Cuadro 22-4: Promoción y publicidad área comercial	42
Cuadro 23-4: Consumo aparente por cliente	43
Cuadro 24-4: Consumo aparente por producto- saco de 25kg.	43
Cuadro 25-4: Consumo aparente por producto- saco de 40 kg.	43
Cuadro 26-4: Consumo aparente por producto- saco de 50 kg	44
Cuadro 27-4: Talento Humano área productiva	59
Cuadro 28-48: Activos Fijos- bienes muebles área productiva	59
Cuadro 29-4: Activos Fijos- bienes inmuebles área productiva	60
Cuadro 30-4: Materias primas/ materiales e insumos	60
Cuadro 31-4: Otros costos de producción	60

Cuadro 32-4: Estudio ambiental	61
Cuadro 33-4: Talento Humano área administrativa	75
Cuadro 34-4: Activos Fijos- bienes muebles área administrativa	75
Cuadro 35-4: Activos Fijos- bienes inmuebles área administrativa	75
Cuadro 36-4: Activos Fijos- bienes inmuebles área administrativa	76
Cuadro 37-4: Permisos de funcionamiento	76
Cuadro 38-4: Suministros de oficina	76
Cuadro 39-4: Otros gastos administrativos	77
Cuadro 40-4: Inversión	78
Cuadro 41-4: Fuentes de financiamiento	79
Cuadro 42-4: Pago de la deuda	79
Cuadro 43-4: Cuotas préstamo	80
Cuadro 44-4: Depreciación de activos fijos	80
Cuadro 45-4: Amortización de activos diferidos	80
Cuadro 46-4: Amortización de activos diferidos	81
Cuadro 47-4: Presupuesto de ingresos	82
Cuadro 48-4: Estado de resultados	82
Cuadro 49-4: Flujo de caja	83
Cuadro 50-4: Viabilidad económica	83

RESUMEN

Ésta investigación tuvo como objetivo analizar la factibilidad para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal frigorífico de la ciudad de Riobamba. La investigación fue descriptiva con un método de investigación sistémico, teniendo un enfoque cualitativo y cuantitativo, así también el alcance de la investigación fue descriptivo ya que se recolectó información de manera independiente o conjunta sobre los conceptos o las variables a las que se refieren; basándose en la generación de residuos sólidos y su aprovechamiento, para lo cual, se definió sus características y los perfiles de los actores involucrados. Esta información, fue recopilada de los entes pertinentes, constituyéndose en el insumo fundamental para el análisis de las diferentes viabilidades y estudios. Los instrumentos de recolección de datos fueron: entrevista, encuestas y observación. Se determinó que el compost tiene una aceptación en el mercado ya que alrededor de un 89% de los agricultores comprarían éste producto, se diseñó el tamaño de la planta de acuerdo a la demanda, se plantearon medidas de minimización de impactos ambientales para los procesos, así también se creó la estructura orgánica y el manual de cargos y funciones de los empleados y finalmente se elaboró un análisis económico y financiero, donde se identificaron las fuentes de financiamiento, pago de la deuda, la depreciación de activos fijos, la amortización de activos diferidos, la estructura de costos y gastos, el presupuesto de ingresos, el estado de resultados y el flujo de caja; para obtener ratios positivos como: una Tasa Interna de Retorno (TIR) del 34% y un Valor Actual Neto (VAN) de \$136.872,80; concluyendo así, en la viabilidad para la implementación de la planta de compostaje. Se recomienda la implementación de la planta de compostaje al camal frigorífico municipal de Riobamba.

PALABRAS CLAVE: <CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS>, <ECONOMÍA SECTORIAL>, <DESARROLLO ECONÓMICO>, <ESTUDIO DE FACTIBILIDAD>, <RESIDUOS SÓLIDOS>, <ABONOS Y FERTILIZANTES>, <COMPOST>.

SUMMARY

The objective of this research was to analyze the feasibility for the implementation of a composting plant for the use of solid waste from the cold storage of the city of Riobamba. The research was descriptive with a systemic research method, taking a qualitative and quantitative approach, and also the scope of the investigation was descriptive since it was intended to measure or collect information independently or jointly on the concepts or variables to which refer; based on the generation of solid waste and its use, for which, its characteristics and the profiles of the actors involved were defined. This information was compiled from the pertinent entities, constituting the fundamental input for the analysis of the different viabilities and studies. The data collection instruments were: interview, surveys and observation. It was determined that the compost has an acceptance in the market since about 89% of the farmers would buy this product, the size of the plant was designed according to the objective demand, measures of minimization of environmental impacts were proposed, as well as the organic structure and the manual of positions and functions of the employees were created and finally an economic-financial analysis was elaborated concluding the feasibility of the implementation of the composting plant.

Key words: <ECONOMIC DEVELOPMENT>, <FEASIBILITY STUDY>, <SOLID RESIDUES>, <COMPOST>.

CAPÍTULO I

1. INTRODUCCIÓN

A nivel mundial, los residuos sólidos han ocasionado impactos ambientales negativos por su disposición incorrecta y porque cada día aumentan, asociados al incremento de la población humana, los procesos de transformación industrial, agroalimentarios y a los hábitos de consumo de las personas (Acurio et al., 2012).

El compostaje se puede definir como una biotécnica donde es posible ejercer un control sobre los procesos de biodegradación de la materia orgánica., la biodegradación es consecuencia de la actividad de los microorganismos que crecen y se reproducen en los materiales orgánicos en descomposición, la consecuencia final de estas actividades vitales es la transformación de los materiales orgánicos originales en otras formas químicas, los productos finales de esta degradación dependerán de los tipos de metabolismo y de los grupos fisiológicos que hayan intervenido (Ricaurte, 2012). El compostaje se considera un método económico comparado con otros tratamientos (Barreira et al., 2013) y eficaz para disminuir la cantidad de residuos por transportar y disponer (Zurbrügg et al., 2014). El producto obtenido puede utilizarse como acondicionador de suelos, aplicado en agricultura o huertas caseras (Kim et al., 2013; Masó y Bonmatí, 2013) o como material de cobertura en sistemas de disposición final.

Los residuos de los animales pueden generar un impacto negativo en el ambiente contribuyendo a la contaminación de suelo, agua y aire. La estabilización aeróbica a través del compostaje es una alternativa de tratamiento para reducir la contaminación (Riera et al., 2014). De los residuos sólidos municipales (RSM), los biorresiduos son la fracción más alta y de mayor potencial de contaminación; el compostaje permite disminuir el impacto ocasionado por su manejo y contribuye con la sostenibilidad de la producción agrícola (Oviedo et al., 2012). El compostaje de residuos orgánicos municipales puede presentar riesgos y ocasionar daños al ser utilizado como acondicionador de suelos, por el exceso de materiales inertes, emisión de malos olores, salinidad elevada, toxicidad por contaminantes orgánicos, toxicidad por metales pesados, inmadurez del proceso y presencia de organismos patógenos (Puerta, 2014).

El objetivo del estudio fue determinar la factibilidad para la implementación de una planta de compostaje y el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba, el mismo que está dividido por capítulos:

En el capítulo I, se visualiza el planteamiento, formulación y objetivos de la investigación, posteriormente, se realiza la revisión bibliográfica que corresponde al marco teórico y conceptual, sustentando así la razón de ser del proyecto. En la tercera parte se presenta la metodología de trabajo que se empleó para recabar la información de la investigación; a continuación, se establece la propuesta de intervención a través del desarrollo de los estudios de mercado, técnico, operativo, ambiental, administrativo, legal, económico y financiero.

Por lo tanto, el presente trabajo constituye una herramienta de suma importancia, ya que a partir del aprovechamientos de los residuos sólidos del camal de la ciudad de Riobamba se creará un producto útil para los agricultores como es el compost.

1.1 Planteamiento del problema

1.1.1 Situación Problemática

1.1.1.1 Dimensión macro

La industrialización de procesos en la producción de cárnicos, en la actualidad, presenta varias deficiencias, entre ellas, está la carencia de políticas y normativas legales, que permitan el diseño y ejecución de planes e iniciativas que cumplan eficientemente las exigencias legales ambientales y de salud vigentes, a escala mundial, en países de primer mundo o en Europa, los procesos de faenamiento y expendio de cárnicos se encuentran industrializados, por lo que, es difícil encontrar camales o mataderos, que además no cumplan con las regulaciones normativas. Siendo estos centros más comunes en Latinoamérica (Veall, 2013).

1.1.1.2 Dimensión meso

En países en vías de desarrollo, los residuos orgánicos provenientes de las actividades de los mataderos generan altos niveles de contaminación ambiental, es así, que esta situación es aún más difícil en los municipios pequeños, donde las limitaciones técnicas y económicas no permiten poner en funcionamiento medidas de manejo ambiental complejas que solucionen al problema de forma definitiva (Guerrero, 2014).

Los residuos sólidos y líquidos son vertidos, casi en la totalidad de los centros de faenamiento, en el drenaje o cuerpos de agua. Este escenario representa, además del evidente daño ambiental, un gran desperdicio de recursos que pueden ser empleados en diversas actividades y bien pueden ser

considerados como un subproducto de la matanza. Esto significa que se requiere un cambio de paradigma hacia uno con visión ambientalista en el que se entienda que los residuos orgánicos no son algo de lo que se tiene que deshacer inmediatamente sino que son recursos que se pueden y deben aprovechar. Al mismo tiempo, disminuir la contaminación de la naturaleza y prevenir riesgos a la salud humana directa o indirectamente (Bonilla, 2012).

1.1.1.3 Dimensión micro

Los camales a nivel nacional se han concentrado únicamente a tratar sus aguas residuales, y unos pocos a reusar la sangre producto del faenado para la elaboración de harina, por lo que con otros desechos como el contenido ruminal y el estiércol, en muchos casos son colocados directamente en colectores de basura o en algún terreno aledaño específico lo que causa molestia a los habitantes principalmente de aquellos camales ubicados en las zonas urbanas (Garzón, 2012).

Es así que las áreas de influencia física, biótica, y social corresponde a las estructuras que se encuentran dentro de las parroquias urbanas: Maldonado y Veloz, considerando su densidad demográfica, actividades económicas, educativas, que se ven afectadas por la generación de olores, presencia de vectores ambientales, que se propagan debido a factores climáticos como dirección del viento y luz solar, ya que actualmente el uso del suelo es de zona urbana y no de zona industrial como inicialmente fue planificado (Guerrero E., 2014).

El camal municipal de la ciudad de Riobamba, fue construido en el año de 1981 se encuentra en funcionamiento en un área de 29515,92 m². En este, las principales actividades que se desarrollan son: faenamiento de bovinos, ovinos y porcinos; esto incluye las fases de matanza, eliminación y procesamiento de sangre, remoción de pie, evisceración, lavados de patas, recortes y cortado para el mercado (GADMRiobamba, 2015).

El 5 diciembre del año 2013, el camal municipal de la ciudad, fue clausurado por los técnicos de la Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro (AGROCALIDAD), debido a que, no se aplicaban las normas de higiene y salubridad para el faenamiento y almacenamiento de cárnicos; así también el espacio de comercialización es un área contaminada. Previamente, el Ministerio de Ambiente y el Ministerio de Salud, a través de la comisaria de salud, realizaron múltiples llamados de atención, a este establecimiento, es por eso que el 14 de noviembre de 2013, se clausuró uno de los cinco depósitos donde se guardaba las extremidades de las reses (patas y rabos). Según datos de la administración en este sitio se faenaban mensualmente 3800 bovinos, 3900 porcinos y 3560 ovinos (GADMRiobamba, 2015).

Los principales residuos generados en este sitio, a partir del faenamiento de porcinos, ovinos y bovinos, están en forma líquida, como es el caso del agua de lavado y sangre; semisólidos como el rumen, estiércol, grasas; y, sólidos: huesos, tejidos, pieles, entre otros, así también se realiza la inspección y control veterinario ante y post-mortem, así como el almacenamiento de pieles, cabezas y patas para su posterior entrega al sistema actual de recolección de residuos municipal (Guerrero E., 2014).

En las áreas de corrales y comercialización de ganado en pie, la limpieza que se realiza a diario, se obtiene estiércol, el mismo que es almacenado temporalmente para luego ser comercializado como abono. El principal efluente semilíquido generado es la sangre, con la cual se elabora harina para la alimentación en peces o animales de granja. También, la grasa, es recogida para obtener bloques de cebo (GADMRiobamba, 2015).

La ruminaza, actualmente no se está manejando eficientemente debido a que se debe pasar por un proceso de separación de sólidos para compactar, por lo cual está siendo arrojado al sistema de alcantarillado. Los residuos orgánicos, producto del decomiso del faenamiento clandestino, así como los generados en las áreas de: mecánica y mantenimiento; y, el dispensario médico, tienen su disposición final en Porlón. No se disponen de recipientes contenedores para los residuos generados, sin estar tampoco delimitada y señalizada el área para el almacenamiento temporal, además no se cuenta con registros de residuos orgánicos generados, puesto que en el caso del ganado vacuno, se comercializa casi todo, es decir: patas, cabeza, piel, carne, por lo que principalmente se tienen restos de vísceras y estiércol. Así también, los residuos del ganado porcino, y los cascos de las patas del ganado vacuno, son entregados al recolector municipal (BIOAMPEG, 2015).

Los 6 camales municipales de la provincia de Chimborazo que cumplen con las normativas sectoriales controladas por la agencia ecuatoriana de aseguramiento de la calidad del agro se encuentran localizados en: Guamote, Alausí, Chunchi, Riobamba, Chambo y Colta; siendo el de la ciudad de Riobamba el único que faena las líneas de bovinos, ovinos y porcinos.

Según el documento "Estudio de prefactibilidad y diseño definitivo de la planta de tratamiento de aguas residuales del camal municipal de Riobamba" (BIOAMPEG, 2015), se menciona que el camal, no realiza un buen manejo y disposición de los diferentes desechos sólidos generados, además, la falta de procedimientos y control en la disposición de los desechos genera que la presencia de vectores ambientales sea continua.

A más de los residuos generados en el camal de la ciudad de Riobamba, existen también residuos vegetales que se generan en el mercado mayorista de la ciudad, los mismos que se pretenden utilizar para la creación del compost, optimizando de ésta forma los recursos y creando un producto con niveles nutricionales óptimos.

En el ámbito legal, la Agencia Ecuatoriana de Aseguramiento de la Calidad Agro, basada en el "Manual de procedimientos para la inspección y habilitación de mataderos", es la entidad encargada con competencias de supervisión y control, realización de inspecciones, así como la aplicación de sanciones a través de las Coordinaciones Provinciales, ante el incumplimiento de las normas pertinentes (AGROCALIDAD, 2013).

1.2 Formulación del problema

¿Es factible a nivel: comercial, técnico-productivo, ambiental, administrativo-legal, económico y financiero, la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

1.3 Preguntas directrices o específicas de la investigación

¿Cuál es la viabilidad comercial para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

¿Cómo contribuye la realización del estudio técnico-productivo para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

¿Cuáles son los impactos ambientales en la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

¿Cuál es la influencia del estudio administrativo-legal, para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

¿Cuáles son los ratios económicos y financieros de la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba?

1.4 Justificación de la investigación

La implementación de medidas preventivas simples y poco costosas como el manejo ambientalmente sano de los residuos orgánicos hace viable abordar el problema de forma eficiente en cuanto a requerimientos y resultados, al exigir pocos recursos y generar valor agregado a los residuos manejados (Guerrero E., 2014).

Los residuos de los rastros no son basura de la cual se debe deshacer rápidamente sino que son recursos que pueden tener un uso y aprovechamiento. Para lograr esto último es indispensable, en primer lugar, recuperar y separar los residuos de manera integral para poder manejarlos de la manera más adecuada y fácil. Lo más importante es evitar al máximo la disposición de residuos en el drenaje o cuerpos de agua ya que el tratamiento posterior resulta muy costoso y se aumentan los riesgos a la salud de la población (Bonilla, 2012).

En el contexto global, el aprovechamiento de residuos como estiércol y ruminaza, tiene efectos positivos, puesto que la tendencia mundial está orientada al desarrollo sostenible, reducción de contaminación y uso de abonos y fertilizantes orgánicos (Guerrero E., 2014).

En el año 2013, por un período de 10 meses, el camal de la ciudad de Riobamba, fue clausurado, debido al no cumplimiento de diferentes normativas sanitarias. En la actualidad se tiene problemas de incumplimientos legales e impactos ambientales que aún no han sido mitigados, como por ejemplo contaminación por la generación de residuos sólidos y su manejo deficitario como almacenamiento, tratamiento, desaprovechamiento de residuos orgánicos, disposición final (Bonilla, 2012).

Además de efluentes sin tratamiento y su descarga al sistema de alcantarillado municipal, la presencia de olores y vectores ambientales, que ocasionan un malestar social, en las áreas de influencia directa e indirecta; quedando así abierta la posibilidad de que pueda ser clausurado nuevamente (BIOAMPEG, 2015).

1.5 Objetivos de la investigación

1.5.1 General

Determinar la factibilidad para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba.

1.5.2 Específicos

- Analizar la vialidad comercial.
- Realizar el estudio técnico-productivo.
- Analizar ambientalmente los impactos.
- Desarrollar el estudio administrativo-legal.
- Realizar el estudio económico y financiero.

CAPÍTULO II

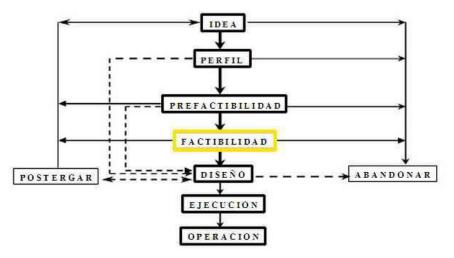
2. MARCO TEÓRICO

2.1 Antecedentes del problema

Tomando en cuenta que la generación de residuos está relacionada directamente con las características socioeconómicas de la población y sus costumbres, las investigaciones realizadas que se describen a continuación, han sido analizadas tomando en cuenta únicamente la realidad de nuestro país.

En el caso de la "Propuesta de reúso de desechos orgánicos obtenidos del proceso de eviscerado del Centro de Faenamiento Ocaña Cía. Ltda. de la ciudad de Quero para disminuir la contaminación del suelo" (Ocaña, 2013), se fundamenta en brindar una alternativa para el uso de rumen y estiércol para reducir la contaminación ambiental.

Siendo su conclusión principal que el estiércol es la mejor opción para la elaboración del compost, con la siguiente composición: es del 50% estiércol, 35% residuos vegetales y 15% tierra y mediante la fermentación aerobia en forma de montones, ya que al conocer los altos costos que implica la adquisición de digestores y todo su sistema para la fermentación anaeróbica no sería viable para su autofinanciamiento. Se calculó además que la empresa generaría ganancias de USD 13.134,17, anualmente por concepto de abono orgánico sólido (Ocaña, 2013).


El "Plan de Gestión de residuos del Camal del Cantón Antonio Ante" (Ruiz, 2011), ubicado en la provincia de Imbabura, desarrollado para la reducción de cargas contaminantes del sistema de alcantarillado al Río Ambi, logrando la mejora estética del área receptora de los efluentes. Concluyendo que la implementación de un humedal artificial, no altera el proceso normal de operación del camal, por lo que no existe la necesidad de modificar sus actividades, ya que es una tecnología simple de operar y mantener.

Desde el ámbito ambiental, se tiene el "Diagnóstico ambiental del camal municipal de la ciudad de Santo Domingo y mejora de su gestión" (Garzón, 2010), que aborda principalmente el cumplimiento de los límites permisibles de descarga según la legislación ecuatoriana, con la finalidad de proponer un plan de manejo ambiental para prevenir, controlar y mitigar los impactos negativos y potenciar los positivos.

2.2 Bases teóricas

2.2.1 El estudio de Factibilidad

Es un instrumento que sirve para orientar la toma de decisiones en la evaluación de un proyecto y corresponde a la última fase de la etapa pre-operativa o de formulación dentro del ciclo del proyecto. Se formula con base en información que tiene la menor incertidumbre posible para medir las posibilidades de éxito o fracaso de un proyecto de inversión, apoyándose en él se tomará la decisión de proceder o no con su implementación (Miranda, 2015).

Gráfico 1-2: El estudio de factibilidad dentro del ciclo de vida del proyecto **Fuente:** Miranda, 2015

2.2.1.1 Estudio de Mercado.

El estudio de mercado es más que el análisis de la oferta y demanda o de los precios del proyecto (Mongrut, Alberti, Fuenzalida, & Akamine, 2014). Muchos costos de operación pueden pronosticarse simulando la situación futura y especificando las políticas y procedimientos que se utilizarán como estrategia comercial, mediante el conocimiento de los siguientes aspectos:

- -El consumidor y las demandas del mercado y del proyecto, actuales y proyectadas.
- -La competencia y las ofertas del mercado y del proyecto, actuales y proyectadas.
- -Comercialización del producto o servicio del proyecto.

El análisis del consumidor tiene por objetivo caracterizar a los consumidores actuales y potenciales, identificando sus preferencias, hábitos de consumo, motivaciones, nivel de ingreso promedio, ente otros; para obtener el perfil sobre el cual pueda basarse la estrategia comercial. El análisis de la demanda pretende cuantificar el volumen de bienes o servicios que el consumidor podría adquirir de la producción del proyecto (Armijos, 2013).

El estudio de la competencia es fundamental, para poder conocer las características de los productos o servicios que ofrecen el resto de los productores, con el fin de determinar las ventajas y desventajas que aporta dicha competencia. Además, permite argumentar el nivel de ocupación de la capacidad disponible por el proyecto (Fisher & Espejo, 2013).

El análisis de la comercialización del proyecto depende en modo importante de los resultados que se obtienen de los estudios del consumidor, la demanda, la competencia y la oferta (Vecino, Rojas, & Munoz, 2015).

Los proveedores de insumos necesarios para el proyecto pueden ser determinantes en el éxito o fracaso de éste. De ahí la necesidad de estudiar si existe disponibilidad de los insumos requeridos y cuál es el precio que deberá pagarse para garantizar su abastecimiento. Por lo que la información que se obtenga de los proveedores puede influir en la selección de la localización del proyecto (OEA, 2017).

2.2.1.2 El Estudio Técnico.

El objetivo del estudio técnico consiste en analizar y proponer diferentes alternativas de proyecto para producir el bien que se desea, verificando la factibilidad técnica de cada una de las alternativas. A partir del mismo se determinarán los costos de inversión requeridos, y los costos de operación que intervienen en el flujo de caja que se realiza en el estudio económico-financiero. Este incluye: tamaño del proyecto, localización (Fisher & Espejo, 2013).

2.2.1.2.1 Tamaño del proyecto.

La capacidad de un proyecto puede referirse a la capacidad teórica de diseño, a su capacidad de producción normal o a su capacidad máxima. Para ello se tienen en cuenta los siguientes elementos (Navarro, 2013).

La primera se refiere al volumen de producción que bajo condiciones técnicas óptimas se alcanza a un costo unitario mínimo y la capacidad de producción normal es la que bajo las condiciones de producción que se estimen regirán durante el mayor tiempo a lo largo del período considerado al costo unitario mínimo y por último la capacidad máxima se refiere a la mayor producción que se puede obtener sometiendo los equipos al máximo esfuerzo, sin tener en cuenta los costos de producción (Mongrut et al., 2014).

2.2.1.3 El Estudio Económico-Financiero.

El estudio económico-financiero de un proyecto, hecho de acuerdo con criterios que comparan flujos de beneficios y costos, permite determinar si conviene realizar un proyecto, o sea si es o no

rentable y sí siendo conveniente es oportuno ejecutarlo en ese momento o cabe postergar su inicio. En presencia de varias alternativas de inversión, la evaluación es un medio útil para fijar un orden de prioridad entre ellas, seleccionando los proyectos más rentables y descartando los que no lo sean (Cordoba, 2014).

2.2.1.3.1 Prácticas de Evaluación Financiera

En la toma de decisiones para invertir en un proyecto, la empresa espera que este genere excedentes en un futuro que le permitan incrementar su valor. Por lo tanto, el proceso de selección de los proyectos de inversión y el conocimiento que las empresas posean acerca de los criterios para evaluar la decisión de invertir sean cruciales para el logro de los objetivos financieros (Mongrut et al., 2014).

Para llevar a cabo la selección de proyectos en las empresas, la teoría sugiere que se deben utilizar métodos adecuados de evaluación de inversiones con el fin de que se tomen decisiones acertadas en cuanto a la destinación de los recursos correspondientes a cada una de las posibilidades de inversión. (Vecino et al., 2015).

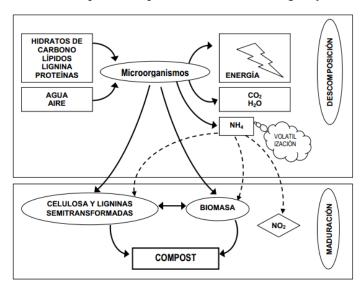
Asimismo, el estudio de (Mongrut et al., 2014), realizado en Perú, encontró que el 90% de las empresas utilizaba el VAN (valor actual neto), un 80% la TIR (tasa interna de retorno) y un 86% el PR (período de recuperación); además reportó que las compañías hacían una combinación de varios métodos para encontrar una forma de selección apropiada. Las técnicas más empleadas en conjunto fueron VAN, TIR y opciones reales (58%); adicionalmente se evidenció que la mayoría de los proyectos de inversión se valoraban formalmente sin considerar la flexibilidad operativa que estos pudieran ofrecer.

2.2.1.4 El Estudio Ambiental

Un aspecto primordial a tener en cuenta para el desarrollo de productos es el cuidado del medio ambiente (Barón Maldonado & Rivera Cadavid, 2014), para ello son especialmente útiles los conceptos, los cuales ayudan a reducir los impactos ambientales a lo largo de todo el ciclo de vida del producto (Navarro, 2013).

2.2.2 Compostaje

El compost, es obtenido de manera natural por descomposición aeróbica de residuos orgánicos, por medio de la reproducción masiva de bacterias aerobias termófilas que están presentes en forma natural en cualquier lugar (posteriormente, la fermentación la continúan otras especies de


bacterias, hongos y actinomicetos). Normalmente, se trata de evitar la putrefacción de los residuos orgánicos por exceso de agua, que impide la aireación – oxigenación (Moreno, 2012).

2.2.2.1 Propiedades del compostaje

Según (Moreno, 2012) el compostaje presenta las siguientes propiedades:

- Mejora las propiedades físicas del suelo. La materia orgánica favorece la estabilidad de la estructura de los agregados del suelo agrícola, reduce la densidad aparente, aumenta la porosidad, permeabilidad, y aumenta su capacidad de retención de agua en el suelo.
- Incrementa las propiedades químicas del suelo. Aumenta el contenido de macronutrientes N, P,
 K, y micronutrientes. La capacidad de intercambio catiónico, es fuente y almacén de nutrientes para los cultivos.
- Mejora la actividad biológica del suelo.

A continuación se muestra un esquema del proceso dinámico, biológico y aerobio del compostaje:

Gráfico 2-1: Proceso de compostaje **Fuente:** Moreno, 2012.

2.2.2.2 Matadero Municipal

Un matadero municipal es una fuente rica en residuos sólidos de alto contenido orgánico. Es de anotar que por las actividades que aquí se desarrollan se da cabida a que muchos residuos no utilizables de manera directa sean desechados como residuo a través del sistema de alcantarillado (Sangre) o del sistema de basuras como contenido ruminal, estiércol (OPS, 2015).

Los residuos orgánicos aprovechables y que son desechados por un matadero son: sangre, contenido ruminal, estiércol, uñas, cascos, restos de pelo entre otros. Con el contenido ruminal se

pueden obtener concentrados para alimentación de animales, con la sangre se puede obtener harina de sangre para alimento de aves, las uñas, cascos, estiércol y otros desechos pueden ser destinados para lombricultura y compostaje (OPS, 2015).

2.2.2.3 Hábitos de consumo de carne asociado a la generación de residuos

El consumo de carne per cápita en algunos países industrializados es alto, en los países en desarrollo un consumo per cápita de carne inferior a 10 kg debe considerarse insuficiente y con frecuencia causa subnutrición y malnutrición (FAO, 2014).

El programa de la FAO sobre carne y productos cárnicos tiene como objetivo prestar asistencia a los países miembros a fin de que puedan aprovechar las oportunidades de desarrollo del sector pecuario y mitigación de la pobreza a través de la promoción de sistemas inocuos, eficaces y sostenibles de producción, elaboración y comercialización de carne y productos cárnicos.

Tabla 2-2: Panorama del mercado mundial de la carne

	2012	2013	2014	Variación: de 2014 a 2013	
	millones de	e toneladas		%	
BALANZA MUNDIAL					
Producción	304.2	308.5	311.8	1.1	
Carne de bovino	67.0	67.7	68.0	0.5	
Carne de ave	105.4	107.0	108.7	1.6	
Carne de cerdo	112.4	114.3	115.5	1.1	
Carne de ovino	13.7	13.9	14.0	0.5	
Comercio	29.7	30.9	31.3	1.4	
Carne de bovino	8.0	9.1	9.4	3.5	
Carne de ave	13.0	13.2	13.5	2.4	
Carne de cerdo	7.5	7.4	7.2	-2.1	
Carne de ovino	0.8	1.0	1.0	-3.7	
INDICADORES DE LA OFERTA Y LA DEMANDA					
Consumo humano per cápita: (kg/year):					
Mundial	42.9	42.9	42.9	-0.1	
Desarrollados	76.2	75.9	76.1	0.3	
En desarrollo	33.5	33.7	33.7	0.0	

Fuente: FAO, 2014

Tabla 2-2: Número estimado de cabezas de ganado en el mundo (en millones)

	1990	2000	2012	% Variación 1990-2012
Bovinos	1445	1467	1684	16.5
CERDOS	849	856	966	13.8
AVES DE CORRAL	11788	16077	24075	104.2
OVINOS	1795	1811	2165	20.6

Fuente: FAO, 2014

Hay que observar que el uso y consumo de diferentes especies animales varía también en función de preferencias culturales y creencias religiosas. (FAO, 2014).

Ecuador tiene la suficiente cantidad de carne para satisfacer el consumo de sus habitantes. Cada año se procesan alrededor de 220 000 toneladas métricas, que se obtienen del millón de reses faenadas en camales formales, de acuerdo con la Federación Nacional de Ganaderos (ESPOL, 2016).

Según la Asociación de Ganaderos del Litoral se producen al año 300 millones de libras de carne. Se destinan 1 760 000 cabezas de ganado para la producción. Seis provincias de la Costa concentran la mayor cantidad de población de ganado de carne. Manabí lidera el top de la producción: el 40% del total de sus reses va para el procesamiento de carne. Esta provincia junto con Loja, Pichincha, Azuay, Chimborazo, Tungurahua, Cotopaxi y Carchi son las que más consumen carne, según datos oficiales (Líderes, 2015).

La muestra que los habitantes de esas provincias consumieron 203 195 cabezas de ganado en el 2013. La investigación también revela que en Cotopaxi, Pichincha, Esmeraldas, Santo Domingo de los Tsáchilas, Chimborazo y Azuay se compraron 263 107 cabezas de ganado vacuno. De acuerdo con datos del Instituto Nacional de Estadística y Censos (INEC), en Ecuador la población ganadera es de 5,2 millones. De esa cifra, el 50,64% se concentra en la Sierra (INEC, 2014).

La carne puede formar parte de una dieta equilibrada, aportando valiosos nutrientes beneficiosos para la salud. La carne y los productos cárnicos contienen importantes niveles de proteínas, vitaminas, minerales y micronutrientes, esenciales para el crecimiento y el desarrollo. La elaboración de la carne supone una oportunidad para añadir valor, reducir los precios, fomentar la inocuidad alimentaria y ampliar la vida útil. Esto a su vez puede generar un aumento de los ingresos del hogar y una mejora de la nutrición (OPS, 2015).

En el camal de la ciudad de Riobamba, según datos de la administración en este sitio se faenaban mensualmente 3800 bovinos, 3900 porcinos y 3560 ovinos (GADMRiobamba, 2015).

2.2.2.4 Calidad de los animales

La calidad de los animales sacrificados tiene un efecto significativo en el estándar de la carne producida. Los factores que ejercen una mayor influencia son la alimentación, la edad, los factores genéticos y el estado de salud. Se han realizado importantes esfuerzos para mejorar la producción y calidad de la carne mediante programas de mejoramiento genético, así como para obtener combinaciones de las características principales de distintas razas mediante cruzamiento. Nuevas razas con mejor calidad de la carne, mejores rendimientos en canal y adaptadas para resistir a las enfermedades pueden representar una contribución significativa a la disponibilidad de carne mejorada destinada a la nutrición humana (FAO, 2014).

2.2.2.5 Referencias Normativas en camales del Ecuador

Las principales referencias legales aplicadas a los camales del Ecuador son las siguientes:

- Constitución de la República del Ecuador 2008
- Decisión 197 de la Comisión de Acuerdo de Cartagena: Norma y Programa Subregional sobre Tecnología, Higiene e Inspección Sanitaria del Comercio de ganado bovino para beneficio, mataderos y comercio de carne bovina.
- Ley de Sanidad Animal, Registro Oficial Suplemento 315 del 16 de abril de 2004.
- Ley de mataderos, Registro Oficial N° 221 de 7 de abril de 1964.
- Reglamento a la Ley sobre mataderos, inspección, comercialización e industrialización de la carne, Registro Oficial N° 52 del 10 de junio de 1996.
- Ley orgánica del régimen soberanía alimentaria publicada en el registro oficial N°583.
- Norma técnica ecuatoriana NTE INEN 1218: 1985-02
- Código de animales terrestres de la organización de sanidad animal mundial OIE.
- Códex Alimentarius (Organización de las Naciones Unidas para la Agricultura y la Alimentación, FAO), en cuanto a: CAC/RCP 58-2005 Código de prácticas de higiene para la carne.
- Decreto Ejecutivo 1449 publicada en el registro oficial N° 479 de 2 de diciembre de 2008.
- Resolución N° 178 de AGROCALIDAD emitida el 18 de septiembre de 2012

2.2.2.6 Generación de residuos

Según la O.C.D.E. (Organización para la Cooperación y el Desarrollo Económico, 2015) los residuos son "aquellas materias generadas en las actividades de producción y consumo, que no han alcanzado un valor económico en el contexto en el que son producidas.

En el caso del camal de la ciudad de Riobamba, según (BIOAMPEG, 2015) se considerarán diferentes etapas del proceso como:

- Recepción y manejo del ganado
- Desollado
- Depilado
- Evisceración
- Lavado de vísceras
- Inspección post mortem

Los residuos sólidos generados de estas diferentes etapas son:

- Estiércol, pedacería (piel, músculo, grasa)
- Pelaje
- Tracto intestinal
- Pedacería y órganos comestibles
- Contenido ruminal
- Vísceras no aptas para el consumo

2.2.2.8 Opciones para el manejo de los residuos

Entre las opciones más usuales para el manejo y tratamiento de residuos sólidos se resumen las siguientes:

Tabla 3-2: Opciones para el manejo de residuos

Tratamiento Residuo	Compostaje	Biodigestión	Planta de	Relleno	Incineración	Encalar y
Tratainiento Residuo	Compostaje	Diodigestion	rendimiento	Sanitario		enterrar
Sangre		✓	✓			
Heces	✓	✓				
Residuos de alimentos	✓	√				
Contenido gástrico/ruminal	✓	√				
Grasa y pedacería	✓	√	√			
Cuernos, pezuñas y otros no comestibles			✓	✓		
Órganos decomisados					✓	√
Animales muertos					✓	✓

Fuente: (Bonilla, 2012)

CAPÍTULO III

3. METODOLOGIA DE LA INVESTIGACIÓN

3.1 Tipo y diseño de investigación

Esta investigación fue descriptiva, puesto que se fundamentó en la descripción de la situación actual del camal municipal de la ciudad de Riobamba, basado en la generación de residuos sólidos y su aprovechamiento, para lo cual, se definió sus características y los perfiles de los actores involucrados. Esta información fue recopilada de los entes pertinentes, constituyéndose en el insumo fundamental para el análisis de las viabilidades: comercial, técnica y productiva; la identificación de los impactos ambientales, y el desarrollo de los estudios: administrativo, legal, económico y financiero. En este sentido, se seleccionaron una serie de parámetros a ser evaluados, agrupados en las categorías mencionadas para determinar la factibilidad para la implementación de una planta de compostaje.

3.2 Métodos de investigación

Se consideró al método sistémico, es decir, se basa en la determinación de los costos actuales y los del aprovechamiento de residuos sólidos, así como establecer las relaciones entre estos elementos. Esas relaciones determinan por un lado la estructura del objeto y por otro su dinámica; llegando así a constituirse en una herramienta fundamental para la toma de decisiones en la optimización de recursos mediante la determinación de la factibilidad del proyecto.

3.3 Enfoque de la investigación

El enfoque de la investigación fue cuantitativo, ya que a nivel de la propuesta de intervención se realizó el estudio de mercado que comprende la recolección y análisis de datos e información acerca de los clientes, competidores, basado en un estudio cuantitativo de la población objetivo, el análisis de la demanda y mercado a través del método de muestreo; además se complementa con un enfoque cualitativo ya que se caracterizó la demanda.

3.4 Alcance de la investigación

La investigación parte de analizar la situación actual, en relación a la generación de residuos sólidos del camal de la ciudad de Riobamba. Determinar la viabilidad comercial, realizar el estudio técnico-productivo, analizar ambientalmente los impactos generados, desarrollar el estudio administrativo-legal y el estudio administrativo-legal.

En la parte final de la investigación, se realizó una propuesta para la implementación de una planta de compostaje para el aprovechamiento de residuos del camal de la ciudad de Riobamba.

A continuación se muestra la metodología propuesta por (Muñoz, 2005) para la elaboración de la investigación de acuerdo al siguiente detalle:

3.5 Viabilidad comercial

3.5.1 Análisis de la demanda

3.5.1.1 Población de estudio y selección de la muestra

La población de estudio estuvo contemplada por los agricultores de la provincia de Chimborazo. La muestra se seleccionó de acuerdo a los datos obtenidos a través del Plan de Desarrollo y Ordenamiento Territorial de la provincia de Chimborazo, en el cual se observa la población económicamente activa por rama de actividades de manera específica el sector primario agricultores y trabajadores calificados con 64.604 habitantes.

3.6.1.3 Tamaño de la muestra

Para la determinación de la muestra se utilizó la fórmula de Canavos (1998), dispuesta a continuación:

$$n = \frac{N * (P * Q)}{(N - 1) * (\frac{e}{z})^2 + (P * Q)}$$

Dónde:

n = Tamaño de la muestra.

N = Universo

PQ = Constante de varianza (0.25)

e = Margen de error (0.08)

Z = Constante de corrección del error (2).

$$n = \frac{(64604 * 0.25)}{(64604 - 1)\left(\frac{0.08}{2}\right)^2 + 0.25} = 156 \; encuestas$$

3.6.2 Análisis de la competencia

Para definir la competencia se consideró a los locales comerciales que comercializan productos agropecuarios dentro de ellos el compost. La técnica empleada fue la entrevista que permitió la recolección de la información y el instrumento utilizado para recabar información fue la guía de entrevista.

3.6.3 Determinación de la demanda objetiva

La demanda total es el universo de estudio (DT=U), la demanda potencial fue obtenida mediante la ecuación: (DP=DT*AM), es decir la relación entre la demanda total y el porcentaje de aceptación del mercado. Así también la demanda insatisfecha resulta del cálculo entre la demanda potencial y la diferencia de la competencia (DI=DP-C). Mientras que la demanda objetiva se calculó entre la demanda insatisfecha y el porcentaje de captación del mercado (DO= DI*CM). Las proyecciones se realizaron utilizando el método de incremento compuesto cuyo modelo matemático es: $C_n = C_o (1 + i)^n$. El consumo aparente se determinó de la división de la demanda objetiva en períodos de tiempo.

En donde:

DT = Demanda Total:

U = Universo de estudio;

DP = Demanda Potencial;

AM = % de aceptación del mercado;

DI = Demanda Insatisfecha;

C = Competencia;

DO = Demanda Objetiva;

CM = % Captación del mercado.

Cn = clientes proyectados;

Co = clientes iniciales (demanda objetiva inicial);

i = incremento de la población;

 $n = a\tilde{n}o proyectado.$

3.6.4 Perfil del consumidor

Se busca definir las características del cliente, las mismas que se obtendrán del análisis de las encuestas realizadas, basadas en definir la utilización de abonos orgánicos, sus tipos, el nivel de aceptación de para su adquisición, precios, presentaciones preferidas, y, medios de difusión.

3.7 Estudio técnico- productivo

Para desarrollar el estudio de factibilidad se procedió a realizar un análisis cuantitativo y cualitativo, para de esta manera determinar el tamaño del proyecto en función del consumo aparente de los clientes según las presentaciones del producto, localización, el diseño en el que destaca los beneficios de su utilización a nivel químico, físico y biológico.

Además, se detallan las fases del proceso, el proceso de monitoreo de parámetros como: oxígeno, humedad, temperatura, potencial hidrógeno, relación carbono nitrógeno, densidad.

Se organizó la información en flujogramas de procesos, tanto para el producto como para el servicio, la distribución de planta, mediante los cuales se definieron los requerimientos del área productiva en función de los costos que estos conllevan.

3.8 Estudio ambiental

El estudio ambiental se lo realizó en base al análisis del estudio técnico productivo, además se efectuó la revisión de literatura con respecto a las normativas ambientales vigentes en el Ecuador.

Basado además en la matriz de identificación de impactos, determinación de interacciones de los factores y acciones, con el objetivo de establecer medidas que ayuden a disminuir la contamición de los recursos naturales generados por el funcionamiento de la planta de compostaje, así como también la aplicación de mecanismos de prevención y seguridad para que los impactos potenciales adversos se minimicen.

3.8 Estudio administrativo- legal

El estudio administrativo legal se realizó en base a la revisión bibliográfica vigente en el Ecuador para la creación del tipo de empresa, además se define la estructura orgánica y funcional de la empresa y el manual de cargos y funciones.

3.8 Estudio económico- financiero

El estudio económico- financiero se realizó principalmente con los requerimiento de las 3 áreas: comercial, productiva y administrativa, por medio de las cuales se pudo determinar: inversión, fuentes de financiamiento, pago de la deuda, depreciación de activos fijos, amortización de activos diferidos, estructura de costos y gastos, presupuesto de ingresos, estado de resultados, flujo de caja, con todo lo anteriormente expuesto se logró determinar: período de recuperación del capital, relación beneficio costo, TIR y VAN.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN 4.

4.1 Análisis de la viabilidad comercial

4.1.1 Análisis de la demanda

Utilización de abono orgánico en la producción

Cuadro 1-4: Utilización de abono orgánico en la producción

	FRECUENCIA	A ABSOLUTA	FRECUENCIA RELATIVA		
OPCIONES	F. ABSOLUTA		F. RELATIVA	F. RELATIVA ACUMULADA	
SI	97	97	62	62	
NO	59	156	38	100	
TOTAL	156		100		

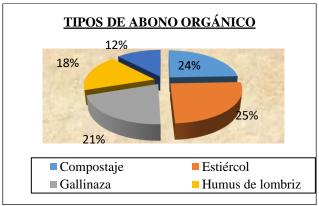
Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 1-4: Utilización de abono orgánico en la producción

Fuente: Estudio de Mercado- Aplicación de encuestas **Elaborado por:** Alex Gavilanes, 2017.

Análisis: De acuerdo al cuadro 1 y al gráfico 1 se puede observar que el 62% de los agricultores utilizan abono orgánico en la producción, mientras que un 38% de la población de estudio no utiliza materia orgánica, debido a que el agricultor de la provincia de Chimborazo como tal tiende a realizar una producción orgánica en mayor porcentaje.


Tipos de abono orgánico

Cuadro 2-4: Tipos de abono orgánico

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA	F. ABSOLUTA ACUMULADA	F. RELATIVA	F. RELATIVA ACUMULADA
Compostaje	38	38	24	24
Estiércol	39	77	25	49
Gallinaza	32	109	21	70
Humus de lombriz	28	137	18	88
Otros	19	156	12	
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 2-4: Tipos de abono orgánico **Fuente:** Estudio de Mercado- Aplicación de encuesta **Elaborado por:** Alex Gavilanes, 2017.

Análisis: En base al cuadro 2 y gráfico 2 podemos determinar que un 24 % de los agricultores utilizan compostaje en la producción, un 21% emplean gallinaza, así también un 25% utilizan estiércol, apenas un 18% emplean humus de lombriz, por lo tanto se demuestra que los agricultores tienden a la utilización de abonos orgánicos dentro de ellos el compost.

• Aceptación para la implementación de la planta de compostaje

Cuadro 3-4: Aceptación para la implementación de la planta de compostaje

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA		F. RELATIVA	F. RELATIVA ACUMULADA
Si	144	144	92	92
No	12	156	8	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 3-4: Aceptación para la implementación de la planta de compostaje **Fuente:** Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Análisis: Según el cuadro 3 y el gráfico 3, el 92% de las personas encuestadas están de acuerdo con la implementación de una planta de compostaje en la provincia de Chimborazo, apenas un 8% de los agricultores no estarían de acuerdo con la implementación, éstos porcentajes de aceptación tienen estrecha relación con la actividad agrícola que se genera en la provincia de Chimborazo.


• Aceptación de compra del compost

Cuadro 4-4: Aceptación de compra del compost

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA	111111111111111111111111111111111111111	F. RELATIVA	F. RELATIVA ACUMULADA
Si	139	139	89	89
No	17	156	11	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

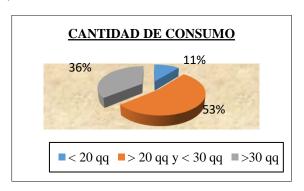
Elaborado por: Alex Gavilanes, 2017.

Gráfico 4-4: Aceptación de compra del compost

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Análisis: Según el cuadro 4 y el gráfico 4, un 89% de los encuestados le gustaría adquirir el compost que se produciría, mientras que solo un 11% tiene un respuesta negativa a la pregunta, debido a que los agricultores de la provincia de Chimborazo cultivan sus tierras con abono orgánico y de manera especial con el compost.


Cantidad de consumo

Cuadro 5-4: Cantidad de consumo

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA		F. RELATIVA	F. RELATIVA ACUMULADA
< 10 qq	17	17	11	11
> 10 qq y < 20 qq	83	100	53	64
>20 qq	56	156	36	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 5-4: Cantidad de consumo **Fuente:** Estudio de Mercado- Aplicación de encuestas **Elaborado por:** Alex Gavilanes, 2017.

Análisis: Según el cuadro 5 y el gráfico 5 referente a la cantidad de consumo un 53% de los agricultores adquiere entre 10 y 20 quintales, del mismo modo un 36% adquiere en una cantidad mayor a 20 quintales, apenas un 11 % compra menos de 10 quintales por mes, esto debido a que la mayoría de los agricultores de Chimborazo son medianos productores agrícolas.

• Presentación de compra

Cuadro 6-4: Presentación de compra

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA	F. ABSOLUTA ACUMULADA	F. RELATIVA	F. RELATIVA ACUMULADA
saco de 50 kg.	65	65	42	42
saco de 40 kg.	57	122	37	78
saco de 25 kg.	34	156	22	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 6-4: Presentación de compra **Fuente:** Estudio de Mercado- Aplicación de encuestas **Fleborado por Alex Gazilanes** 2017

Elaborado por: Alex Gavilanes, 2017.

Análisis: Según el cuadro 6 y el gráfico 6 podemos observar que un 42% de las personas encuestadas prefieren comprar sacos de 50 kg., un 36% adquiere sacos de 40 kg., y apenas un 22% preferiría en presentación de 25kg, esto debido que para los productores para optimizar costos prefieren comprar en mayor cantidad el producto.

• Precio por quintal de compost

Cuadro 7-4: Precio por quintal de compost

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA		F. RELATIVA	F. RELATIVA ACUMULADA
\$ 9,00	86	86	55	55
\$ 10,00	54	140	35	90
\$ 11,00	16	156	10	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

Gráfico 7-4: Precio por quintal de compost **Fuente:** Estudio de Mercado- Aplicación de encuestas **Elaborado por:** Alex Gavilanes, 2017.

Análisis: Según el cuadro 7 y el gráfico 7 el 55% de los encuestados compra el quintal de compost certificado en \$9.00, un 35% paga un valor de \$10.00 y apenas un 10% cancela un valor de \$11.00, esto debido a que los \$9,00 es el precio que fluctúa en el mercado.

Medios Informativos

Cuadro 8-4: Medios informativos

	FRECUENCIA ABSOLUTA		FRECUENCIA RELATIVA	
OPCIONES	F. ABSOLUTA	F. ABSOLUTA ACUMULADA	F. RELATIVA	F. RELATIVA ACUMULADA
Trípticos	75	75	48	48
Volantes	66	141	42	90
Radio	12	153	8	98
Tv	3	156	2	100
TOTAL	156		100	

Fuente: Estudio de Mercado- Aplicación de encuestas Elaborado por: Alex Gavilanes, 2017.

Gráfico 8-4: Medios Informativos Fuente: Estudio de Mercado- Aplicación de encuestas Elaborado por: Alex Gavilanes, 2017.

Análisis: Según el cuadro 8 y el gráfico 8 referente a medios informativos, podemos observar que los agricultores se informan mediante trípticos con un 48% y volantes con un 42%, debido a que los agricultores no acceden a medios electrónicos y su forma de informarse es la prensa escrita.

4.1.1.1 Perfil del consumidor

A continuación se presenta el perfil del consumidor de compost según los datos obtenidos del análisis de la demanda:

Cuadro 9-4: Perfil del consumidor

Utilización de abono orgánico en la producción	Si	62%
Tipos de abonos orgánicos	Compostaje	43%
Aceptación- planta de compostaje	Si	92%
Aceptación de compra del compost	Si	89%
Cantidad de consumo	> 20 qq y < 30 qq	53%
Presentación de compra	Saco de 50 Kg.	42%
Precio por quintal de compost	\$9,00	55%
Medios Informativos	Trípticos	48%

Fuente: Estudio de Mercado- Aplicación de encuestas

Elaborado por: Alex Gavilanes, 2017.

4.1.1.2 Determinación de la demanda potencial

A continuación se realiza el cálculo de la demanda objetiva, la misma que se determinó entre la demanda total y el porcentaje de aceptación del mercado

Cuadro 10-4: Cálculo de la demanda potencial

	DEMANDA POTENCIAL
DP	= 64604 * 89%
DP	= 57498

Elaborado por: Alex Gavilanes, 2017

Consecuentemente se proyectó la demanda a 5 años, utilizando la fórmula del incremento compuesto, considerando el índice de crecimiento poblacional en el 2010 que corresponde al 1.6% de acuerdo a los datos generados por el Instituto Nacional de Estadísticas y Censos (INEC).

Fórmula:

$$\mathbf{C}\mathbf{n} = Co(1 + i)^n$$

Donde:

Co = Demanda potencial (57498 agricultores)

i = Índice de crecimiento poblacional (1.6%)

 \mathbf{n} = Año a proyectarse (1-5)

Cuadro 11-4: Proyección demanda potencial

PRO	PROYECCIÓN DE LA DEMANDA POTENCIAL						
Nº	AÑO	DEMANDA POTENCIAL	DEMANDA TOTAL				
0	2017	57498	57498				
1	2018	58418	58418				
2	2019	59352	59352				
3	2020	60302	60302				
4	2021	61267	61267				
5	2022	62247	62247				

Elaborado por: Alex Gavilanes, 2017

4.1.2 Análisis de la competencia

En el siguiente cuadro se muestra un análisis de los competidores directos de compost, a continuación se muestra la matriz:

Cuadro 12-4: Matriz de análisis de la competencia

COMPETENCIA					
NOMBRE	#CLIENTES DIARIOS	#CLIENTES MENSUAL	#CLIENTES ANUAL		
EL AGRO	12	360	4320		
FERTISA	10	300	3600		
EL SEMBRADOR	9	270	3240		
LA CHAGRA	8	240	2880		
AGRORGÁNICOS	7	210	2520		
LA COSECHA	7	210	2520		
	19080				

Fuente: Trabajo de campo

Elaborado por: Alex Gavilanes, 2017.

Cuadro 13-4: Proyección de la competencia

	PROYECCIÓN DE LA COMPETENCIA				
Nº	AÑO	TOTAL COMPETENCIA			
0	2017	19080			
1	2018	19385			
2	2019	19695			
3	2020	20011			
4	2021	20331			
5	2022	20656			

Elaborado por: Alex Gavilanes, 2017

4.1.2.1 Confrontación competencia vs. demanda

Fórmula:

DI = DP - C

Dónde:

DI = Demanda insatisfecha

DP = Demanda potencial

C = Competencia

Cuadro 14-4: Determinación de la demanda insatisfecha

DEMANDA INSATISFECHA					
DI	= 57498 -19080				
DI	= 38418				

Elaborado por: Alex Gavilanes, 2017

Cuadro 15-4: Proyección de la demanda insatisfecha

	PROYECCIÓN DE LA DEMANDA INSATISFECHA									
Nº	AÑO	DEMANDA POTENCIAL	COMPETENCIA	DEMANDA INSATISFECHA						
0	2017	57498	19080	38418						
1	2018	58418	19385	39032						
2	2019	59352	19695	39657						
3	2020	60302	20011	40291						
4	2021	61267	20331	40936						
5	2022	62247	20656	41591						

Elaborado por: Alex Gavilanes, 2017

4.1.3 Determinación de la demanda objetiva

Fórmula:

 $\mathbf{DO} = \mathrm{DI} * \mathrm{CM}$

Dónde:

DO = Demanda objetiva

DI = Demanda insatisfecha

CM = Captación de mercado (%)

Cuadro 16-4: Determinación de la demanda objetiva

DEMANDA OBJETIVA					
DO	= 38418 * 50%				
DO	= 19209				

Elaborado por: Alex Gavilanes, 2017

Cuadro 17-4: Proyección de la demanda objetiva

	PROYECCIÓN DE LA DEMANDA OBJETIVA								
Nº	AÑO	DEMANDA INSATISFECHA	DEMANDA OBJETIVA						
0	2017	38418	19209						
1	2018	39032	19516						
2	2019	39657	19828						
3	2020	40291	20146						
4	2021	40936	20468						
5	2022	41591	20795						

Elaborado por: Alex Gavilanes, 2017

4.1.4 Plan mercadotécnico del proyecto

4.1.4.1 Nombre

Luego del análisis correspondiente considerando criterios de significancia, originalidad, descripción, fácil recordación, se determinó el nombre de la ruta, como: *nutricompost* que significa "compost con altos niveles de nutrientes", considerando que el principal producto es el compost que fue producido a partir del estiércol de las vacas y ovejas del Camal de Riobamba y de los residuos sólidos de hortalizas y frutas del mercado mayorista de Riobamba.

4.1.4.2 Slogan

El slogan que identificará la empresa es el siguiente: *Compost con altos niveles de nutrientes*, el mismo que se ha seleccionado en base a las actividades que se desarrollarán en la empresa.

4.1.4.3 Logotipo

Gráfico 9-4: Logotipo Nutricompost **Elaborado por:** Alex Gavilanes, 2017.

El diseño del logotipo consiste en la representación del compost que es el principal producto de la empresa, además se destaca la presencia de una vaca y una oveja porque se pretende utilizar

principalmente el estiércol de estas especies ya que cuentan con sistemas digestivos que aportan nutrientes beneficiosos para la producción del compost.

4.1.4.4 Colores

Los colores que identifican en la marca del producto reflejan y van en coordinación con lo que se quiere expresar, son colores relacionados con la producción y proceso del compost, a continuación se describe cada color:

Blanco.- es un color que representa pureza, paz y confort, se identificó en el diseño de la marca ya que se quiere transmitir la idea que es un producto beneficioso para la producción agrícola. **Verde.-** es un color que se identifica con la naturaleza, permite la conexión con ella y aporta sentimientos de frescura, armonía, crecimiento y fertilidad, este color se seleccionó para transmitir la idea de que el producto es natural y con alto contenido de nutrientes.

4.1.4.5 Internet

Se realizó el diseño de la página web para la difusión del producto turístico, por medio de la encuesta aplicada se identificó que los visitantes les gustaría informarse de este producto por medio de internet.

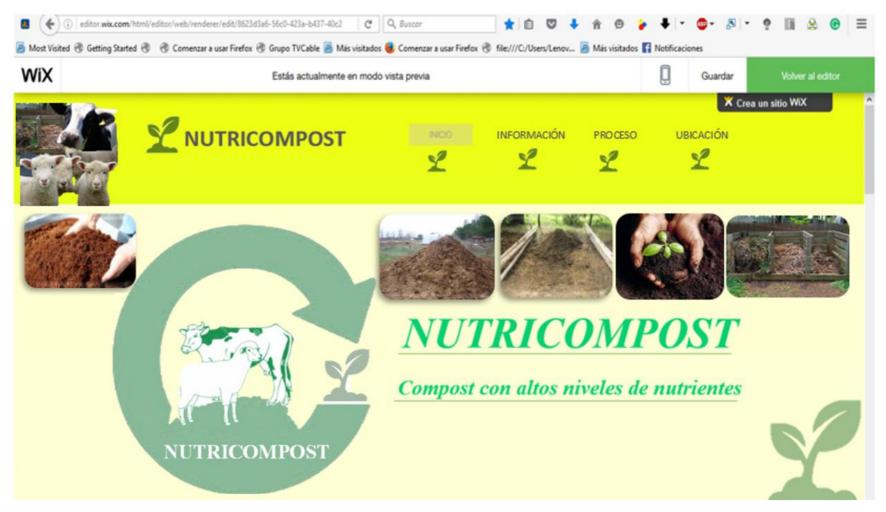


Gráfico 10-4: Diseño página web

Elaborado por: Alex Gavilanes, 2017.

Gráfico 11-4: Diseño página web **Elaborado por:** Alex Gavilanes, 2017.

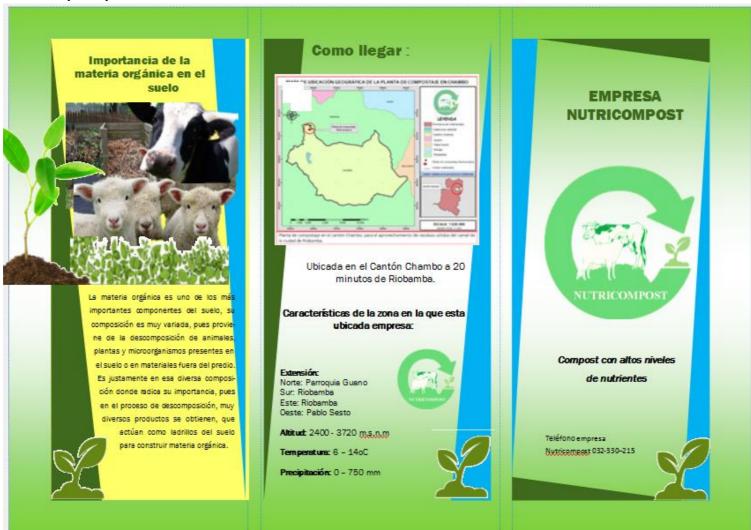


Gráfico 12-4: Diseño página web **Elaborado por:** Alex Gavilanes, 2017.

Gráfico 13-4: Diseño página web **Elaborado por:** Alex Gavilanes, 2017.

4.1.4.6 Tríptico- parte externa

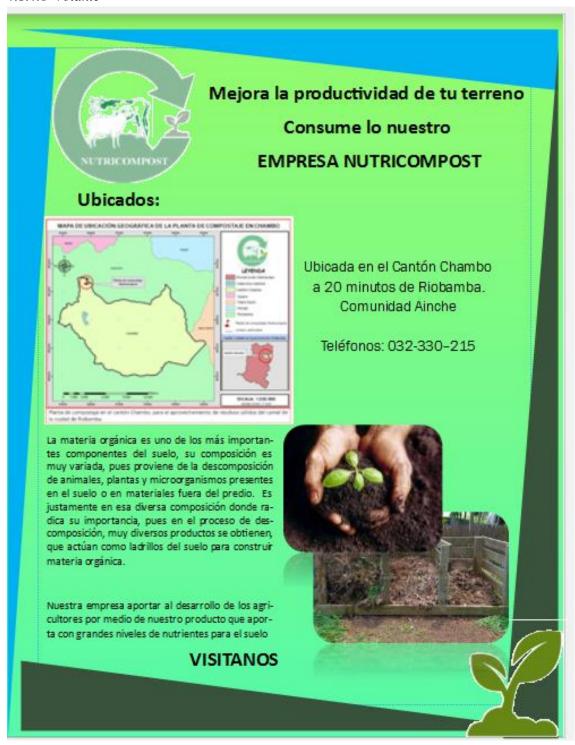


Gráfico 14-4: Diseño tríptico parte externa **Elaborado por:** Alex Gavilanes, 2017.

4.1.4.7 Tríptico- parte interna

Gráfico 15-4: Diseño tríptico parte interna **Elaborado por:** Alex Gavilanes, 2017.

Gráfico 16-4: Logotipo Nutricompost **Elaborado por:** Alex Gavilanes, 2017.

4.1.5 Requerimiento para el área comercial

4.1.5.1 Talento Humano

Cuadro 18-4: Talento Humano área comercial

TALENTO HUMANO							
Denominación	Cantidad	Unidad	Costo unitario	Costo total			
Agente vendedor	2	unidad	400,00	12.240,40			
TOTAL				12.240,40			

Elaborado por: Alex Gavilanes, 2017.

4.1.5.2 Activos Fijos-Bienes muebles

Cuadro 19-4: Activos Fijos- bienes muebles área comercial

AC	ACTIVOS FIJOS DE BIENES MUEBLES									
Denominación	Cantidad	Unidad	Costo unitario	Costo total						
a. Muebles y enseres		-								
Estación de trabajo	2	unidad	300,00	600,00						
Silla giratoria	2	unidad	150,00	300,00						
Sillas de espera tripersonal	2	unidad	200,00	400,00						
mueble archivador	2	unidad	250,00	500,00						
SUB TOTAL				1.800,00						
b. Equipos de computo										
Computadora	2	unidad	500,00	1.000,00						
Impresora multifuncional	1	unidad	300,00	300,00						
SUB TOTAL				1.300,00						
TOTAL BIENES MUEBLES				3.100,00						

Elaborado por: Alex Gavilanes, 2017.

4.1.5.3 Activos Fijos-Bienes inmuebles

Cuadro 20-4: Activos Fijos- bienes inmuebles área comercial

ACTIVOS FIJOS DE BIENES INMUEBLES									
Denominación	Cantidad	Unidad	Costo unitario	Costo total					
a. Construcciones y edificaciones	a. Construcciones y edificaciones								
Construcción oficina mercadeo	20	metros cuadrados	250,00	5.000,00					
SUB TOTAL				5.000,00					
b. Terrenos									
Terreno área de mercadeo	20	metros cuadrados	12,00	240,00					
SUB TOTAL				240,00					
TOTAL BIENES INMUEBLES				5.240,00					

Elaborado por: Alex Gavilanes, 2017.

4.1.5.4 Activos Diferidos

Cuadro 21-4: Activos Diferidos área comercial

ACTIVOS DIFERIDOS								
Denominación	Cantidad	Unidad	Costo unitario	Costo total				
Paquete cuñas radiales (6 cuñas/paquete)	3	unidad	60,00	180,00				
Lona publicitaria	2	unidad	100,00	200,00				
capacitación al personal	1	unidad	400,00	400,00				
TOTAL				780,00				

Elaborado por: Alex Gavilanes, 2017.

4.1.5.5 Gastos

4.1.5.5.1 Promoción y publicidad

Cuadro 22-4: Promoción y publicidad área comercial

PROMOCIÓN Y PUBLICIDAD								
Denominación	Cantidad	Unidad	Costo unitario	Costo total				
Página web	1	Unidad	500,00	500,00				
Trípticos millar	1	millar	800,00	800,00				
Paquete cuñas radiales (6 cuñas/paquete)	5	paquete	60,00	300,00				
volantes millar	1	millar	300,00	300,00				
TOTAL				1.900,00				

Elaborado por: Alex Gavilanes, 2017.

4.2 Estudio técnico- productivo

4.2.1 Tamaño del proyecto

4.2.1.1 Consumo aparente por cliente

Cuadro 23-4: Consumo aparente por cliente

Nº	AÑO	DEMANDA OBJETIVA	Semestre	Trimestre	Mes	Quincena	Semana	Día
0	2017	19209	9604	4802	1601	800	400	53
1	2018	19516	9758	4879	1626	813	407	53
2	2019	19828	9914	4957	1652	826	413	54
3	2020	20146	10073	5036	1679	839	420	55
4	2021	20468	10234	5117	1706	853	426	56
5	2022	20795	10398	5199	1733	866	433	57

Elaborado por: Alex Gavilanes, 2017

4.2.1.2 Consumo aparente por producto

Cuadro 24-4: Consumo aparente por producto- saco de 25kg.

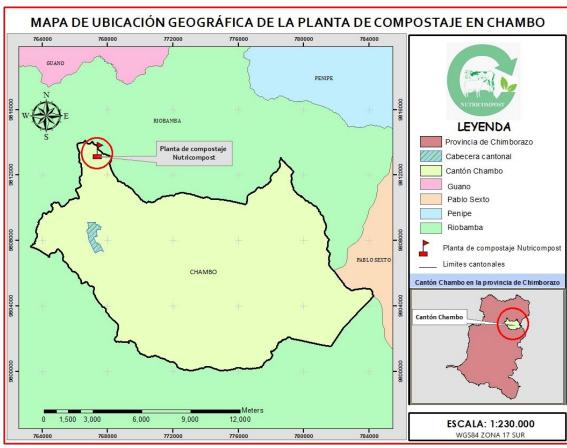
	CONSUMO APARENTE (SACO DE 25 KG.)										
Año	Demanda objetiva	Semestre	Trimestre	Mes	Quincena	Semana	Día				
2017	1921	960	480	160	80	40	5				
2018	1952	976	488	163	81	41	5				
2019	1983	991	496	165	83	41	5				
2020	2015	1007	504	168	84	42	6				
2021	2047	1023	512	171	85	43	6				
2022	2080	1040	520	173	87	43	6				

Elaborado por: Alex Gavilanes, 2017

Cuadro 25-4: Consumo aparente por producto- saco de 40 kg.

	CONSUMO APARENTE (SACO DE 40 KG.)									
Año	Demanda objetiva	Semestre	Trimestre	Mes	Quincena	Semana	Día			
2017	10181	5090	2545	848	424	212	28			
2018	10344	5172	2586	862	431	215	28			
2019	10509	5255	2627	876	438	219	29			
2020	10677	5339	2669	890	445	222	29			
2021	10848	5424	2712	904	452	226	30			
2022	11022	5511	2755	918	459	230	30			

Elaborado por: Alex Gavilanes, 2017


Cuadro 26-4: Consumo aparente por producto- saco de 50 kg.

	CONSUMO APARENTE (SACO DE 50 KG.)						
Año	Demanda objetiva	Semestre	Trimestre	Mes	Quincena	Semana	Día
2017	7107	3554	1777	592	296	148	19
2018	7221	3610	1805	602	301	150	20
2019	7337	3668	1834	611	306	153	20
2020	7454	3727	1863	621	311	155	20
2021	7573	3787	1893	631	316	158	21
2022	7694	3847	1924	641	321	160	21

Elaborado por: Alex Gavilanes, 2017

4.2.2 Localización del proyecto

La planta de compostaje estará ubicada en la comunidad Ainche, cantón Chambo, provincia de Chimborazo.

Gráfico 17-4: Localización **Elaborado por:** Alex Gavilanes, 2017.

4.2.3 Diseño del producto

4.2.3.1 Importancia de la materia orgánica en el suelo

La materia orgánica es uno de los más importantes componentes del suelo, su composición es muy variada, pues proviene de la descomposición de animales, plantas y microorganismos presentes en el suelo o en materiales fuera del predio. Es justamente en esa diversa composición donde radica su importancia, pues en el proceso de descomposición, muy diversos productos se obtienen, que actúan como ladrillos del suelo para construir materia orgánica.

4.2.3.2 Beneficios de la materia orgánica

Mejora las propiedades físicas:

- Facilitando el manejo del suelo para las labores de arado o siembra.
- Aumentando la capacidad de retención de la humedad del suelo.
- Reduciendo el riesgo de erosión.
- Ayudando a regular la temperatura del suelo (temperatura edáfica).
- Reduciendo la evaporación del agua y regulando la humedad.

Mejora las propiedades químicas:

- Aportando macronutrientes, como N, P, K y micronutrientes.
- Mejorando la capacidad de intercambio de cationes.

Mejora la actividad biológica:

- Aportando organismos (como bacterias y hongos) capaces de transformar los materiales insolubles del suelo en nutrientes para las plantas y degradar substancias nocivas.
- Mejorando las condiciones del suelo y aportando carbono para mantener la biodiversidad de la micro y macrofauna (lombrices).

Otros beneficios complementarios del proceso de compostaje están en la reducción de malos olores producto de la pudrición y en la eliminación de vectores como insectos y ratas. También tiene una función muy importante en la eliminación de patógenos humanos, bacterias contaminantes de alimentos, de las semillas de malezas y otras plantas no deseadas.

4.2.3.3 Fases del compostaje

El compostaje es un proceso biológico, que ocurre en condiciones aeróbicas (presencia de oxígeno). Con la adecuada humedad y temperatura, se asegura una transformación higiénica de los restos orgánicos en un material homogéneo y asimilable por las plantas.

Es posible interpretar el compostaje como el sumatorio de procesos metabólicos complejos realizados por parte de diferentes microorganismos, que en presencia de oxígeno, aprovechan el nitrógeno (N) y el carbono (C) presentes para producir su propia biomasa. En este proceso, adicionalmente, los microorganismos generan calor y un sustrato sólido, con menos C y N, pero más estable, que es llamado compost.

Al descomponer el C, el N y toda la materia orgánica inicial, los microorganismos desprenden calor medible a través de las variaciones de temperatura a lo largo del tiempo. Según la temperatura generada durante el proceso, se reconocen tres etapas principales en un compostaje, además de una etapa de maduración de duración variable. Las diferentes fases del compostaje se dividen según la temperatura, en:

Fase Mesófila. El material de partida comienza el proceso de compostaje a temperatura ambiente y en pocos días (e incluso en horas), la temperatura aumenta hasta los 45°C. Este aumento de temperatura es debido a actividad microbiana, ya que en esta fase los microorganismos utilizan las fuentes sencillas de C y N generando calor. La descomposición de compuestos solubles, como azúcares, produce ácidos orgánicos y, por tanto, el pH puede bajar (hasta cerca de 4.0 o 4.5). Esta fase dura pocos días (entre dos y ocho días).

Fase Termófila o de Higienización. Cuando el material alcanza temperaturas mayores que los 45°C, los microorganismos que se desarrollan a temperaturas medias (microorganismos mesófilos) son reemplazados por aquellos que crecen a mayores temperaturas, en su mayoría bacterias (bacterias termófilas), que actúan facilitando la degradación de fuentes más complejas de C, como la celulosa y la lignina.

Estos microorganismos actúan transformando el nitrógeno en amoníaco por lo que el pH del medio sube. En especial, a partir de los 60 °C aparecen las bacterias que producen esporas y actinobacterias, que son las encargadas de descomponer las ceras, hemicelulosas y otros compuestos de C complejos.

Esta fase puede durar desde unos días hasta meses, según el material de partida, las condiciones climáticas y del lugar, y otros factores. Esta fase también recibe el nombre de fase de higienización ya que el calor generado destruye bacterias y contaminantes de origen fecal como Eschericha coli y Salmonella spp. Esta fase es importante pues las temperaturas por encima de

los 55°C eliminan los quistes y huevos de helminto, esporas de hongos fitopatógenos y semillas de malezas que pueden encontrarse en el material de partida, dando lugar a un producto higienizado.

Fase de Enfriamiento o Mesófila II. Agotadas las fuentes de carbono y, en especial el nitrógeno en el material en compostaje, la temperatura desciende nuevamente hasta los 40-45°C. Durante esta fase, continúa la degradación de polímeros como la celulosa, y aparecen algunos hongos visibles a simple vista. Al bajar de 40 °C, los organismos mesófilos reinician su actividad y el pH del medio desciende levemente, aunque en general el pH se mantiene ligeramente alcalino. Esta fase de enfriamiento requiere de varias semanas y puede confundirse con la fase de maduración.

Fase de Maduración. Es un período que demora meses a temperatura ambiente, durante los cuales se producen reacciones secundarias de condensación y polimerización de compuestos carbonados para la formación de ácidos húmicos y fúlvicos.

4.2.3.4 Monitoreo durante el compostaje

Ya que el compostaje es un proceso biológico llevado a cabo por microorganismos, se deben tener en cuenta los parámetros que afectan su crecimiento y reproducción. Estos factores incluyen el oxígeno o aireación, la humedad de substrato, temperatura, pH y la relación C:N.

Externamente, el proceso de compostaje dependerá en gran medida de las condiciones ambientales, el método utilizado, las materias primas empleadas, y otros elementos, por lo que algunos parámetros pueden variar. No obstante, éstos deben estar bajo vigilancia constante para que siempre estén siempre dentro de un rango óptimo. A continuación se señalan los parámetros y sus rangos óptimos.

Oxígeno

El compostaje es un proceso aerobio y se debe mantener una aireación adecuada para permitir la respiración de los microorganismos, liberando a su vez, dióxido de carbono (CO2) a la atmosfera. Así mismo, la aireación evita que el material se compacte o se encharque. Las necesidades de oxígeno varían durante el proceso, alcanzando la mayor tasa de consumo durante la fase termofílica.

La saturación de oxígeno en el medio no debe bajar del 5%, siendo el nivel óptimo el 10%. Un exceso de aireación provocaría el descenso de temperatura y una mayor pérdida de la humedad por evaporación, haciendo que el proceso de descomposición se detenga por falta de agua. Las células de los microorganismos se deshidratan, algunos producen esporas y se detiene la actividad enzimática encargada de la degradación de los diferentes compuestos. Por el contrario, una baja

aireación, impide la suficiente evaporación de agua, generando exceso de humedad y un ambiente de anaerobiosis. Se producen entonces malos olores y acidez por la presencia de compuestos como el ácido acético, ácido sulfhídrico (H2S)o metano (CH4) en exceso.

Tabla 1-4: Control de la aireación

Porcentaje de aireación	Problema		Soluciones
<5%	Baja aireación	Insuficiente evaporación de agua, generando exceso de humedad y un ambiente de anaerobiosis	Volteo de la mezcla y/o adición de material estructurante que permita la aireación .
5% - 15% Rango i			leal
>15%	Exceso de aireación	Descenso de temperatura y evaporación del agua, haciendo que el proceso de descomposición se detenga por falta de agua.	Picado del material a fin de reducir el tamaño de poro y así reducir la aireación. Se debe regular la humedad, bien proporcionando agua al material o añadiendo material fresco con mayor contenido de agua (restos de fruta y verduras, césped, purines u otros).

Fuente: FAO, 2013

Dióxido de Carbono (CO2)

Como en todo proceso aerobio o aeróbico, ya sea en el compostaje o aun en la respiración humana, el oxígeno sirve para transformar (oxidar) el C presente en las materias primas (substrato o alimentos) en combustible. A través del proceso de oxidación, el C se transforma en biomasa (más microorganismos) y dióxido de carbono (CO2), o gas producido por la respiración, que es fuente de carbono para las plantas y otros organismos que hacen fotosíntesis. Sin embargo, el CO2 también es un gas de efecto invernadero, es decir, contribuye al cambio climático.

Durante el compostaje, el CO2 se libera por acción de la respiración de los microorganismos y, por tanto, la concentración varía con la actividad microbiana y con la materia prima utilizada como sustrato. En general, pueden generarse 2 a 3 kilos de CO2 por cada tonelada, diariamente. El CO2 producido durante el proceso de compostaje, en general es considerado de bajo impacto ambiental, por cuanto es capturado por las plantas para realizar fotosíntesis.

Humedad

La humedad es un parámetro estrechamente vinculado a los microorganismos, ya que, como todos los seres vivos, usan el agua como medio de transporte de los nutrientes y elementos energéticos a través de la membrana celular.

La humedad óptima para el compost se sitúa alrededor del 55%, aunque varía dependiendo del estado físico y tamaño de las partículas, así como del sistema empleado para realizar el compostaje. Si la humedad baja por debajo de 45%, disminuye la actividad microbiana, sin dar tiempo a que se completen todas las fases de degradación, causando que el producto obtenido sea

biológicamente inestable. Si la humedad es demasiado alta (>60%) el agua saturará los poros e interferirá la oxigenación del material.

En procesos en que los principales componentes sean substratos tales como aserrín, astillas de madera, paja y hojas secas, la necesidad de riego durante el compostaje es mayor que en los materiales más húmedos, como residuos de cocina, hortalizas, frutas y cortes de césped. El rango óptimo de humedad para compostaje es del 45% al 60% de agua en peso de material base.

Tabla 2-4: Parámetros de humedad óptimos

Porcentaje de humedad		Causas asociadas	Soluciones
<45%	Humedad insuficiente	Puede detener el proceso de compostaje por falta de agua para los microorganismos	Se debe regular la humedad, ya sea proporcionando agua al material o añadiendo material fresco con mayor contenido de agua (restos de fruta y verduras, césped, purines u otros).
		45% - 60% Rango ideal	
>60%	Oxígeno insuficiente	Material muy húmedo, el oxígeno queda desplazado. Puede dar lugar a zonas de anaerobiosis.	Volteo de la mezcla y/o adición de material con bajo contenido de humedad y con alto valor en carbono, como serrines, paja u hojas secas.

Fuente: FAO, 2013

Temperatura

La temperatura tiene un amplio rango de variación en función de la fase del proceso. El compostaje inicia a temperatura ambiente y puede subir hasta los 65°C sin necesidad de ninguna actividad antrópica (calentamiento externo), para llegar nuevamente durante la fase de maduración a una temperatura ambiente. Es deseable que la temperatura no decaiga demasiado rápido, ya que a mayor temperatura y tiempo, mayor es la velocidad de descomposición y mayor higienización.

Parámetros óptimos de temperatura

Tabla 3-4: Parámetros de temperatura óptimos

Temperatura (°C)	Causas asociadas		Soluciones
	Humedad insuficiente	Las bajas temperaturas pueden darse por varios factores, como la falta de humedad, por lo que los microorganismos disminuyen la actividad metabólica y por tanto, la temperatura baja.	Humedecer el material o añadir material fresco con mayor porcentaje de humedad (restos de fruta y verduras, u otros.
	Material Insuficiente	Insuficiente material o forma de la pila inadecuada para que alcance una temperatura adecuada.	Añadir más material a la pila de compostaje.

	Déficit de nitrógeno o baja C:N.	El material tiene una alta relación C:N y por lo tanto, los microorganismos no tienen el N suficiente para generar enzimas y proteínas y disminuyen o ralentizan su actividad. La pila demora en incrementar la temperatura más de una semana.	Añadir material con alto contenido en nitrógeno como estiércol.
Altas temperaturas (T ambiente >70°C)	Ventilación y humedad insuficiente	La temperatura es demasiado alta y se inhibe el proceso de descomposición. Se mantiene actividad microbiana pero no la suficiente para activar a los microorganismos mesofilicos y facilitar la terminación del proceso.	Volteo y verificación de la humedad (55-60%). Adición de material con alto contenido en carbono de lenta degradación (madera, o pasto seco) para que ralentice el proceso.

Fuente: FAO, 2013

pН

El pH del compostaje depende de los materiales de origen y varía en cada fase del proceso (desde 4.5 a 8.5). En los primeros estadios del proceso, el pH se acidifica por la formación de ácidos orgánicos. En la fase termófila, debido a la conversión del amonio en amoniaco, el pH sube y se alcaliniza el medio, para finalmente estabilizarse en valores cercanos al neutro.

El pH define la supervivencia de los microorganismos y cada grupo tiene pH óptimos de crecimiento y multiplicación. La mayor actividad bacteriana se produce a pH 6,07,5, mientras que la mayor actividad fúngica se produce a pH 5,5-8,0. El rango ideal es de 5,8 a 7,2.

Tabla 4-4: Parámetros de pH óptimos

I abia	I aramen	os de pri opumos	
pН		Causas asociadas	Soluciones
<4,5	Exceso de ácidos orgánicos	Los materiales vegetales como restos de cocina, frutas , liberan muchos ácidos orgánicos y tienden a acidificar el medio.	Adición de material rico en nitrógeno hasta conseguir una adecuada relación C:N.
		4,5 – 8,5 Rango ideal	
>8,5	Exceso de nitrógeno	Cuando hay un exceso de nitrógeno en el material de origen, con una deficiente relación C:N, asociado a humedad y altas temperaturas, se produce amoniaco alcalinizando el medio.	Adición de material más seco y con mayor contenido en carbono (restos de poda, hojas secas, aserrín)

Fuente: FAO, 2013

Relación Carbono-Nitrógeno (C:N)

La relación C:N varía en función del material de partida y se obtiene la relación numérica al dividir el contenido de C (%C total) sobre el contenido de N total (%N total) de los materiales a compostar. Esta relación también varía a lo largo del proceso, siendo una reducción continua, desde 35:1 a 15:1.

Tabla 5-4: Parámetros de la relación carbono/ nitrógeno

C:N	Causas asociadas		Soluciones		
>35:1	Carbono ricos en carbono. El proceso tiende a enfriarse y a ralentizarse		Adición de material rico en nitrógeno hasta conseguir una adecuada relación C:N.		
	15:1 – 35:1 Rango ideal				
<15:1	Exceso de Nitrógeno	En la mezcla hay una mayor cantidad de material rico en nitrógeno, el proceso tiende a calentarse en exceso y se generan malos olores por el amoniaco liberado.	Adición de material con mayor contenido en carbono (restos de poda, hojas secas, aserrín)		

Fuente: FAO, 2013

Tamaño de partícula

La actividad microbiana está relacionada con el tamaño de la partícula, esto es, con la facilidad de acceso al sustrato. Si las partículas son pequeñas, hay una mayor superficie específica, lo cual facilita el acceso al sustrato. El tamaño ideal de los materiales para comenzar el compostaje es de 5 a 20 cm . La densidad del material, y por lo tanto la aireación de la pila o la retención de humedad, están estrechamente relacionados con el tamaño de la partícula, siendo la densidad aproximadamente 150 -250 kg/m³, conforme avanza el proceso de compostaje, el tamaño disminuye y por tanto, la densidad aumenta, 600-700 kg/m³.

Tabla 6-4: Control del tamaño de la partícula

Tamaño de las partículas (cm)	Problema		Soluciones		
>30 cm	Exceso de aireación	Los materiales de gran tamaño crean canales de aireación que hacen bajar la temperatura y desaceleran el proceso.	Picar el material hasta conseguir un tamaño medio de 10-20 cm		
	5 – 30 cm Rango ideal				
<5 cm	Compactación	Las partículas demasiado finas crean poros pequeños que se llenan de agua, facilitando la compactación del material y un flujo restringido del aire, produciéndose anaerobiosis.	Volear y/o añadir material de tamaño mayor y volteos para homogenizar		

Fuente: FAO, 2013

Tabla 7-4: Parámetros del compostaje

Parámetro	Rango ideal al comienzo (2-5 días)	Rango ideal para compost en fase termofílica II (2-5 semanas)	Rango ideal de compost maduro (3-6 meses)
C:N	25:1 – 35:1	15/20	10:1 – 15:1
Humedad	50% - 60%	45%-55%	30% - 40%
Concentración de oxígeno	~10%	~10%	~10%
Tamaño de partícula	<25 cm	~15 cm	<1,6 cm
pН	6,5-8,0	6,0-8,5	6,5 – 8,5
Temperatura	45 – 60°C	45°C-Temperatura ambiente	Temperatura ambiente
Densidad	250-400 kg/m3	<700 kg/m3	<700 kg/m3
Materia orgánica (Base seca)	50%-70%	>20%	>20%
Nitrógeno Total (Base seca)	2,5-3%	1-2%	~1%

Fuente: FAO, 2013

4.2.3.5 Higienización e inocuidad

Como consecuencia de las elevadas temperaturas alcanzadas durante la fase termofílica, se destruyen las bacterias patógenas y parásitos presentes en los residuos de partida. En esta fase se da la higienización del material. En las fases siguientes podría ocurrir una re-contaminación del material debido a varios factores, como por ejemplo, la utilización de utensilios contaminados con material fresco, como una pala para el volteo, o añadiendo material fresco después de la fase termófila. Un compost maduro no debe contener compuestos tóxicos para las plantas o el ambiente. Así por ejemplo, la presencia de amoniaco y sulfatos (NH3 y SO4) en lixiviados generados por procesos de compostaje con exceso de humedad, favorecen la producción de ácido sulfhídrico y dióxido de nitrógeno (H2S y NO2) que junto con el metano, (CH4), son considerados gases efecto invernadero (GEI) con importantes impactos negativos en el medio ambiente, y en especial en el cambio climático.

Otro aspecto fundamental es la presencia de metales pesados en compost, pues son compuestos que no se destruyen ni se descomponen, y pueden ser asimilados por las plantas, y luego por los animales y el hombre, a lo largo de la cadena trófica. La garantía de que el compost no contenga estos patógenos o metales pesados, además de tóxicos, hidrocarburos etc, es lo que se denomina inocuidad y ofrece la certificación al usuario del compost de que no va a contaminar los alimentos que abona.

La presencia de los patógenos en el compost viene en gran medida por el uso de estiércoles, seguido del uso de aguas contaminadas y de las personas que manipulan el compost (Bernal

2009). Uno de los métodos para el control de estos es el empleo de temperaturas elevadas, de ahí la importancia en el control del tiempo y temperatura de la fase termofílica.

La inocuidad biológica del compost, depende de la temperatura que alcance el material, pero también de la humedad, la aireación y el tamaño de partícula. En una pila con adecuada humedad, la actividad microbiana hace que la temperatura se incremente, siendo mayor en el interior que en el exterior (Gong 2007). De esta forma, al airear la pila o al realizar el volteo, se homogeniza la temperatura y la humedad y se pueden eliminar patógenos.

Del mismo modo, el tamaño de partícula a compostar, la forma y tamaño de la pila también afectan la velocidad de aireación y la tendencia del material a retener o liberar calor. También debe considerarse la temperatura del lugar y las prácticas de gestión aplicadas en cada caso. Otro aspecto importante es la cantidad de microorganismos patógenos presentes en el compost pues si esta cantidad es alta se requerirá mayor tiempo para la eliminación de éstos. Por ello en el compost final puede haber microorganismos patógenos que afectan a la calidad del abono.

Tabla 8-4: Parámetros del compostaje

Microorganismo	Temperatura	Tiempo de exposición
Salmonella spp.	55°C	1 hora
	65°C	15-20 minutos
Escherichia coli	55°C	1 hora
	65°C	15-20 minutos
Brucella abortus	55°C	1 hora
	62°C	3 minutos
Parvovirus bovino	55°C	1 hora
Huevos de Ascaris lumbricoides	55°C	3 días

Fuente: Jones and Martin, 2003

4.2.3.6 Recepción de residuos sólidos

La materia prima para la elaboración del compost se obtendrá de los desechos sólidos que se producen en el camal municipal de la ciudad de Riobamba, así también se receptará desechos de legumbres y hortalizas provenientes del mercado mayorista de la ciudad. Mediante estos residuos se obtendrá un compost cuya composición será la siguiente:

Estiércol: 50%

• Residuos Vegetales: 35%

Tierra: 15%

4.2.3.7 Descarga de los residuos sólidos

Una vez receptados los desechos sólidos se realizará la descarga de los mismos en la tolva de almacenamiento superficial, la misma que posee las siguiente ventajas:

- Supervisión más fácil
- Menores costos de construcción
- Menor generación de aguas lixiviadas
- Posibilidad de trabajar manualmente

Para evitar una contaminación demasiada alta de olor, hay que vaciar la tolva de almacenamiento al menos una vez por día. La decisión sobre la redundancia necesaria debe hacerse según el horario de recolección y descarga, la disponibilidad del terreno y los costos de construcción.

4.2.3.8 Trituración de la materia prima

Una vez almacenados los desechos sólidos, a través de las bandas transportadoras se colocará la materia prima en la máquina trituradora, la meta de trozar los desechos es de aumentar la superficie específica y, por consecuencia la capacidad de retener aire y agua para facilitar el proceso de biodegradación realizado por los microorganismos. Además, es importante que materiales foráneos no sean trozados juntos con los desechos compostables para evitar una concentración alta de contaminantes en el compost. Las herramientas y el equipo para trozar deben resistirse a piedras, madera dura y materiales agresivos. Para bajar los costos y facilitar la operación, el sistema de trituración será lo más sencillo posible y consumir un mínimo de energía.

4.2.3.9 Pre-fermentación

La pre-fermentación es la primera fase del proceso de compostaje, que comienza bajo el impacto de bacterias mesófilas. En esta fase, la temperatura del material aumenta rápidamente y el proceso de biodegradación empieza. La temperatura puede subir hasta 75°. Esto es equivalente al grado 1 de madurez. La pre fermentación se realiza durante los primeros días del compostaje.

4.2.3.10 Fermentación

Durante la segunda fase, la fermentación principal, la temperatura sigue manteniéndose en un nivel relativamente alto por causa del calor producido por la actividad microbiológica. En esta fase, la biodegradación se realiza por bacterias termófilas (grado 2 - 3 de madurez). La fase principal del compostaje puede durar entre 2 a 4 semanas en plantas mecanizadas. Eso depende de la tecnología y de la definición exacta de la fermentación principal (lo que cambia según las interpretaciones de productores y científicos).

4.2.3.11 Mezcla, revuelta y movimiento

Al inicio del proceso de compostaje, el cuerpo de desechos tiene poros de varias dimensiones que son dispersadas de forma heterogénea. El aire (venido de aireación natural o artificial) pasa por las aperturas más grandes. Por consecuencia, pueden ocurrir condiciones anaeróbicas en lugares con alta densidad y poros pequeños. La biodegradación anaeróbica no es deseable en una planta de compostaje, por causa de olores fuertes y de impedimento del proceso de biodegradación aeróbico.

Se necesita mezclar/voltear y mover los desechos frecuentemente y con regularidad para evitar la putrefacción anaeróbica. La planta será semi-mecanizadas, por ende la mezcla, revuelta y el movimiento del material se realiza con ayuda de una máquina volteadora.

4.2.3.12 Aireación

Para asegurar una buena aireación, hay que agregar un cierto porcentaje de material grueso. Los materiales gruesos deben agregarse especialmente para estructurar la basura cuando la densidad de los desechos es demasiado alta (> 700 kg/m3) y, por consecuencia, no se realiza una libre circulación del aire. En general, el suministro de material grueso se puede realizar con la fracción gruesa que había sido separada antes o con la fracción gruesa del compost listo.

4.2.3.13 Humedecimiento

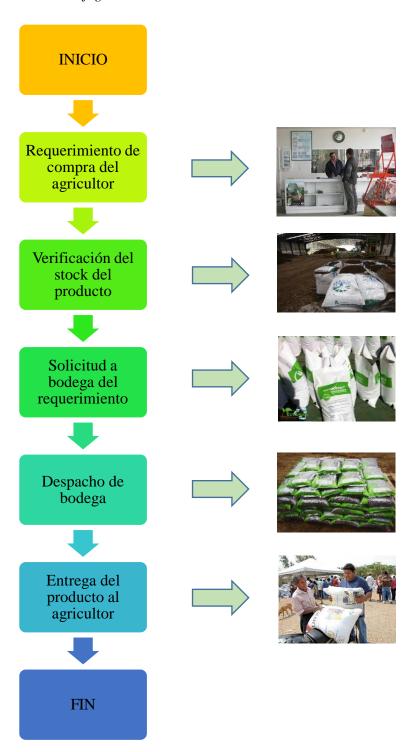
Se necesita una humedad entre 40 - 60 % (contenido de agua del material) para asegurar una biodegradación óptima. Si es demasiado seco el material, se para el proceso de biodegradación; si es demasiado húmedo, se transforma el proceso en putrefacción anaeróbica incontrolada.

4.2.3.14 Tamización y embalaje del producto

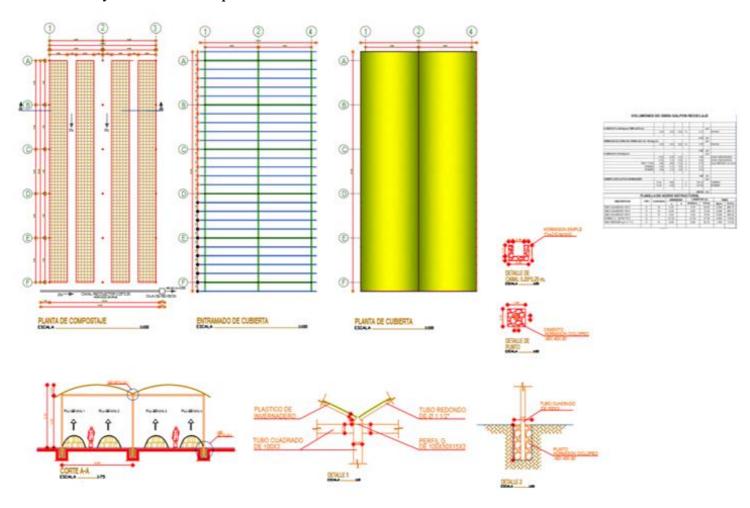
Una vez que el abono se encuentre listo, se clasifica con ayuda de unos tamices y se realiza el embalaje del producto en las diferentes presentaciones de 25kg., 40kg. y 50 kg.

4.2.3.15 Traslado y almacenamiento del producto

El producto empacado será trasladado a la bodega para su posterior venta o distribución, la bodega deberá tener condiciones óptimas para el almacenaje.


4.2.4 Flujogramas de procesos

4.2.4.1 Flujograma del producto


Gráfico 18-4: Flujograma del producto **Elaborado por:** Alex Gavilanes, 2017.

4.2.4.1 Flujograma del servicio

Gráfico 19-4: Flujograma del servicio **Elaborado por:** Alex Gavilanes, 2017.

4.2.5 Diseño y distribución de la planta

Gráfico 20-4: Distribución de la planta **Elaborado por:** Alex Gavilanes, 2017.

4.2.6 Requerimientos del área productiva

4.2.6.1 Talento Humano

Cuadro 27-4: Talento Humano área productiva

TALENTO HUMANO					
MANO DE OBRA DIRECTA					
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)	
Jefe de Producción	1	unidad	700,00	10.411,60	
Obrero	2	unidad	375,00	11.503,50	
SUB TOTAL				21.915,10	

Elaborado por: Alex Gavilanes, 2017

4.2.6.2 Activos Fijos-Bienes muebles

Cuadro 28-4: Activos Fijos- bienes muebles área productiva

ACTIVOS FIJOS DE BIENES MUEBLES						
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)		
a. Maquinarias y equipos						
Tolva de almacenamiento	1	Unidad	3.000,00	3.000,00		
Bandas transportadoras	1	Unidad	2.500,00	2.500,00		
Máquina trituradora	1	Unidad	5.000,00	5.000,00		
Máquina volteadora	1	Unidad	7.500,00	7.500,00		
Zaranda	2	Unidad	1.000,00	2.000,00		
Balanza	1	Unidad	80,00	80,00		
Máquina selladora	1	Unidad	500,00	500,00		
Manguera	2	Paquete	30,00	60,00		
SUB TOTAL				20.640,00		
b. Muebles y enseres		1				
Estación de trabajo	1	Unidad	300,00	300,00		
Silla giratoria	1	Unidad	150,00	150,00		
Mueble archivador	1	Unidad	250,00	250,00		
Perchas	3	Unidad	100,00	300,00		
Casilleros metálicos	1	Unidad	200,00	200,00		
SUB TOTAL				1.200,00		
c. Equipos de computo	1					
Computadora	1	Unidad	500,00	500,00		
Impresora multifuncional	1	Unidad	300,00	300,00		
SUB TOTAL				800,00		
TOTAL BIENES MUEBLES				22.640,00		

4.2.6.3 Activos Fijos-Bienes inmuebles

Cuadro 29-4: Activos Fijos- bienes inmuebles área productiva

ACTIVOS FIJOS DE BIENES INMUEBLES					
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)	
a. Construcciones y edificaciones					
Construcción planta de transformación y producción	220	metros cuadrados	200,00	44.000,00	
Construcción bodega de almacenamiento	70	metros cuadrados	250,00	17.500,00	
SUB TOTAL				68.200,00	
b. Terrenos					
Terreno área productiva	290	metros cuadrados	12,00	3.480,00	
SUB TOTAL				3.480,00	
TOTAL BIENES INMUEBLES				64.980,00	

Elaborado por: Alex Gavilanes, 2017

4.2.6.4 Materias primas- materiales e insumos

Cuadro 30-4: Materias primas/ materiales e insumos

MATERIAS PRIMAS / MATERIALES E INSUMOS						
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)		
Estiércol	405305	kg	0,05	20.265,26		
Residuos vegetales	283714	kg	0,02	5.674,27		
Tierra	121592	kg	0,02	2.431,83		
Saquillos (ciento)	100	Ciento	20,00	2.000,00		
Hilo 100 m	50	Unidad	10,00	500,00		
TOTAL				30.871,37		

Elaborado por: Alex Gavilanes, 2017

4.2.6.5 Otros costos de producción

Cuadro 31-4: Otros costos de producción

		OTROS		
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)
Flete materia prima	81	unidad	20,00	1.620,00
Kit equipos de protección	3	unidad	100,00	300,00
TOTAL				1.920,00

4.3 Estudio ambiental

Para la implementación se desarrollaran varias actividades que pueden afectar al ambiente y sus ecosistemas frente a esto se han generado diversas medidas de mitigación que aporten a la disminución de efectos contaminantes.

Cuadro 32-4: Estudio ambiental

Objetivo: Establecer las medidas que ayuden a disminuir la contaminación de los recursos naturales generados por el funcionamiento de la planta de compostaje, así como también la aplicación de mecanismos de prevención y de seguridad para que los impactos ambientales potenciales adversos se minimicen.

Lugar de Aplicación: Ainche, Cantón Chambo, Provincia de Chimborazo

Responsables: Administración del Camal Municipal de Riobamba/ GADM Riobamba – Departamento de Gestión Ambiental

Costo Total: \$3000,00 USD

Actividad	Aspecto Ambiental	Impacto Identificado	Medidas Propuestas	Indicadores	Medio de Verificación	Plazo
Recepción de la materia prima	Generación de impactos al suelo	Contaminación del suelo	Mantener un control y brindar mantenimiento adecuado de los vehículos que se utilizan, para que no produzcan ningún tipo de vertido por aceites o combustibles que se dirijan directamente al suelo y pueda afectar su estructura y composición, por lo tanto, se realizarán actividades de mantenimiento en lugares específicos como talleres de mantenimiento que el municipio disponga o con	Mantenimientos realizados/ Mantenimientos planificados	Registro de mantenimiento	Mensual

			quien tenga contrato del .servicio			
Trituración de la materia prima	Generación de residuos		Evitar disponer los desechos resultantes en sitios diferentes a los establecidos.	Mantenimiento del área	Registro con fechas de	
	sólidos	Contaminación del suelo	Capacitación especializada al personal para el buen uso de la maquinaria y materias primas que se utilizará para producir el compost.	designada.	operación.	Mensual
Pre fermentación	Generación de olores	Contaminación del aire	Es causado por que el compost está demasiado húmedo y hay poco oxígeno, por lo tanto es necesario mezclar con materia seca y remover.	Mantenimiento del área de trabajo	Registro con fechas de operación.	Mensual
Fermentación	Generación de olores	Contaminación del aire	Añadir materia seca y remover.	Mantenimiento del área de trabajo	Registro con fechas de operación.	Mensual
Humedecimiento o riego	Generación de lixiviados	Contaminación del suelo	Se llevará un control mensual de volúmenes de lixiviados generados en esta fase.	Lixiviados generados	Registro de volúmenes de lixiviados generados	Mensual
Proceso de elaboración de compost	Degradación del medio perceptual	Impacto Visual	Control de moscas, roedores y otros vectores ambientales.	Verificación de la presencia de roedores	Registro de control de vectores	Mensual
				Limpieza del ingreso	Registro fotográfico	

			Mantenimiento de cobertura vegetal y cercas vivas.			
			Uso de equipos completos de protección personal.			
	Generación de empleo	Dinamización de la economía	Capacitación permanente Sobre condiciones de seguridad laboral, manejo de equipos y salud ocupacional.	Reuniones de trabajo	Registro de capacitaciones	Cada 3 meses
			Optimización de los programas de mantenimiento preventivo de los equipos y maquinaria con el fin de evitar accidentes.			
Actividades ordinarias de la población del sector	Población del área de influencia directa	Salud de los habitantes	Se debe de mantener informada a la comunidad del área de influencia directa sobre las actividades que se realizan en la planta de compostaje a través del diálogo con los habitantes, entrega de folletos y la realización de talleres con los actores locales, con el fin de fomentar la participación	Reuniones de sociabilización	Registro de asistencia, temas tratados, fechas	Cuando se requiera

	activa entre trabajadores y		
	habitantes del sector.		

4.4 Estudio administrativo legal

4.4.1 Ley de compañías

La compañía anónima es la forma de sociedad que usara la empresa es la que detallaremos sus requisitos tanto como empresa, como así también para el tributario (SRI), relaciones laborales (IESS) manejo en la ciudad (municipales), y otros organismos como bomberos.

4.4.1.1 Requisitos para una compañía anónima

Para intervenir en la formación de una compañía anónima en calidad de promotor o fundador se requiere de capacidad civil para contratar. Sin embargo, no podrán hacerlo entre cónyuges ni entre padres e hijos no emancipados.

Según la superintendencia de Compañías del Ecuador, para constituir una empresa se requiere que sea mediante escritura pública que, previo mandato de la Superintendencia de Compañías, será inscrita en el Registro Mercantil. La escritura de fundación contendrá:

- El lugar y fecha en que se celebre el contrato;
- El nombre, nacionalidad y domicilio de las personas naturales o jurídicas que constituyan la compañía y su voluntad de fundarla;
- El objeto social, debidamente concretado;
- Su denominación y duración;
- El importe del capital social, con la expresión del número de acciones en que estuviere dividido, el valor nominal de las mismas, su clase, así como el nombre y nacionalidad de los suscriptores del capital;
- La indicación de lo que cada socio suscribe y paga en dinero o en otros bienes; el valor atribuido a éstos y la parte de capital no pagado;
- El domicilio de la compañía;
- La forma de administración y las facultades de los administradores;
- La forma y las épocas de convocar a las juntas generales;
- La forma de designación de los administradores y la clara enunciación de los funcionarios que tengan la representación legal de la compañía;
- Las normas de reparto de utilidades;
- La determinación de los casos en que la compañía haya de disolverse anticipadamente; y,
- La forma de proceder a la designación de liquidadores.

4.4.2 Servicio de Rentas Internas

4.4.2.1 Registro Único de Contribuyentes

Para que el servicio de rentas internas le emita un Numero RUC a una empresa se requiere:

- Presentar los formularios RUC01-A y RUC01-B (debidamente firmados por el representante legal o apoderado).
- Original y copia, o copia certificada de la escritura pública de constitución o domiciliación inscrita en el Registro Mercantil, a excepción de los Fideicomisos Mercantiles y Fondos de Inversión.
- Original y copia de las hojas de datos generales otorgada por la Superintendencia de Compañías (Datos generales, Actos jurídicos y Accionistas).
- Original y copia, o copia certificada del nombramiento del representante legal inscrito en el Registro Mercantil.
- Ecuatorianos: Original y copia a color de la cédula vigente y original del certificado de votación (exigible hasta un año posterior a los comicios electorales). Se aceptan los certificados emitidos en el exterior. En caso de ausencia del país se presentará el Certificado de no presentación emitido por la Consejo Nacional Electoral o Provincial.
- Extranjeros Residentes: Original y copia a color de la cédula vigente
- Extranjeros no Residentes: Original y copia a color del pasaporte y tipo de visa vigente. Se acepta cualquier tipo de visa vigente, excepto la que corresponda a transeúntes (12-X).
- Original y copia de la planilla de servicios básicos (agua, luz o teléfono). Debe constar a nombre de la sociedad, representante legal o accionistas y corresponder a uno de los últimos tres meses anteriores a la fecha de inscripción. En caso de que las planillas sean emitidas de manera acumulada y la última emitida no se encuentra vigente a la fecha, se adjuntará también un comprobante de pago de los últimos tres meses.
- Ubicación de la matriz y establecimientos, se presentará cualquiera de los siguientes:
- Original y copia de la planilla de servicios básicos (agua, luz o teléfono). Debe constar a nombre de la sociedad, representante legal o accionistas y corresponder a uno de los últimos tres meses anteriores a la fecha de inscripción. En caso de que las planillas sean emitidas de manera acumulada y la última emitida no se encuentra vigente a la fecha, se adjuntará también un comprobante de pago de los últimos tres meses.
- Original y copia del estado de cuenta bancario, de servicio de televisión pagada, de telefonía celular, de tarjeta de crédito. Debe constar a nombre de la sociedad, representante legal,

accionista o socio y corresponder a uno de los últimos tres meses anteriores a la fecha de inscripción.

- Original y copia del comprobante de pago del impuesto predial. Debe constar a nombre de la sociedad, representante legal o accionistas y corresponder al del año en que se realiza la inscripción o del inmediatamente anterior. Original y copia del contrato de arrendamiento y comprobante de venta válido emitido por el arrendador. El contrato de arriendo debe constar a nombre de la sociedad, representante legal o accionistas y puede estar o no vigente a la fecha de inscripción. El comprobante de venta debe corresponder a uno de los últimos tres meses anteriores a la fecha de inscripción. El emisor del comprobante deberá tener registrado en el RUC la actividad de arriendo de inmuebles.
- Original y copia de la Escritura de Propiedad o de Compra venta del inmueble, debidamente inscrito en el Registro de la Propiedad; o certificado emitido por el registrador de la propiedad el mismo que tendrá vigencia de 3 meses desde la fecha de emisión.
- Original y copia de la Certificación de la Junta Parroquial más cercana al lugar del domicilio, únicamente para aquellos casos en que el predio no se encuentre catastrado. La certificación deberá encontrarse emitida a favor de la sociedad, representante legal o accionistas.
- Se presentará como requisito adicional una Carta de cesión de uso gratuito del inmueble cuando los documentos detallados anteriormente no se encuentren a nombre de la sociedad, representante legal, accionistas o de algún familiar cercano como padres, hermanos e hijos.
 Se deberá adjuntar copia de la cédula del cedente. Este requisito no aplica para estados de cuenta bancario y de tarjeta de crédito.

4.4.3 Instituto Ecuatoriano de Seguridad Social

Para la emisión de un número patronal se requiere utilizar el sistema de historia laboral que contiene el Registro Patronal que se realiza a través de la página web del IESS en línea en la opción Empleadores podrá:

- Actualización de Datos del Registro Patronal,
- Escoger el sector al que pertenece (Privado, Público y Doméstico),
- Digitar el número del RUC y
- Seleccionar el tipo de empleador.

Además deberá acercarse a las oficinas de Historia Laboral la solicitud de entrega de clave firmada con los siguientes documentos:

- Solicitud de Entrega de Clave (Registro)
- Copia del RUC (excepto para el empleador doméstico).

- Copias de las cédulas de identidad del representante legal y de su delegado en caso de autorizar retiro de clave.
- Copias de las papeletas de votación de las últimas elecciones o del certificado de abstención del representante legal y de su delegado, en caso de autorizar el retiro de clave.
- Copia de pago de teléfono, o luz
- Calificación artesanal si es artesano calificado

Finalmente a nivel municipal se deberá efectuar:

4.4.4 Patentes Municipales

Toda persona natural o jurídica que realice actividad comercial, industrial, financiera y de servicio, que opere habitualmente en el cantón, así como las que ejerzan cualquier actividad de orden económico.

- Original y copia de Certificado de Seguridad emitido por el Cuerpo de Bomberos.
- RUC actualizado.
- Llenar formulario de Patente de comerciante de persona natural o jurídica
- Copia cédula y certificado de votación del dueño del local.
- Nombramiento del representante legal y copias de escritura de constitución, si es compañía.
 Anual, hasta 31 de diciembre de cada año.

4.4.4.1 Tasa de habilitación de locales comerciales, industriales y de servicios

Documento que autoriza el funcionamiento del local comercial, previa inspección por parte del Municipio.

- Pago de tasa de trámite por Tasa de Habilitación
- Llenar formulario de Tasa de Habilitación.
- Copia de predios urbanos (si no tuviere copia de los predios, procederá a entregar la tasa de trámite de legalización de terrenos o la hoja original del censo).
- Original y copia de la patente de comerciante del año a tramitar
- Copia del RUC actualizado.
- Copia cédula y certificado de votación del dueño del local y de quien realiza el trámite.
- Autorización a favor de quien realiza el trámite.
- Croquis del lugar donde está ubicado el negocio
- Nombramiento del representante Anual, hasta 31 de diciembre de cada año.

4.4.5 Cuerpo de Bomberos

Todo establecimiento está en la obligación de obtener el referido certificado. Para lo cual deberá adquirir un extintor o realizar la recarga anual. El tamaño y número de extintores dependerá de las dimensiones del local.

Requisitos:

- Original y copia de compra o recarga de extintor año vigente.
- Fotocopia nítida del RUC actualizado.
- Carta de autorización a favor de quien realiza trámite.
- Copias de cédula y certificado de votación del dueño del local y del autorizado a realizar el trámite.
- Nombramiento del representante legal si es compañía.
- Original y copia de la calificación Anual, hasta 31 de diciembre de cada año.
- Señalar dimensiones del local.

4.4.7 Estructura orgánica

A continuación se presenta la estructura orgánica de la empresa Nutricompost:

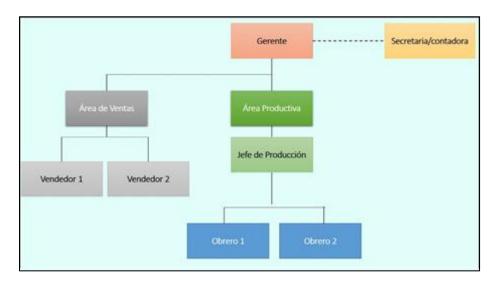


Gráfico 21-4: Flujograma del servicio

4.4.8 Manual de cargos y funciones

En función a la organización de la "Planta de compostaje Nutricompost", a continuación se presenta el manual de cargos y funciones del personal:

a. Gerente

Título del puesto:	Gerente
Áreas de responsabilidad:	Gerencia

Tareas inherentes al puesto:

• Planeación: puede ser de largo, mediano o corto plazo.

Prever el rumbo de la planta de compostaje a futuro

Establecer objetivos que se deben lograr (posibles escenarios y las acciones que se han de adoptar frente a ellos).

• Organización:

Diseñar y determinar la estructura organizacional

Prever los requerimientos de personal

Asignar los roles y tareas al personal

Prever la necesidad de materiales, maquinarias

Establecer los procesos de trabajo y asignar los recursos que se requieren

Integración de personal:

Captar, seleccionar, asignar y capacitar al personal

Asignar la autoridad y las tareas que deben cumplir individualmente y los equipos para la marcha de la planta de compostaje.

Dirección:

Motivar, guiar, liderar y conducir las actividades del personal

Tomar decisiones y orientar las actividades en dirección de los objetivos de la planta de compostaje.

Control:

Evaluar las actividades de los empleados de toda la planta de compostaje.

Analizar las ventas y la productividad.

Perfil:

- Tercer nivel en Administración
- Experiencia: liderazgo y dirección.
- **Edad:** 25 60 años.
- Disponibilidad de horario.

b. Secretaria/contadora

Título del puesto:	Secretaria / contadora
Áreas de responsabilidad:	Secretariado / contabilidad

Tareas inherentes al puesto:

- Ser responsable indirecta del dinero en efectivo, facturas de ingresos y egresos.
- Tomar ciertas decisiones que se basen en procedimientos y experiencias anteriores para la ejecución normal del trabajo, a nivel operativo.
- Supervisar de forma general de manera directa y constante.
- Organizar la información de la planta de compostaje.
- Procesar, codificar y contabilizar los diferentes comprobantes por concepto de activos, pasivos, ingresos y egresos, mediante el registro numérico de la contabilización de cada una de las operaciones.
- Verificar que las facturas recibidas en el departamento contengan correctamente los datos fiscales de la planta de compostaje.
- Registrar las facturas recibidas de los proveedores, a través del sistema computarizado administrativo para mantener actualizadas las cuentas por pagar.
- Revisar el cálculo de las planillas de retención de impuesto sobre la renta del personal emitidas por los empleados, y realizar los ajustes en caso de no cumplir con las disposiciones.

Perfil:

- licenciada o tercer nivel en contabilidad y auditoría.
- **Experiencia:** en organización de información, redacción, estados financieros, crédito de cobranzas y finanzas.
- **Edad:** 25 50 años.
- Disponibilidad de horario.

c. Jefe de producción

Título del puesto:	Jefe de producción
Áreas de responsabilidad:	Área productiva

Tareas inherentes al puesto:

- El jefe de producción debe estar capacitado para desempeñarse en la planta de compostaje, en área de producción.
- Administrar proceso de producción de acuerdo a la normativa vigente y programa de producción.
- Realizar labores administrativas de acuerdo a normativa vigente y requerimientos del área productiva.
- Preparar el funcionamiento de los procesos productivos de acuerdo a normativa vigente y programa de producción.
- Efectuar la verificación de las actividades de la planta, de acuerdo a normativa vigente y lineamientos productivos.
- Finalizar actividades de administración de proceso, de acuerdo a normativa vigente programa de producción.
- Capacidad de orientar la acción de grupos humanos en una dirección determinada, fijando objetivos, realizando seguimiento y Capacidad de empoderar al equipo de trabajo en función del logro de resultados.

Perfil:

- Título de tercer nivel en agroindustrias o industrial.
- Experiencia: en planificación Capacidad de organizar el proceso en función de los recursos disponibles orientado a la eficacia y eficiencia
- **Edad:** 25 50 años.
- Disponibilidad de horario.

d. Vendedores

Título del puesto:	Vendedor/a
Áreas de responsabilidad:	Área de ventas

Tareas inherentes al puesto:

- Lograr los objetivos propuestos por la planta de compostaje, de generar y cultivar buenas relaciones con los clientes, de coadyuvar en el mantenimiento y mejoramiento de la imagen de la planta, de colaborar a los compañeros de trabajo.
- Mantenerse firme para cumplir con los compromisos contraídos con la planta de compostaje, los clientes y con uno mismo.
- Manifestar fervor o pasión en las actividades que se realizan n las presentaciones de venta que se efectúan ante los clientes, en los servicios que se les brinda para lograr su satisfacción o en todo aquello que se hace para mejorar la imagen de la planta de compostaje.
- Habilidad para encontrar clientes
- Habilidad para generar y cultivar relaciones con los clientes
- Habilidad para determinar las necesidades y deseos de los clientes
- Habilidad para hacer presentaciones de venta eficaces
- Habilidad para cerrar la venta
- Habilidad para brindar servicios posventa
- Habilidad para retroalimentar a la planta de compostaje de lo que sucede en el mercado

Perfil:

- Experiencia: en ventas y negocios.
- **Edad:** 25 50 años.
- Disponibilidad de horario.

e. Obreros

Título del puesto:	Obrero/a
Áreas de responsabilidad:	Área productiva

Tareas inherentes al puesto:

- El obrero/a debe estar capacitado para desempeñarse en la planta de compostaje, en área de producción.
- Realizar los procesos de producción de acuerdo a la normativa vigente y programa de producción.
- Aplicar el funcionamiento de los procesos productivos de acuerdo a normativa vigente y programa de producción.
- Realizar las actividades de la planta, de acuerdo a normativa vigente y lineamientos productivos.
- Finalizar actividades de proceso, de acuerdo a normativa vigente programa de producción.
- Capacitarse continuamente en procesos productivos de la planta de compostaje y aplicar los conocimientos adquiridos.
- Ser comprometido con el trabajo a la hora de realizar las actividades productivas.
- Responsable/ puntual y organizado.

Perfil:

- **Experiencia:** en producción.
- **Edad:** 25 50 años.
- Disponibilidad de horario.

4.4.9 Requerimientos del área administrativa

4.4.9.1 Talento Humano

Cuadro 33-4: Talento Humano área administrativa

TALENTO HUMANO							
Denominación	Cantidad	Unidad	Gasto unitario	Gasto total (USD)			
Gerente	1	Unidad	900,00	13.279,20			
Secretaria- Contadora	1	Unidad	600,00	8.977,80			
TOTAL				22.257,00			

Elaborado por: Alex Gavilanes, 2017

4.4.9.2 Activos Fijos-Bienes muebles

Cuadro 34-4: Activos Fijos- bienes muebles área administrativa

ACTIVOS FIJOS DE BIENES MUEBLES					
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)	
a. Muebles y enseres					
Estación de trabajo	2	Unidad	300,00	600,00	
Silla giratoria	2	Unidad	150,00	300,00	
Sillas de espera tripersonal	2	Unidad	200,00	400,00	
mueble archivador	2	Unidad	250,00	500,00	
SUB TOTAL				1.800,00	
b. Equipos de computo					
Computadora	2	unidad	500,00	1.000,00	
Impresora multifuncional	1	unidad	300,00	300,00	
SUB TOTAL	0			1.300,00	
TOTAL BIENES MUEBLES				3.100,00	

Elaborado por: Alex Gavilanes, 2017

4.4.9.2 Activos Fijos-Bienes inmuebles

Cuadro 35-4: Activos Fijos- bienes inmuebles área administrativa

ACTIVOS FIJOS DE BIENES INMUEBLES					
Denominación	Cantidad	Unidad	Costo unitario	Costo total (USD)	
a. Construcciones y edificaciones					
Construcción área administrativa	20	metros cuadrados	250,00	5.000,00	
SUB TOTAL				5.000,00	
b. Terrenos					
Terreno área administrativa	20	metros cuadrados	15,00	300,00	
SUB TOTAL				300,00	
TOTAL BIENES INMUEBLES				5.300,00	

4.4.9.3 Activos Diferidos

Cuadro 36-4: Activos Fijos- bienes inmuebles área administrativa

ACTIVOS DIFERIDOS						
Denominación	Cantidad	Unidad	Gasto unitario	Gasto total (USD)		
Elaboración de estudios de factibilidad	1	estudio	6.000,00	6.000,00		
Estudio Ambiental	1	estudio	3.000,00	3.000,00		
TOTAL				9.000,00		

Elaborado por: Alex Gavilanes, 2017

4.4.9.4 Gastos

4.4.9.4.1 Permisos de Funcionamiento

Cuadro 37-4: Permisos de funcionamiento

PERMISOS DE FUNCIONAMIENTO						
Denominación	Cantidad	Unidad	Gasto unitario	Gasto total (USD)		
Permiso de funcionamiento otorgado por el cuerpo de Bomberos del Cantón Chambo	1	permiso	25,00	25,00		
Permiso ambiental	1	permiso	50,00	50,00		
Permiso de uso de suelo	1	permiso	40,00	40,00		
Patente Municipal de funcionamiento	1	patente	30,00	30,00		
TOTAL				145,00		

Elaborado por: Alex Gavilanes, 2017

4.4.9.4.2 Suministros de oficina

Cuadro 38-4: Suministros de oficina

SUMINISTROS DE OFICINA					
Denominación	Cantidad	Unidad	Gasto unitario	Gasto total (USD)	
a. Suministros de oficina					
Grapadora	4	Unidad	15,00	60,00	
Perforadora	4	Unidad	12,00	48,00	
Calculadora	2	Unidad	10,00	20,00	
Esferos cajas de 12 esferos	10	Unidad	5,00	50,00	
Cajas de papel bond 10 resmas	4	Unidad	38,00	152,00	
Cajas de grapas	5	Unidad	2,00	10,00	
Varios	1	Unidad	150,00	150,00	
TOTAL				490,00	

4.4.9.4.3 Otros gastos administrativos

Cuadro 39-4: Otros gastos administrativos

OTROS					
Denominación	Cantidad	Unidad	Gasto mensual	Gasto anual	
a. Servicios básicos					
Agua	12	planilla	12,00	144,00	
Luz	12	planilla	80,00	960,00	
Teléfono	12	planilla	30,00	360,00	
TOTAL				1.464,00	

4.5 Estudio económico- financiero

4.5.1 Viabilidad financiera

4.5.1.1 Inversión

Cuadro 40-4: Inversión

INVERSIONES				
DENOMINACIÓN	INVERSIÓN			
Activos fijos	104.360,00			
Maquinarias y equipos	20.640,00			
Muebles y enseres	4.800,00			
Equipos de computo	3.400,00			
Construcciones y edificaciones	71.500,00			
Terrenos	4.020,00			
Activos diferidos	9.780,00			
Paquete cuñas radiales (6	180,00			
cuñas/paquete)				
Lona publicitaria	200,00			
capacitación al personal	400,00			
Elaboración de estudios de	6.000,00			
factibilidad				
Estudio Ambiental	3.000,00			
Capital de trabajo	14.787,98			
Mano de obra directa	3.652,52			
Materia Prima	5.145,23			
Sueldos y salarios	5.746,23			
Servicios básicos	244,00			
TOTAL	128.927,98			

4.5.1.2 Fuentes de financiamiento

Cuadro 41-4: Fuentes de financiamiento

DENOMINACIÓN	USD	FUENTES	
		Recursos propios	Préstamo
Activos fijos	104.360,00	12.220,00	92.140,00
Maquinarias y equipos	20.640,00		20.640,00
Muebles y enseres	4.800,00	4.800,00	
Equipos de computo	3.400,00	3.400,00	
Construcciones y edificaciones	71.500,00		71.500,00
Terrenos	4.020,00	4.020,00	
Activos diferidos	9.780,00	9.780,00	
Paquete cuñas radiales (6 cuñas/paquete)	180,00	180,00	
Lona publicitaria	200,00	200,00	
capacitación al personal	400,00	400,00	
Elaboración de estudios de factibilidad	6.000,00	6.000,00	
Estudio Ambiental	3.000,00	3.000,00	
Capital de trabajo	14.787,98	14.787,98	
Mano de obra directa	3.652,52	3.652,52	
Materia Prima	5.145,23	5.145,23	
Sueldos y salarios	5.746,23	5.746,23	
Servicios básicos	244,00	244,00	
TOTAL	128.927,98	36.787,98	92.140,00

Elaborado por: Alex Gavilanes, 2017

4.5.1.3 Pago de la deuda

Cuadro 42-4: Pago de la deuda

Capital	C=	92.140,00
Tiempo en años	t=	5
Tasa nominal unitario	j=	11%
Periodos de capitalización	m=	50
Tasa efectiva	i=	11%

Cuadro 43-4: Cuotas préstamo

AÑO	PRÉSTAMO	CAPITAL A	SALDO	INTERES	CUOTA
	CAPITAL	PAGARSE			
CUOTA 1	92.140,00	18.428,00	73.712,00	10.135,40	28.563,40
CUOTA 2	73.712,00	18.428,00	55.284,00	8.108,32	26.536,32
CUOTA 3	55.284,00	18.428,00	36.856,00	6.081,24	24.509,24
CUOTA 4	36.856,00	18.428,00	18.428,00	4.054,16	22.482,16
CUOTA 5	18.428,00	18.428,00	-	2.027,08	20.455,08

Elaborado por: Alex Gavilanes, 2017

4.5.1.4 Depreciación de activos fijos

Cuadro 44-4: Depreciación de activos fijos

Denominación	Valor bien	Depreciación por ley	Depreciación anual	Depreciación en el proyecto	Valor de salvamento
Maquinarias y equipos	20.640,00	10	2.064,00	10.320,00	10.320,00
Muebles y enseres	4.800,00	10	480,00	2.400,00	2.400,00
Equipos de computo	3.400,00	2	1.700,00	8.500,00	(5.100,00)
Construcciones y edificaciones	71.500,00	20	3.575,00	17.875,00	53.625,00
Terrenos	4.020,00				
TOTAL	104.360,00		7.819,00	39.095,00	61.245,00

Elaborado por: Alex Gavilanes, 2017

4.5.1.5 Amortización de activos diferidos

Cuadro 45-4: Amortización de activos diferidos

Activos diferidos	2017	2018	2019	2020	2021	2022
	9.780,00	1.956,00	1.956,00	1.956,00	1.956,00	1.956,00

4.5.1.6 Estructura de costos y gastos

Cuadro 46-4: Estructura de costos y gastos

DENOMINACIÓN	AÑO 0	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5
	2017	2018	2019	2020	2021	2022
Costos de producción	54.706,47	55.581,77	56.471,08	57.374,62	58.292,61	59.225,29
Mano de obra directa	21.915,10	22.265,74	22.621,99	22.983,95	23.351,69	23.725,32
Materias primas/materiales e insumos	30.871,37	31.365,31	31.867,15	32.377,03	32.895,06	33.421,38
Flete materia prima	1.620,00	1.645,92	1.672,25	1.699,01	1.726,19	1.753,81
Kit equipos de protección	300,00	304,80	309,68	314,63	319,67	324,78
Gastos administrativos	44.395,40	44.482,78	45.176,27	45.965,94	46.883,65	47.982,99
Sueldos y salarios	34.477,40	35.029,04	35.589,50	36.158,94	36.737,48	37.325,28
Servicios básicos	1.464,00	1.487,42	1.618,09	1.835,93	2.172,67	2.681,73
Permisos	145,00	147,32	149,68	152,07	154,51	156,98
Depreciaciones	7.819,00	7.819,00	7.819,00	7.819,00	7.819,00	7.819,00
Suministros de oficina	490,00	497,84	505,81	513,90	522,12	530,47
Gastos en ventas	1.900,00	1.930,40	1.961,29	1.992,67	2.024,55	2.056,94
Promoción y publicidad	1.900,00	1.930,40	1.961,29	1.992,67	2.024,55	2.056,94
Gastos Financieros		8.108,32	6.081,24	4.054,16	2.027,08	-
TOTAL	101.001,87	110.103,27	109.689,88	109.387,38	109.227,89	109.265,22

4.5.1.7 Presupuesto de ingresos

Cuadro 47-4: Presupuesto de ingresos

DENOMINACIÓN			ΑÑ	0		
DENOMINACION	2017	2018	2019	2020	2021	2022
Saco de 25 kg.	9.604,39	9.758,06	9.914,19	10.072,82	10.233,98	10.397,72
Precio	5,00	5,00	5,00	5,00	5,00	5,00
Clientes	1.921	1.952	1.983	2.015	2.047	2.080
Saco de 40 kg.	81.445,23	82.748,35	84.072,32	85.417,48	86.784,16	88.172,71
Precio	8,00	8,00	8,00	8,00	8,00	8,00
Clientes	10.181	10.344	10.509	10.677	10.848	11.022
Saco de 50 kg.	63.965,24	64.988,68	66.028,50	67.084,96	68.158,32	69.248,85
Precio	9,00	9,00	9,00	9,00	9,00	9,00
Clientes	7.107	7.221	7.337	7.454	7.573	7.694
TOTAL	155.014,85	157.495,09	160.015,01	162.575,25	165.176,46	167.819,28

Elaborado por: Alex Gavilanes, 2017

4.5.1.8 Estado de resultados

Cuadro 48-4: Estado de resultados

DENOMINACIÓN			ΑÑ	(O		
	2017	2018	2019	2020	2021	2022
VENTAS	155.014,85	157.495,09	160.015,01	162.575,25	165.176,46	167.819,28
COSTOS DE PRODUCCION	54.706,47	55.581,77	56.471,08	57.374,62	58.292,61	59.225,29
UTILIDAD BRUTA	100.308,39	101.913,32	103.543,93	105.200,64	106.883,85	108.593,99
GASTOS ADMINISTRATIVOS	44.395,40	44.482,78	45.176,27	45.965,94	46.883,65	47.982,99
GASTOS VENTAS	1.900,00	1.930,40	1.961,29	1.992,67	2.024,55	2.056,94
UTILIDAD OPERATIVA	54.012,99	55.500,14	56.406,37	57.242,03	57.975,65	58.554,06
GASTOS FINANCIEROS	-	8.108,32	6.081,24	4.054,16	2.027,08	-
UTILIDAD ANTES DE IMPUESTOS Y REPARTICION DE BENEFICIOS	54.012,99	47.391,82	50.325,13	53.187,87	55.948,57	58.554,06
IMPUESTOS	6.481,56	5.687,02	6.039,02	6.382,54	6.713,83	7.026,49
UTILIDAD ANTES DE REPARTICION DE UTILIDADES	47.531,43	41.704,80	44.286,12	46.805,33	49.234,74	51.527,57
REPARTICION DE UTILIDADES	4.753,14	4.170,48	4.428,61	4.680,53	4.923,47	5.152,76
UTILIDAD NETA Flahorado por: Alex Gavilanes 2	42.778,29	37.534,32	39.857,51	42.124,79	44.311,26	46.374,82

4.5.1.9 Flujo de caja

Cuadro 49-4: Flujo de caja

DENOMINACIÓN			ΑÑ	0		
	2017	2018	2019	2020	2021	2022
INVERSIONES	128.927,98					
VALOR DE SALVAMENTO						61.245,00
CAPITAL DE TRABAJO						14.787,98
UTILIDAD NETA		42.778,29	37.534,32	39.857,51	42.124,79	44.311,26
DEPRECIACIONES		7.819,00	7.819,00	7.819,00	7.819,00	7.819,00
FLUJO DE CAJA	(128.927,98)	50.597,29	45.353,32	47.676,51	49.943,79	128.963,24
FACTOR DE ACTUALIZACION	1,00	0,95	0,91	0,86	0,82	0,78
FLUJO DE CAJA ACTUALIZADO	(128.927,98)	48.187,89	41.136,80	41.184,76	41.088,88	101.046,07
]	TOTAL		89.324,69	130.509,45	171.598,33	272.644,41

Elaborado por: Alex Gavilanes, 2017

4.5.2 Viabilidad económica

Cuadro 50-4: Viabilidad económica

PRC	5to año
RBC	2,11
VAN	136.872,80
TIR	34%

CONCLUSIONES

Mediante el estudio de mercado, técnico- productivo, ambiental, administrativo- legal y económicofinanciero se ha determinado que el estudio de factibilidad para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba es viable.

A través del estudio de mercado se logró determinar una aceptación del 89% por parte de los agricultores de la provincia de Chimborazo, así también se visualizó las preferencias de las presentaciones del compost y los medios publicitarios para información.

Con el estudio de impacto ambiental se determinó que el proyecto no generará impactos negativos de manera significativa, los impactos que se generen serán solventados con medidas de mitigación y buenas prácticas ambientales.

En el estudio administrativo legal se analizó la creación de la empresa Nutricompost, la normativa legal vigente, así como también se diseñó la estructura orgánica y el manual de cargos y funciones de los 7 empleados.

En el estudio económico financiero se determinó la inversión del proyecto, las fuentes de financiamiento, pago de la deuda, la depreciación de activos fijos, la amortización de activos diferidos, la estructura de costos y gastos, el presupuesto de ingresos, el estado de resultados y el flujo de caja, con éstos datos se determinó la viabilidad económica teniendo una TIR del 34% y un VAN de \$136.872,80.

RECOMENDACIONES

Se recomienda que el estudio de factibilidad para la implementación de una planta de compostaje para el aprovechamiento de residuos sólidos del camal de la ciudad de Riobamba sea acogida por instancias gubernamentales para su implementación en vista de que se constituye una propuesta de mejora para la situación que actualmente atraviesa el camal de la ciudad.

Así también, a las instituciones públicas que tengan competencias relacionadas a la actividad productiva, dispongan de información actualizada para realizar las diferentes propuestas de planes, programas y proyectos similares a ésta propuesta.

BIBLIOGRAFÍA

- 1. Acurio, G. et al. (2012). Diagnóstico de la situación de residuos sólidos municipales en América Latina y el Caribe. Washington: Banco Interamericano de Desarrollo y la Organización Panamericana.
- 2. Agencia Ecuatoriana para el Aseguramiento de la Calidad del Agro. (2013). Manual de procedimientos para la inspección y habilitación de mataderos. Ecuador-Quito
- 3. **Armijos, E.** (2013). *Proyecto de reducción de la pobreza y desarrollo rural local*. (Tesis de maestría), Escuela Superior Politecnica del Litoral. Ecuador-Los Ríos. Recuperado de: www.espol.edu.ec.reduccionpobreza/1230966.pdf
- 4. **Barón Maldonado, D. I., & Rivera Cadavid, L.** (2014). Cómo una microempresa logró un desarrollo de productos ágil y generador de valor empleando Lean. Estudios Gerenciales, 30(130), 40-47. doi: http://doi.org/10.1016/j.estger.2014.02.007
- Barreira, L.P., J. Philippi y M. Rodrigues (2013): Usinas de compos- 2006. Usinas de compostagem do estado de São Paulo: qualidade dos compostos e processos de produção. Eng. Sanit. Ambient. 11(4), 385-393, tomo 2.
- 6. **BIOAMPEG** (2015). Estudio de prefactibilidad y diseño definitivo de la planta de tratamiento de aguas residuales del camal municipal de Riobamba., (Consultoría), Ecuador-Riobamba, EI 10.
- 7. **Bonilla, M**. (2012). Guía para el manejo de residuos en rastros y mataderos municipales. *Ambientalex.info, 3*, 4-21. Retrieved from Universidad popular del César. Perú-Lima, Recuperado de: http://unicesar.ambientalex.info/infoCT/Guimanresrasmatmunmx.pdf
- 8. **Cordoba, P.** (2014). *Formulación y evaluación de proyectos* (Marcos Ed.). Colombia-Medellín.
- 9. **Escuela Superior Politécnica del Litoral.** (2016). *Industria de ganadería de carne*. Ecuador- Guayaquil,. Recuperado de:http://www.espae.espol.edu.ec/images/documentos/publicaciones/estudios_industriales/industriaganaderia.pdf

- 10. Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2014).
 Carne y productos cárnicos. Recuperado de: http://www.fao.org/ag/againfo/themes/es/meat/background.html
- 11. **Fisher, L., & Espejo, J.** (2013). *Mercadotecnia y sus implicaciones sociales* (Mac Graw Hill Ed. Vol. 1).
- 12. Gobierno Autónomo Descentralizado Municipal de Riobamba. (2015). Diseño definitivo para el tratamiento de aguas residuales del camal municipal de Riobamba. Riobamba.
- 13. **Garzón, I.** (2010). Diagnóstico Ambiental del Camal Municipal de la ciudad de Santo Domingo y la mejora de su gestión. (Tesis de pregrado), Escuela Politénica Nacional, Quito-Ecuador.
- 14. Garzón, I. (2012). Diagnóstico ambiental del camal municipal de la ciudad de Santo Domingo y mejora de su gestión. (Ingeniera Ambiental), Escuela Politécnica Nacional, Quito. Retrieved from http://bibdigital.epn.edu.ec/bitstream/15000/2480/1/CD-3184.pdf
- 15. Guerrero, E., & Ignacio, R. (2014). Manejo Ambiental de residuos en mataderos de pequeños municipios. Scientia Et Technica(- 26 N2), 199-204.
- 16. **Instituto Nacional de Estadísticas y Censos.** (2014). *Encuesta de Superficie y Producción Agropecuaria* Quito: ESPAC Recuperado de: http://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac_2014.pdf.
- 17. **Kim, J.D., J. Park, B. In, D. Kim y W. Namkoong.** (2013). Evaluation of pilot-scale invessel composting for food waste treatment. Ed. Hazard Mater.154(1-3),272–277,volumen2.
- Líderes. (2015). En ocho provincias se concentra el mayor consumo de cárnicos. 2015,
 Ecuador-Quito., Recuperado de: http://www.revistalideres.ec/lideres/consumo-carnicos-ecuador.html

- 19. Masó, A.M. & Bonmatí, A. (2013). Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua. Bioresource Technol. 99(11), 5120-5124, volumen 2.
- 20. **Miranda, J.** (2015). Gestión de proyectos: identificación, formulación, evaluación financiera-económica-social-ambiental., Recuperado de: https://www.gestiopolis.com/que-es-el-estudio-de-factibilidad-en-un-proyecto/.pdf
- 21. Mongrut, S., Alberti, F., Fuenzalida, D., & Akamine, M. (2014). Determinantes de la insolvencia empresarial en el Perú. Revista Latinoamericana de administración, 47. Perú-Lima.
- 22. **Moreno, J.** (2012). Compostaje. *Mundi Prensa*, Revista Latinoamericana de administración, 61. Perú-Lima.
- 23. **Muñoz, E.** (2005). Guía Metodológica para la formulación y evaluación de proyectos productivos, España-Valencia.
- 24. **Navarro**, **S.** (2013). *Ingeniería del ciclo de vida para el desarrollo de productos sostenibles*, (Tesis de pregrado), (Universidad Politécnica de Valencia Ed. Vol. 1)., España-Valencia
- 25. Ocaña, M. (2013). "Propuesta de reuso de desechos orgánicos obtenidos del proceso de eviscerado del Centro de Faenamiento Ocaña Cía. Ltda. de la ciudad de Quero para disminuir la contaminación del suelo" (Master), Universidad Técnica de Ambato.
- 26. **Organización de los Estados Americanos.** (2017). *Análisis de factibilidad*. empresarial, Recuperado de: https://www.oas.org/dsd/publications/Unit/oea02s/ch57.htm#TopOfPage
- 27. **Organization of Environmental Currently Develpment.** (2015). *Municipal waste*. Recuperado de: https://data.oecd.org/waste/municipal-waste.htm
- 28. **Organización Panamericana de la Salud.** (2015). Aspectos descriptivos técnicos para el aprovechamiento de los residuos orgánicos generados en un matadero municipal para procesos de compostaje y lombricultura. 1. Recuperado de: http://www.bvsde.paho.org/bvsaidis/resisoli/peru/colres001.pdf

- 29. **Oviedo R., Marmolejo L., Torres P.** (2012). Perspectivas de aplicación del compostaje de biorresiduos provenientes de residuos sólidos municipales. Un enfoque desde lo global a lo local. Recuperado de: http://www.redalyc.org/articulo.oa?id=75025069006.
- 30. **Puerta, S.** (2014). *Los residuos sólidos municipales como acondicionadores de suelos*. (Tesis de pregrado), Universidad Politécnica de Valencia., España-Valencia.
- 31. **Ricaurte S.** (2012). *Compostaje en las granjas agrícolas*. Recuperado de http://www.redalyc.org/articulo.oa?id=382358890
- 32. Riera N., Della V., Rizzo P., Butti M., Bressan F., Zarate N., Weigandt C., Crespo D. (2014). Evaluación del proceso de compostaje de dos mezclas de residuos avícolas. http://www.redalyc.org/articulo.oa?id=382837657014
- 33. **Ruiz, S.** (2011). *Plan de gestión de residuos del camal del cantón Antonio Ante*. (Tesis de pregrado), Escuela Politécnica Nacional, Ecuador-Quito.
- 34. **Veall, F.** (2013), Estructura y funcionamiento de mataderos medianos en países en desarrollo. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Recuperado de: http://www.oea.org/descargas/articuloestructura_id=3828376511
- 35. Vecino, C. E., Rojas, S. C., & Munoz, Y. (2015). Prácticas de evaluación financiera de inversiones en Colombia. Estudios Gerenciales, 31(134), 41-49. doi: http://doi.org/10.1016/j.estger.2014.08.002
- 36. Zurbrügg, C., S. Drescher, I. Rytz, A.H.Md. Maqsood Sinha, e I. Enayetullah. (2014). Decentralised composting in Bangladesh, a win-win situation for all stakeholders. Resour. Conservat. Recycl. 43(3), 281-292, volumen 2.

ANEXOS

Anexo A. Encuesta dirigida para los posibles consumidores.

1. ¿Utiliza usted abono orgánico en su producción?
Si
2. ¿Qué tipo de abono orgánico adquiere normalmente? Compostaje
Estiércol
Gallinaza
Humus de lombriz Otros
3. ¿Le gustaría que se implemente una planta de compostaje en la provincia de Chimborazo? Si No No No No No No No No No N
4. ¿Compraría usted el compost que se produciría en la provincia de Chimborazo? Si No
5. ¿Qué cantidad de abono orgánico utiliza al mes por hectárea? < 10 qq
6. ¿En qué presentación le gustaría comprar el compost? Saco de 50 kg.
Dued de do Ray.

Saco de 40kg.
Saco de 25 kg.
7. ¿Cuál es el precio que usted paga por un quintal de compost?
\$9,00
\$10,00
\$11,00
8. ¿Por qué medios usted se informa para la compra de abonos orgánicos?
Trípticos
Volantes
Radio
T_{V}